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Monitoring Spatiotemporal Expansion Dynamics of
Short-Rotation Eucalyptus Plantations Over Large

Scales Using Landsat Time-Series Data
Yuanzheng Yang, Wen H. Cai , Qiuxia Huang, Le Yu , Jiaxing Zu, Jiali Wang, and Jian Yang

Abstract—Eucalyptus, valued for its rapid growth and economic
potential, has been widely introduced in China to address timber
demands while conserving natural forests. Precisely estimating the
spatiotemporal expansion of short-rotation eucalyptus plantations
is crucial for evaluating their ecological and social value and for-
mulating effective sustainable forestry policies. Medium-resolution
satellite images, such as Landsat data, offer a cost-effective tool for
large-scale forest mapping compared with the traditional forest in-
ventories. This study used pixel-level time-series analysis to identify
annual eucalyptus plantation distributions across Guangxi, China,
from 2004 to 2019, based on the standard temporal vegetation
index curves derived from the characteristics of short-rotation
and fast-growing eucalyptus. Furthermore, an image segmentation
method, coupled with an empirical relationship linking patch-level
landscape indices to optimal thresholds, was employed to eliminate
isolated pixels and reduce omission errors arising from the above
time-series analysis. The established thresholds increased the ac-
curate identification of eucalyptus patches within segments. Our
proposed eucalyptus detection algorithm achieved an overall accu-
racy exceeding 80%, demonstrating its effectiveness. The analysis
revealed eucalyptus plantations increased from 0.42 × 106 ha in
2004 to 2.47 × 106 ha in 2019, exhibiting a pronounced north-
ward expansion. Initially concentrated in upland areas, planta-
tions subsequently expanded into flatter terrains, raising concerns
about potential agricultural conflicts. Annual eucalyptus planta-
tion maps offer critical information for sustainable forest man-
agement and policymaking. This study highlights the potential of

Received 14 April 2024; revised 11 August 2024 and 18 September 2024;
accepted 23 September 2024. Date of publication 1 October 2024; date of current
version 23 October 2024. This work was supported in part by the National
Natural Science Foundation of China under Grant 32460289, Grant 41961037,
and Grant 42001216, in part by the Special Research Project of Guangxi for
Research Bases and Talents under Grant AD19110143, Grant AD20297066,
and Grant AD21220088, and in part by the BaGui Scholars Program of Guangxi
Zhuang Autonomous Region. (Corresponding author: Jian Yang.)

Yuanzheng Yang, Wen H. Cai, Jiaxing Zu, and Jiali Wang are with the Key
Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning
Normal University, Nanning 530001, China (e-mail: yangyz@nnnu.edu.cn;
caiwh@nnnu.edu.cn; zujiaxing@nnnu.edu.cn; wangjiali@nnnu.edu.cn).

Qiuxia Huang is with the College of History Culture and Tourism, Guangxi
Minzu Normal University, Chongzuo 532200, China (e-mail: huangqiuxia@
gxnun.edu.cn).

Le Yu is with the Department of Earth System Science, Tsinghua University,
Beijing 100084, China, also with the Ministry of Education Key Laboratory for
Earth System Modeling, Tsinghua University, Beijing 100084, China, also with
the Institute for Global Change Studies, Tsinghua University, Beijing 100084,
China, also with the Ministry of Education Ecological Field Station for East
Asian Migratory Birds, Beijing 100084, China, and also with the Xi’an Institute
of Surveying and Mapping Joint Research Center for Next-Generation Smart
Mapping, Beijing 100084, China (e-mail: leyu@tsinghua.edu.cn).

Jian Yang is with the Department of Forestry and Natural Resources, Univer-
sity of Kentucky, Lexington, KY 40546 USA (e-mail: jian.yang@uky.edu).

Digital Object Identifier 10.1109/JSTARS.2024.3472008

medium-resolution satellite data and time-series analysis for robust
and cost-effective monitoring of annual short-rotation timber forest
expansion dynamics over large scales.

Index Terms—Eucalyptus, forest monitoring, Google Earth
engine (GEE), short-rotation plantations, time-series analysis.

I. INTRODUCTION

IN RECENT decades, short-rotation eucalyptus plantations
have experienced rapid expansion to meet the growing de-

mand for wood resources [1], [2]. While this expansion offers
significant economic benefits [3], [4], its potential allelopathic
effects and intensive cultivation practices, such as short rota-
tions and clearcut logging, also raise concerns about ecological
impacts [5], [6], [7]. The accurate and up-to-date monitoring
of eucalyptus plantation distribution is crucial for assessing
their environmental consequences [8]. Previous studies have re-
ported statistical data about eucalyptus plantation area in specific
years or at local scales [9], [10], [11]. However, comprehensive
information regarding the magnitude, spatial distribution, and
temporal trends of eucalyptus plantation expansion in China
remains poorly documented. This lack of information hinders
our ability to predict future expansion trajectory and develop
sustainable forest management practices.

Remote sensing offers an effective and economical way to
document annual plantation expansion dynamics across large
scales [13], [14]. Several approaches have been explored to
recognize tree species using the spectrum information acquired
from high spatial resolution images, which could delineate the
distinctive canopy structure [15], [16], [17], while others ex-
plored the biochemical properties and/or leaf morphology vari-
ation of different tree species in spectrum using hyperspectral
data [18], [19], [20]. Single or combined high-resolution images
and hyperspectral data can provide comprehensive information
on feature texture and spectral properties, exhibiting a solid
performance in plantation classification [10], [15], [21], [22].
However, high spatial resolution images and hyperspectral data
are associated with significant costs and are typically constrained
by limited temporal coverage because such satellite systems
are deployed only recently, which limits their application in
large-scale, long-term forest monitoring [23], [24], [25]. Coarse-
resolution time-series satellite data have been a common alter-
native for forest disturbance detection and classification due to
their accessibility and extensive temporal coverage [13], [26].
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However, its effectiveness may be inadequate in heterogeneous
landscapes with fragmented patches managed by plenteous lo-
cal farmers. Therefore, investigating the effectiveness of freely
available satellite data with medium resolution (e.g., Landsat
series data) for annual eucalyptus plantation mapping at large
scales remains needed. This research aims to address this gap
by exploring the feasibility and accuracy of using Landsat time-
series data for monitoring eucalyptus expansion dynamics in
diverse landscape settings.

To effectively identify timber plantations, researchers have
explored utilizing time-series analysis of satellite imagery, capi-
talizing on the cyclical spectral changes associated with periodic
planting and logging [27], [28]. Short-rotation eucalyptus plan-
tations, for instance, exhibit a distinct “shark-tooth” pattern in
their vegetation index, plummeting after clearcut and rapidly
rising after replanting or sprouting until the next clearcut cycle
[9], [10]. Time-series analysis allows for the detection of these
abrupt spectral shifts triggered by clearcut events [13], [29],
[30], [31]. However, cloud contamination and image acquisition
limitations can lead to data gaps in satellite-based vegetation
indices. Furthermore, moderate resolution pixels may contain a
mixture of different features or a mix of eucalyptus plantations
with different stand ages due to the piecemeal clearcutting driven
by ownership fragmentation, causing deviations from the ideal
“shark-tooth” pattern in the time-series curve. Relying solely on
this standard curve for target feature identification can lead to
misestimating, mostly underestimation [9], [32].

To address the limitations posed by the pixel-level clearcutting
detection, several studies have proposed incorporating super-
pixel (i.e., segment) classification methods as complementary
to the existing time-series analysis approach for plantation
forest mapping [9], [33]. Such an integrative framework can
effectively overcome challenges with isolated pixels and frag-
mented patches by adding two refinement steps per segment.
Segments with fewer than a predefined minimum threshold
of contiguous plantation forest pixels are discarded to elim-
inate noise, preventing “salt-and-pepper” effects. Conversely,
segments surpassing a predefined threshold in proportion of
identified pixels are entirely classified as a plantation forest
patch, ensuring the accurate detection within large clearcuts.
This approach is based on the assumption that if the identified
area detected by the standard time-series curve exhibits con-
centrated distribution, neighboring pixels with similar spectral
information have a higher probability of belonging to the same
class.

A major challenge lies in establishing a threshold value above,
which a pixel is classified as the target feature. Previous studies
have utilized field survey data to determine optimal threshold
values, through balancing omission and commission errors [9],
[10]. While this approach could achieve high classification accu-
racy, its dependence on large volumes of training samples, espe-
cially for historical years lacking high-resolution images, limits
its applicability for long-term, large-scale eucalyptus detection.
In mapping the spatial distribution of Chinese maize plantation
across 20 years, Peng et al. [34] proposed an “area-matching”
method to iteratively adjust this threshold value until the mapped
plantation area matched the reported statistics computed at the

Fig. 1. Study area. Red dots indicate the eucalyptus samples collected in 2019
through field survey and visual interpretation of Google Earth imagery.

province and county levels. However, this method is still infea-
sible for years lacking such statistics. We propose a novel ap-
proach to develop an empirical relationship between the optimal
threshold and landscape metrics of the identified plantation area
estimated by time-series analysis. By exploring this relationship,
it is expected to fill the gap in years lacking plantation area
statistics, enabling robust and long-term eucalyptus plantation
identification across large scales.

Eucalyptus plantations are extensively cultivated in China’s
tropical and subtropical regions, particularly in Guangxi
province. However, accurately identifying these plantations on
an annual basis remains a significant challenge due to the re-
gion’s complex and diverse vegetation types, including exotic
species with similar spectral and seasonal characteristics. Our
research objectives are threefold:

1) improve a clearcut-detection-based annual eucalyptus
plantation identification approach with the improved seg-
mentation refinement method;

2) evaluate the performance of time-series analysis in identi-
fying short-rotation eucalyptus plantations using a single
data source (Landsat series datasets);

3) develop annual eucalyptus plantation distribution datasets
for Guangxi, China, from 2004 to 2019.

By achieving these objectives, this study will contribute to a
deeper understanding of the long-term expansion dynamics of
short-rotation eucalyptus plantations in China. This knowledge
and the resulting dataset can be instrumental in developing
effective forest management strategies for the region.

II. STUDY AREA

Guangxi province, located in Southwest China (20°54′N–
26°24′N and 104°26′E–112°04′E), falls within the subtropical
monsoon climate zone (see Fig. 1). Vegetation type in this
study area is complex, including natural forests, planted forests
(e.g., eucalyptus, pine, and fir), croplands (e.g., paddy fields and
sugarcane fields), and orchards (e.g., citrus, lychee, and mango).
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Fig. 2. Image processing and analysis flow.

The warm and humid climate provides ideal conditions for
plantation growth, making Guangxi the leading timber producer
in China. Eucalyptus (Eucalyptus robusta Smith) dominates the
timber forest landscape and accounts for 2.33 million ha in
2020 [35]. Other major species of planted forests include pine
(Pinus massoniana Lamb.) and fir (Cunninghamia lanceolata
(Lamb.) Hook.). These plantations undergo clearcut at different
intervals. Eucalyptus plantations follow a short-rotation cycle of
4–6 years, significantly shorter than fir (20–25 years) and pine
(25–30 years) rotations [36], [37]. While eucalyptus plantations
often display contiguous distribution and undergo successive
rotations, the plantation patch size and stand age vary consider-
ably. This can be attributed to the diverse ownership structure,
with most plantations managed by individual households (local
peasants) alongside state-owned forest farms. Annual eucalyp-
tus plantation mapping provides valuable information for as-
sessing their economic and environmental impacts, contributing
to sustainable management practices in Guangxi Province.

III. METHOD

A. Overview

Our method is mainly derived from the study of the authors
in [9] and [10] with modifications in algorithms for identifying
harvesting events using the time-series analysis and choosing
optimized threshold values to refine the classification after image
segmentation (see Fig. 2). The overall method begins with

the identification of clearcut events throughout the investiga-
tion years at the pixel level via the time-series analysis. We
then utilize the harvesting rotation characteristics of eucalyptus
plantation forests to determine, for each year, whether a pixel
corresponds to a eucalyptus plantation based on the presence
of one or two harvesting events in the preceding six years,
given the 4–6 year-logging rotation of eucalyptus plantations in
Guangxi province. Subsequently, we apply an image segmen-
tation method to eliminate isolated pixels and reduce omission
errors for potential eucalyptus forests that deviate from the ideal
harvesting/regrowth time-series curve.

Our annual eucalyptus plantation mapping process encom-
passes four key steps:

1) data preparation (Landsat data assembling, preprocessing,
and generating time-series vegetation index datasets);

2) clearcut detection (employing time-series analysis to iden-
tify plantation forest distribution areas);

3) eucalyptus identification (distinguishing eucalyptus plan-
tations from other planted forest types);

4) image segmentation-based refinement for further enhanc-
ing mapping accuracy.

The validation of these eucalyptus plantation maps is de-
scribed in Section III-F. We utilized Google Earth engine (GEE)
as data processing platform for the entire eucalyptus plantation
identification procedure, python for following data stack, and R
software for statistical analysis.

B. Data Preparation

All available Landsat surface reflectance data ranging from
the year 1997 to 2022 were assembled in GEE, including Landsat
thematic mapper (TM), enhanced TM plus, operational land
imager (OLI), and OLI-2. A total of 18 WRS path/row com-
binations were necessary to cover the entire Guangxi province
[see Fig. 3(a)]. Preprocessing was conducted for the following
classification analysis. First, the cloud and cloud shadow of
each Landsat scene were removed using an automated masking
algorithm. Second, an enhanced vegetation index (EVI) time
series was calculated from Landsat image collection, which was
used to detect clearcut disturbance (refer to Section III-C for the
specific algorithm). Restricted by frequent cloud contamination
in this study area [see Fig. 3(b)], the EVI time series in some
pixels was discontinuous. To filter out discontinuous gaps in
time series caused by cloud contamination or other noises, the
EVI time series in each pixel was restructured by median value
for every three-month period, resulting in four data points per
year for the 1997–2022 period.

C. Clearcut Detection

Compared with commonly used vegetation indices, such as
the normalized difference vegetation index, EVI exhibits greater
sensitivity to foliar cover in subtropical and tropical regions,
facilitating the detection of abrupt declines associated with
clearcutting [38], [39]. While other vegetation indices, including
the normalized burn ratio and land surface water index, have
been utilized to monitor disturbances and forest recovery due to
their sensitivity to topsoil exposure after disturbance [40], [41],
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Fig. 3. Statistics of Landsat images across the study area from 1997 to 2022.
(a) indicates image availability in each pixel over the past 26 years. (b) indicates
the temporal and seasonal distribution during the years from 1997 to 2022, and
its effective proportion (cloud cover below 30%).

[42], EVI distinguishes itself through its robustness to distur-
bances and its capacity to minimize the influence of atmospheric
conditions and soil background on the vegetation signal [38].
The EVI is calculated as follows:

EVI = 2.5× ρnir − ρred

ρnir + 6.0× ρred − 7.5× ρblue + 1

where ρnir, ρred, and ρblue stand for the surface reflectances of
the near-infrared, red band, and blue band.

Eucalyptus plantations exhibit a distinct pattern of EVI values
over time, with a sharp decrease following clearcut events. To
identify these clearcut events, we employed the sum of squared
error (SSE) to partition a time series of EVI into harvest and
regrowth segments over six-year spans [9]. Given the expected
pronounced contrast in EVI values between these segments,
the time exhibiting the lowest EVI value within each six-year
window was tentatively identified as a potential clearcut event.
Adjacent values were iteratively grouped into the harvest seg-
ment if their inclusion increased the overall SSE [see Fig. 4(a)].
The SSE was defined as follows:

SSE =

Nh∑

i=1

(
hi − h̄

)2
+

Ng∑

i = 1

(gi − ḡ)2

where
hi values in harvest segment;

(a) (b)

Fig. 4. Conceptual graph of time-series segmentation. The EVI time series in
each pixel is divided into harvest (red) and regrowing (black) phases. While both
Deng et al.’s [9] method and our modified clearcut-detection algorithm could
successfully detect single clearcuts within a six-year observation window (Case
a), our method demonstrates the unique capability to identify multiple clearcut
events in Case b within the same time span (modified from [9] and [10]).

gi values in the regrowth segment;
Nh count of observations in harvest segment;
Ng count of observations in regrowth segment;
h̄ mean value of harvest segment;
ḡ mean value of regrowth segment.

A one-tailed t-test was conducted to assess significant differ-
ences in EVI values between segmented regrowth and harvest
parts. Clearcutting was inferred for pixels exhibiting a mean
EVI value in the harvest segment significantly lower than the
regrowth phase by a threshold of 0.12, as defined in [9]. Pix-
els not meeting this criterion were excluded from the clearcut
classification.

The original Deng et al.’s [9] algorithm aimed to identify
annual clearcut events within the six-year time span (2013–
2018), regardless of whether the harvesting event occurred at the
beginning, middle, or end of the time series. This approach might
underestimate harvest events occurring twice in the six-year
span, as SSE may not effectively separate one harvesting event
from another mistakenly assumed to be a part of the regrowth
phase [see Fig. 4(b)]. To mitigate this issue, we implemented
a sliding time window approach to ensure that the year for
identifying the harvest falls in the middle of the six-year time
span, thereby reducing omission errors caused by the confound-
ing effects of multiple harvesting events over the six-year time
span. For instance, by analyzing EVI data from 1997 to 2002,
clearcut events occurring exclusively in 1999 were isolated for
subsequent analysis. This process was repeated for successive
six-year intervals, generating annual clearcut distribution maps
from 1999 to 2019.

D. Eucalyptus Classification

While time-series analysis effectively filters out nonclearcut
events during the eucalyptus logging cycle, the pixels associated
with at least a clearcut event during the six-year time span may
not exclusively belong to eucalyptus plantations. These pixels
could pertain to some other planted forests, such as pine and fir,
that happened to undergo a clearcut in the preceding six years.
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TABLE I
INFORMATION ABOUT TESTING SAMPLES

Therefore, further reclassification is essential to distinguish eu-
calyptus from other planted forests.

To circumvent misclassification issues driven by the bare
ground and young saplings immediately (i.e., one- or two-year
postharvest) following clearcuts, Landsat images acquired in
the last year of each six-year sliding window (i.e., images
taken three years after logging) were utilized to differentiate
between eucalyptus and other planted forests. We evaluated
four common classifiers—random forest, classification and re-
gression tree, support vector machine, and minimum distance
method—and determined random forest to be the superior
choice for eucalyptus identification based on a pilot accuracy
assessment. The model was trained on a dataset of 8578 samples,
partially derived from the high-resolution Google Earth imagery
and field sampling conducted in 2020 (see Table I).

Following the clearcut detection and eucalyptus classifica-
tion, we aggregated the clearcut areas classified as eucalyptus
within each six-year window into a single map, representing
the eucalyptus distribution for that specific year (see Fig. 2). In
other words, the eucalyptus clearcut maps from 1999 to 2004
were merged to create the eucalyptus distribution map in the year
2004, and this process was repeated for each subsequent six-year
interval to generate annual potential eucalyptus distribution
maps from 2004 to 2019.

E. Eucalyptus Plantation Mapping

To mitigate the misestimation issues of pixel-level classifi-
cation for target feature identification based solely on standard
time-series characteristics, we used the simple noniterative clus-
tering (SNIC) image segmentation algorithm to consider the
crucial role of spatial context in feature classification [33], [43].
This technique divides the landscape into segments (superpixels)
with similar spectral characteristics, effectively capturing the
spatial relationships between pixels [44]. The segmentation scale
is a critical parameter influencing SNIC algorithm performance.
Following Deng et al. [9], given our shared study area and
Landsat imagery, we employed a two-tiered approach. Initial
segmentation used a 10 × 10 pixels scale, followed by a 5 × 5-
pixel subdivision for segments exceeding the median variance.
This hierarchical strategy effectively delineated both small and
large plantations.

After image segmentation, two threshold values should be
estimated. We removed any segments whose size was less than
4 pixels (0.36 ha) to mitigate the salt–pepper effects (lower
threshold). We deemed that such small patches were unlikely to

be the plantation forest because, otherwise, the plantation cost
would outweigh the timber value at such small scales. The upper
threshold, representing the percentage of pixels within a segment
identified as eucalyptus, was crucial for addressing potential
omissions in large clearcuts. To determine this threshold, we
leveraged provincial statistics on eucalyptus plantations [32],
[34] and collected a 12-year record of plantation area from
the forestry bureau’s annual statistical reports. We iteratively
adjusted upper thresholds ranging from 0% to 100% in incre-
ments of 1%, aiming to identify the value that led to eucalyptus
area estimates closest to those reported plantation area statistics.
Importantly, the optimal upper threshold varied across years.
This variability reflects the evolving spatial patterns of eucalyp-
tus plantation. Initially, plantations were scattered and discrete,
leading to a higher optimal upper threshold for identifying
dispersed eucalyptus pixels. As plantations expanded, forming
contiguous distributions, a lower optimal upper threshold was
more appropriate. This association allowed us to develop an
empirical relationship between the optimal upper threshold and
the landscape metrics describing the spatial patterns of euca-
lyptus plantation, which enabled us to estimate the appropriate
upper threshold for years (i.e., years 2009, 2012, 2014, and
2018) lacking reported provincial-level eucalyptus plantation
area statistics. We also calculated leverage values for each
year’s observation to quantify their influence on the model fit
between the optimal upper threshold and the landscape metric.
The landscape metrics were calculated in Fragstats 4.2 [45].

F. Validating Eucalyptus Mapping

To evaluate the accuracy of our eucalyptus mapping, we
employed two validation methods: Google Earth high-resolution
imagery and field surveys (see Table I). Google Earth imagery
offers reliable ground truthing for eucalyptus identification.
However, it did not cover the entire study period (2004–2019).
The visual interpretation was conducted for the years 2007,
2010, 2015, and 2019, during which the Google Earth imagery
was available. We also conducted field surveys in year 2020
and 2021, collecting 3365 samplings across three land cover
classes: eucalyptus plantations, croplands, and other vegetation
types (e.g., orchard, pine, and fir). Since forests and croplands
are relatively stable, these samples served as complimentary
ground-truth data for validating eucalyptus map in the year
2019. For our research purpose, we classified land use into
two categories: eucalyptus and noneucalyptus. We calculated
the producer, user, and overall accuracy of the classification for
each year of 2007, 2010, 2015, and 2019.

G. Eucalyptus Plantations Expansion Dynamics

To explore spatial expansion patterns, the percentage of eu-
calyptus planting area within each county was calculated for
the years 2005, 2010, 2015, and 2019, highlighting the areas
of high and low density. The influence of geological and to-
pographic factors on these expansion patterns was also investi-
gated to assess spatial heterogeneity. While eucalyptus prefers
humid environments, the prevalent karst topography in Guangxi,
characterized by inherent aridity [46], [47], may constrain its
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Fig. 5. Identified eucalyptus distribution maps from 2004 to 2019 across
Guangxi, China.

expansion. Additionally, topographic features impact eucalyptus
cultivation practices, growth rates, and harvesting efficiency,
thereby affecting spatial patterns. We analyzed eucalyptus ex-
pansion within karst and nonkarst areas, as well as on gentle
(≤15°) and steep (>15°) slopes. Karst region delineation was
sourced from the Institute of Karst Geology, Chinese Academy
of Geological Sciences.1 Slope map was derived from the shuttle
radar topography mission digital elevation data with a 30-m
spatial resolution [48].

IV. RESULTS

A. Eucalyptus Mapping Accuracy

This study developed annual eucalyptus plantation maps for
Guangxi covering the period 2004–2019 (see Fig. 5). The eu-
calyptus mapping performance was assessed from both spatial
and temporal perspectives. Testing samples from 2007, 2010,
2015, and 2019 were used to validate the identifying accuracy of
eucalyptus plantations in the corresponding maps (see Table II).
The validation results showed that user’s accuracy exceeded
80% in all years. Notably, the user’s accuracy surpassed the
producer’s accuracy across the four years, showing a minimal
commission error.

We also compared the identified eucalyptus plantation area
with corresponding area statistics reported by the forestry bu-
reau (see Fig. 6). The comparison revealed a strong positive
correlation (R2 = 0.999, t-value < 0.01), indicating that both

1.[Online]. Available: http://en.cags.ac.cn/

TABLE II
CLASSIFICATION ACCURACY OF EUCALYPTUS PLANTATION MAPS

Fig. 6. Time series of identified eucalyptus plantation area and reported area
statistics from 2004 to 2019.

datasets captured the overall upward trend in eucalyptus plan-
tation. Our results demonstrated the feasibility of time-series
analysis-assisted eucalyptus plantation identification across a
large scale.

B. Annual Eucalyptus Plantation Expansion From 2004 to
2019

Annual eucalyptus plantation distribution maps (see Fig. 5),
alongside the chart in Fig. 6, clearly revealed the expansion
dynamics of eucalyptus plantations across the region over the
past 16 years. Between 2004 and 2015, eucalyptus plantations
exhibited a rapid year-on-year expansion. This period witnessed
a drastic surge in eucalyptus cover, as Fig. 6 clearly showcases.
Interestingly, 2015 appeared to mark a potential turning point,
with the expansion rate noticeably slowing down thereafter,
suggesting a possible shift in dynamics.

Beyond the overall expansion rates, the spatial distribution re-
vealed further insights. While central and southern Guangxi ex-
hibited stable, contiguous plantations, a significant portion of the
study area demonstrated dynamic changes with infrequent euca-
lyptus presence, occurring less than five times over the study pe-
riod (see Fig. 7). These areas might represent newly established
plantations or regions undergoing afforestation/reforestation ini-
tiatives. Fig. 8 also indicates a general northward expansion of
eucalyptus plantations, ultimately encompassing the entire study
area. While eucalyptus plantations in Northeastern Guangxi
expanded at a slower pace, Central and Southern Guangxi ex-
perienced significantly faster growth, as illustrated in Figs. 7

http://en.cags.ac.cn/
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Fig. 7. Frequency of pixels classified as eucalyptus from 2004 to 2019.

Fig. 8. County-level eucalyptus planting percentage for the years 2005, 2010,
2015, and 2019.

and 8. This heterogeneity in expansion patterns underscored
the influence of various ecological and socioeconomic factors
operating across the region. Furthermore, Fig. 9 demonstrates
that eucalyptus plantations primarily expanded within nonkarst
regions, likely due to their generally more favorable ecological
conditions. Fig. 10 reveals an interesting trend in the expansion
of eucalyptus plantations from regions with steep terrain to those
with more gentle slopes.

C. Estimating Upper Threshold in Image Segmentation

Our analysis revealed that the optimal upper threshold to
determine the segment as a whole to be a eucalyptus planta-
tion forest based on the percentage of pixels within a segment
identified as eucalyptus exhibited a strong negative relation-
ship with landscape metrics, particularly the shape index (r =
−0.74, p-value < 0.01). This finding suggested that fragmented
eucalyptus patches required a higher upper threshold for their

Fig. 9. Distribution of identified eucalyptus areas across karst and nonkarst
regions from 2004 to 2019.

Fig. 10. Relative proportion of identified eucalyptus areas across gentle and
steep slopes from 2004 to 2019.

identification compared with contiguous plantations. To lever-
age this relationship, we established a linear equation relating
the upper threshold coefficient to the shape index (see Fig. 11).
This model allowed us to estimate optimal upper thresholds
for years without available statistical data of the province-level
eucalyptus coverage, enabling continuous eucalyptus mapping
throughout the study period. The effectiveness of this approach
was validated through both classification accuracy and annual
area dynamics analyses (see Table II and Fig. 6). Using the
estimated upper thresholds resulted in highly accurate classi-
fications and closely matched the observed annual changes in
the eucalyptus area compared to years with statistical data. This
confirmed the robustness of our model in predicting optimal
upper thresholds for years lacking plantation area statistics.

V. DISCUSSION

A. Advantage and Deficiency of This Method in Eucalyptus
Plantation Identification

While previous studies have explored eucalyptus plantation
identification in specific regions or years [28], [49], existing



18922 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 11. Relationship between upper threshold and shape index. Circle size
and color correspond to the leverage values of each data point, with larger and
darker circles indicating greater influence on the regression model.

methods lack the efficiency and scalability required for large-
scale, long-term monitoring. This gap is particularly critical for
accurately capturing the rapid expansion of eucalyptus plan-
tations and assessing their ecological service value as short-
rotation timber forests. The primary challenge lies in the spectral
similarity between eucalyptus and other timber species, such
as spruce and pine. Classifying directly from images often
leads to low classification accuracy. Fortunately, recent studies
suggest that combining time-series analysis with spectrum or
texture-based interpretation significantly improves classifica-
tion performance [22], [50]. This highlights the need for new
approaches that can further exploit the power of time-series
data to effectively monitor large-scale eucalyptus plantation
dynamics. Our study aimed to address this gap by establishing
a robust methodology that combines time-series analysis with
spectral classification relying solely on a single remote sensing
data source to map and analyze annual eucalyptus plantations
across an extended period. By analyzing time series of medium-
resolution satellite imagery, such as Landsat data, we can exploit
the unique spectral characteristics of these fast-growing planta-
tions to identify their expansion patterns over time. The resulting
data will provide valuable insights into the ecological implica-
tions of eucalyptus plantations and inform the development of
effective forest management strategies.

Our study leveraged both the multispectral characteristics of
eucalyptus plantations and their temporal dynamics for identi-
fication. We employed a time-series analysis to detect clearcuts
every six years, creating potential eucalyptus distribution maps.
However, this approach could initially include harvests from
long-rotation timber forests, such as spruce and pine. Fortu-
nately, the disparity in harvest cycles provides a valuable tool
for discrimination. Spruce and pine typically have harvest cycles
exceeding 20 years, meaning they would only be detected as
clearcuts once during our entire study period (2004–2019) and
even less frequently within each six-year interval. This char-
acteristic helped us filter out false positives and improve the
accuracy of subsequent eucalyptus classification.

While the typical rotation cycle for fast-growing eucalyptus
falls between 4 and 6 years, it possibly stretches from 3 to 8
years. This variability presents a challenge for our approach
of overlaying clearcut maps every six years to create potential
eucalyptus distribution maps. Longer rotation plantations may
be inadvertently omitted (see Fig. 7). To address this limitation,
future research can explore smoothing algorithms that identify
pixels as eucalyptus if they are classified as such in neighboring
years. However, it is important to acknowledge another potential
source of uncertainty: unharvested eucalyptus plantations. The
increasing focus on the ecological impacts of short-rotation
eucalyptus may incentivize some landowners to adopt longer
cycles or forego harvesting altogether. Therefore, accounting
for unharvested plantations will be crucial for the accurate
eucalyptus identification in future studies.

The fragmented ownership and piecemeal logging of euca-
lyptus plantations by small landholders create a highly het-
erogeneous landscape of clearcuts. This poses a challenge for
classification accuracy, as coarser scale remote sensing data,
such as Landsat’s 30-m resolution, might miss smaller plantation
patches. The subsequent image segmentation refinement can
potentially offset this limitation. However, cloud contamination
can limit the acquisition of sufficient cloud-free observations for
continuous EVI time series across each pixel [51]. This issue can
hinder the effectiveness of clearcut-detection algorithms (see
Fig. 3), ultimately restricting the planted forest mapping. The
increasing availability of diverse remote sensing data sources
provides a potential solution to address this deficiency through
multisource data fusion. Nevertheless, for historical eucalyptus
mapping, this approach remains constrained by the limited tem-
poral coverage of newly launched satellite datasets.

Expanding upon the standard EVI-based eucalyptus iden-
tification, image segmentation further refined the results and
alleviated misclassification errors induced by noisy or mixed-
pixel time series. However, this technique presents a tradeoff.
It may inadvertently exclude small and fragmented eucalyptus
patches, especially during the initial expansion stage character-
ized by a scattered distribution pattern. This effect is expected
to diminish as plantations mature and become more contiguous.
Furthermore, image segmentation can exacerbate commission
errors (false positives) in the clearcut-detection model. Utilizing
a consistent upper threshold for segmentation can amplify this
issue in eucalyptus distribution mapping. Our study underscores
the sensitivity of image segmentation thresholds to changes in
landscape pattern variations, highlighting their nonuniformity
across the study period. Although employing dynamic coeffi-
cients improved the final accuracy of identified plantation areas,
these coefficients were determined empirically in this work,
necessitating further refinement.

Threshold determination for vegetation identification within
time-series data remains challenging [52]. While spectral
similarity-based methods [53], [54] and statistical data-driven
approaches [32], [42], [55] have been explored, both methods
present limitations. Spectral similarity methods often require
extensive ground-truth data and are susceptible to data qual-
ity issues, hindering large-scale application. Despite their effi-
ciency, statistical data-driven approaches risk introducing biases
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that can lead to inaccurate or incomplete vegetation identifi-
cation. Our hybrid approach, combining image segmentation
and statistical-derived thresholds, achieves satisfactory accuracy
without extensive ground-truth data. While acknowledging po-
tential biases, this method offers a practical, cost-effective solu-
tion for large-scale monitoring. However, the reliance on statisti-
cal data warrants further exploration of alternative thresholding
methods incorporating spectral and phenological information to
enhance accuracy and robustness.

B. Spatial Distribution of Eucalyptus Plantations

Over the past 16 years, eucalyptus plantations in Guangxi
have experienced a substantial expansion, with the bulk of this
expansion concentrated in the central and southern regions (see
Figs. 5 and 8). This pattern can be attributed to a complex
interplay of environmental factors, economic considerations,
and historical planting practices. Optimal climatic conditions for
eucalyptus growth likely played a key role in driving expansion
in the central and southern parts. Notably, the extensive karst
terrain with exposed bedrock in the northern region may render
it less suitable for eucalyptus cultivation, potentially explaining
the observed lower plantation density there (see Fig. 9).

Initially, eucalyptus plantations were established primarily in
upland areas, reflecting their introduction and initial cultivation
strategies (see Fig. 10). Subsequent expansion targeted flatter
terrains. However, economic considerations and labor intensity
relative to other crops ultimately regulated the pace of expansion
across different topographic zones. Thus, the observed distribu-
tion of eucalyptus plantations often deviates from their ideal ele-
vation and slope ranges. While expansion into higher altitude and
steeper slopes regions has occurred, a gradual concentration of
plantations on low-elevation, gentle slopes is also evident. This
trend raises concerns about potential conflicts with agriculture
land use in these areas.

C. Implication for Timber Forest Management

While previous studies had made great efforts to track the
land cover conversion of tropical forests, the spatiotemporal
expansion of timber plantations, particularly at large scales,
has received less attention. Driven by increasing wood de-
mand, timber plantations are expanding, often at the expense
of natural forests. This trend is evident in Guangxi, where our
analyses show that eucalyptus plantations have increased from
0.42 × 106 ha in 2004 to approximately 2.47 × 106 ha in 2019.
This rapid expansion raises concerns about potential ecological
and environmental consequences. Despite control efforts by the
Guangxi Forestry Ministry regarding short-rotation eucalyptus
cultivation, high economic returns continue to drive the expan-
sion. This practice, often involving monoculture and successive
planting, is linked to soil degradation and biodiversity loss [5],
[56]. For sustaining the development of planted forests and
mitigating conflicts with other land uses, we advocate to enhance
forest management of the existing plantations by intercropping
with native tree species [57] and stretching cutting cycle [58],
[59], [60]. In the meantime, plantation expansion should be
strictly limited to avoid encroachment on agricultural land or

natural forests. Furthermore, developing more segregated euca-
lyptus plantation patches would be helpful for wildlife conser-
vation and wood production. By implementing these strategies,
Guangxi can achieve responsible expansion and management of
eucalyptus plantations, and ensure a balance between economic
benefits and ecological integrity for a sustainable future.

VI. CONCLUSION

This study leverages the distinct temporal phenology pat-
terns of short-rotation plantations to map the spatiotemporal
dynamics of eucalyptus across Guangxi province, China. Initial
detection relied on Landsat EVI variations before and after
timber harvests, effectively identifying clearcuts within euca-
lyptus plantations. This approach minimizes confusion with
long-rotation timber forests (i.e., pine and fir) due to their
infrequent harvests (> 20 years), significantly reducing clas-
sification errors. Clearcut eucalyptus pixels were further con-
firmed through spectral classification based on the detailed spec-
tral information. Subsequently, image segmentation refined the
identified eucalyptus distribution to mitigate misclassifications
arising from landscape heterogeneity in planting patterns and
logging schedules. The resulting maps captured the long-term
spatiotemporal eucalyptus expansion dynamics across Guangxi
with high accuracy. However, limitations associated with the
eucalyptus distribution maps remain. Major limitations include
the limited availability of high-quality Landsat images caused by
frequent cloudy and rainy weather, and the mixed-pixel issue,
especially in areas where eucalyptus plantations are managed
by smallholders. These limitations might be addressed through
multisensor data fusion. Overall, our time-series analysis suc-
cessfully captured the spatial and temporal dynamics of euca-
lyptus plantations in Guangxi, providing a robust and reliable
depiction of their extent and growth trends. This information
can be valuable for understanding the ecological and socioeco-
nomic implications of eucalyptus plantations in the region. With
further refinements and data integration, the method developed
in this study holds promise for monitoring short-rotation timber
forests across large scales, thereby supporting sustainable forest
management practices.
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