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FDGSNet: A Multimodal Gated Segmentation
Network for Remote Sensing Image Based on

Frequency Decomposition
Jian Cui , Jiahang Liu , Member, IEEE, Yue Ni , Jinjin Wang , and Manchun Li

Abstract—Multiple modal data fusion can provide valuable and
diverse information for remote sensing image segmentation. How-
ever, the existing fusion methods often lead to feature loss during
the fusion of various modal data, and the complementarity among
multimodal features is insufficient. To address these problems,
we propose a multimodal gated segmentation network for remote
sensing images based on the frequency decomposition. Comple-
mentary information from multimodal features is extracted by
establishing a long-distance correlation between the low-frequency
components of different modal data. In addition, high-frequency
detailed features of different modal data are preserved by residual
connection. The adaptive gated fusion method is then used to con-
trol the information flow between the complementary information
and each modality feature map, enabling adaptive fusion between
multimodal features. These operations can effectively improve the
adaptability of the proposed method in various scenarios and data
changes. Extensive experiments demonstrate that the proposed
method has good effectiveness, robustness, and generalization and
achieved state-of-the-art performance in several remote sensing
image semantic segmentation tasks.

Index Terms—Frequency-domain decomposition, multimodal,
remote sensing, semantic segmentation.

I. INTRODUCTION

R EMOTE sensing image (RSI) semantic segmentation is
one of the primary methods for modern spatial information

acquisition and has been widely applied to urban planning [1],
[2], [3], smart city construction [4], and geographic information
system development [5], [6].

In recent years, the increase of high-resolution remote sensing
satellites has generated abundant spatial data, enhancing the
interpretation and application capabilities of remote sensing
information [7], [8]. Using these high-resolution images, spatial
information in different modalities can be achieved for different
purposes. For example, visible images (RGB bands) are mainly
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used to extract color features, texture features, shape features,
and spatial relationship features. However, visible images are
sensitive to illumination conditions and easily disturbed by
environmental factors. The spectral response of the near-infrared
(NIR) band is closely related to the reflection characteristics of
surface coverings (such as vegetation, water, and soil). These
ground cover types have significant differences in NIR band, so
the differences can be used for ground cover classification and
target recognition. The digital surface model (DSM) can reflect
the vertical height information of ground objects, providing
valuable insights into the spatial location and environmental
background of buildings. This effectively reduces the influence
of shadows and occlusion on the segmentation of buildings.
The normalized difference water index (NDWI) is a ratio index
that utilizes the green and NIR bands, which can highlight the
characteristics of water bodies and reduce the impact of aquatic
plants and clouds on water segmentation. The normalized differ-
ence vegetation index (NDVI) reflects the reflectance differences
between vegetation in the NIR and red wavelengths, which
can enhance the contrast between vegetation regions and the
background, effectively reducing the impact of environmental
factors, such as lighting conditions and shadows on the semantic
segmentation of vegetation.

Fusing multimodal data to achieve semantic segmentation of
RSIs can make full use of the complementary features of differ-
ent data types to obtain more comprehensive and rich semantic
information, thereby improving the accuracy and reliability of
semantic segmentation. However, multimodal data generated by
different sensors exhibit vastly distinct characteristics, such as
cross-modal heterogeneous statistical properties and noise levels
[9]. Directly performing operations, such as element addition,
do not accurately extract and fuse complementary information
between two data modalities and may introduce additional noise
that undermines the parsing performance. Therefore, effectively
extracting complementary information from different modalities
to obtain richer features than those derived from a single data
source has become a new technical challenge in the field of
remote sensing data processing [10], [11].

An efficient feature representation serves to enhance the dis-
criminative capacity of category information [12], [13]. Con-
structing the feature space of a multisource segmentation model
by fully exploring the complementary and discriminative fea-
tures of different data sources is key to achieving high-precision
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Fig. 1. Different modal data in the same scene have different distributions of
features.

segmentation results of multimodal RSIs. The transformer-
based mechanism is capable of extracting and integrating com-
plementary information from the global context of the input
data more effectively due to its strong ability to capture remote
dependencies [14], [15].

However, as shown in Fig. 1, different modal data have
different feature distributions in the same scene, which can cause
information conflict and redundancy. Taking water detection as
an example, water bodies in different regions have different
optical properties, which may show obvious feature differences
in visible light images and multispectral images. Therefore,
effective information screening and feature fusion are needed
to avoid the interference of redundancy and conflict in semantic
segmentation. Unlike semantic segmentation tasks of ordinary
scene images (e.g., cars and people), RSI targets (e.g., water
bodies, vegetation, buildings, etc.) often have similar semantic
features but lack consistent boundary features, and in the process
of fusing features from different modalities, the underlying
features of each modality are inevitably lost, resulting in spatial
detail loss in the underlying features. In addition, different modal
data have different recognition capabilities for different types
of targets, and existing methods have not fully reflected the
differences in the recognition ability of different modal data
for different objects. Finally, the semantic segmentation task of
RSIs requires a high generalization ability of the model. How
to improve the generalization ability and interpretability of the
model to adapt to different scenarios and data changes is also an
important challenge.

To address the above issues, a multimodal gated segmentation
network based on the frequency decomposition is proposed
for RSIs. Since low-frequency components of images carry se-
mantic information, high-frequency components contain spatial
details [16]. Therefore, we aim to facilitate the extraction of
modality-specific and modality-shared features by increasing
and decreasing the correlation between low-frequency and high-
frequency features, respectively. We initially decompose the
multimodal features into high- and low-frequency components
via a frequency-domain decomposition module (FDM). Then,
the long-distance correlation model between the low-frequency
components of different modalities was established by using

the cross-modal cross-self-attention mechanism, and the cor-
relation features between different modalities were extracted
from the low-frequency components. As an independent branch,
the high-frequency component is not affected by the fusion
features and the residual connection retains more detailed texture
features in the high-frequency features. Finally, the adaptive
gated fusion (AGF) method is used to extract effective features
from complementary information and adaptively fuse them with
different modal data, which effectively integrates multimodal
features.

FDGSNet fully utilizes the characteristics of high-frequency
features and low-frequency features, extracts complementary
features from low-frequency semantic features, and reduces
high-frequency signal interference between different data types.
This feature fusion method reduces the sensitivity of the model
to data types and improves the interpretability and generalization
ability of the model. The main contributions of this work can be
summarized as follows.

1) We propose a generalized multimodal data fusion network
(FDGSNet) for the semantic segmentation of RSIs. It can
integrate different prior knowledge for different segmen-
tation tasks to achieve the accurate segmentation results
of various targets.

2) We propose an FDM to decompose the data of different
modalities into high-frequency and low-frequency compo-
nents, which are used to preserve the details from different
modes and extract the semantic features of the target,
respectively.

3) We propose a gated complementary fusion module in
which the cross-modal cross-self-attention mechanism
is used to establish the correlation between the low-
frequency components of different modality data to extract
complementary information. An AGF method is used to
control the information flow between the complementary
information and each modality feature map, and the cross-
modal features are adaptively complementary and fused
according to the differences in the recognition ability of
different modal data for different objects.

The experimental results on different datasets validate the
excellent feature fusion capability of our proposed FDGSNet for
different models. Compared with other state-of-the-art methods,
FDGSNet can efficiently integrate different prior knowledge and
achieve the best accuracy in multiclass semantic segmentation
tasks, as well as single-class segmentation tasks exemplified by
buildings, vegetation, and water bodies.

The rest of this article is organized as follows. Section II
first reviews the related works on CNN-based and transformer-
based remote sensing segmentation methods. After that,
Section III presents the structure of the proposed FDGSNet,
whereas Section IV provides details on the extensive experi-
ments conducted. Finally, Section V concludes this article.

II. RELATED WORKS

A. RSI Semantic Segmentation

The success of convolutional neural networks in computer
vision tasks has spurred increased interest among researchers
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in utilizing deep learning techniques for semantic segmentation
of RSIs. Zeng et al. [17] proposed a novel cross-scale feature
propagation network to address the limitations of existing meth-
ods that rely on a single strategy for multiscale information
capture, aiming to improve performance when processing RSIs
with large-scale variance by capturing fine-grained multiscale
context, embedding high-level semantic information into low-
level features, and enhancing final feature representation. Zheng
et al. [18] proposed a high-order semantic decoupling network to
address feature distortion in RSIs caused by view angle transfor-
mation and atmospheric scattering, utilizing high-order features
for semantic segmentation and decoupling to enhance feature
robustness and improve segmentation performance. To solve
the challenges of semantic segmentation in ultrahigh-resolution
RSIs, Chen et al. [19] combined global context with spatial detail
features and employed multitask learning to enhance boundary
detection and segmentation, thereby achieving improved seg-
mentation accuracy. Li et al. [20] proposed the spectrum-space
collaborative network (SSCNet), which integrates spectral and
spatial information to enhance the discriminative potential of
representations and improve the quality of semantic segmenta-
tion in RSIs. In addition, to improve low-level feature extraction
in RSI semantic segmentation and overcome traditional convo-
lution limits, Xiao et al. [21] introduce directional convolution
and large field convolution, enhancing deep learning network
performance. Although these methods have demonstrated im-
pressive performance, they rely exclusively on a single-source
input, which may lack robustness across diverse scenarios and
thereby hinder further improvement.

B. Modality Fusion in Remote Sensing Segmentation

Recent research has demonstrated that incorporating fea-
tures from multiple sources, including HSI, thermal, NIR, and
LiDAR, can significantly enhance the stability and accuracy of
scene-parsing tasks. Li and Zhou [22] proposed a novel dual-
modal semantic segmentation network called MASNet, which
combines optical image and LiDAR point cloud features to
enhance scene understanding in complex driving environments,
featuring a unique MmASPP structure for multiscale contextual
information capture and an adaptive synergy difference loss
function to optimize cross-modal operations. To enhance scene
parsing in RSIs, especially for unbalanced categories and small
targets, Ma et al. [23] introduced the ABHNet, utilizing DSM
and adjacent context, improving segmentation performance on
benchmark datasets. To address the issue of underutilization of
modality-specific characteristics and complementary informa-
tion during RGB-thermal semantic segmentation, Liang et al.
[24] proposed the MDBFNet, a multibranch differential bidirec-
tional fusion network that achieves more reliable semantic scene
understanding by enhancing detail and semantic information
through specifically designed modules and a three-branch fusion
decoder.

C. Vision Transformer

CNN-based methods are the predominant solution for seman-
tic segmentation tasks but are limited by their local receptive

fields, restricting their ability to capture long-range dependen-
cies [25]. Transformer-based methods overcome this limitation
by establishing long-distance pixel dependencies, effectively
addressing complex spatial relationships. They extend the recep-
tive field to the entire input feature map in a single pass, enabling
a comprehensive pixelwise response. Therefore, it has been
widely used in visual and language processing tasks due to its
strong ability to acquire spatial information and establish global
relationships [26], [27]. Cao et al. [28] proposed a global feature
fusion network to enhance semantic segmentation accuracy in
high-resolution RSIs by integrating global contextual features
with local features. Li et al. [29] proposed a novel approach
utilizing a multihead attention-attended module to refine the
self-attention mechanism, aiming to improve the semantic seg-
mentation accuracy of RSIs by filtering out irrelevant contexts
and emphasizing informative ones. To address the challenges
of limited receptive fields, insufficient global feature extraction,
and inaccurate edge positioning in RSI segmentation, Cui et al.
[30] proposed the global context dependency-aware network,
achieving high-accuracy segmentation results through a novel
dot-product attention mechanism and an edge-aware optimiza-
tion module. Fan et al. [31] proposed CSTUNet, a dual-encoder
model that combines CNN and Swin transformer, to address
the limitations of CNNs in modeling global context for remote
sensing semantic segmentation, aiming to improve segmenta-
tion accuracy by preserving details and enhancing contextual
information fusion. In addition, to address the limitations of
using CNNs or transformers alone in remote sensing semantic
segmentation tasks, especially under resource-constrained sce-
narios, Dong et al. [32] proposed a novel cross-modal knowledge
distillation framework named DSCTs, which harnesses the com-
plementary advantages of both models to improve the student
model’s segmentation performance without adding trainable
parameters.

In addition, in the field of multimodal semantic segmentation,
transformer-based methods are also used for interactive fusion
between different data sources. To address the limitations posed
by single-modal data in land cover classification, Ren et al.
[33] proposed SwinTFNet, a dual-stream deep fusion network
that deeply integrates SAR and optical features, enhancing
segmentation performance in clouded images and achieving
superior multimodal data classification compared with other
methods. Ma et al. [34] proposed a multilevel multimodal fu-
sion approach called FTransUNet, which integrated CNN and
vision transformer into a unified framework to enhance semantic
segmentation accuracy by effectively fusing shallow and deep
features, demonstrating superior performance on fine-resolution
remote sensing datasets compared with other multimodal fusion
methods. Zhang et al. [35] propose a unified fusion framework,
CMX, for RGB-X semantic segmentation, achieving state-of-
the-art performances on multiple datasets by effectively fusing
features from different modalities and demonstrating strong
generalizability across diverse sensor modalities.

While these methods greatly improve the segmentation accu-
racy compared with single-source inputs, they are not specifi-
cally designed for noise interference and loss of detailed fea-
tures of the data in multimodal remote sensing data fusion.
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Fig. 2. Overview of FDGSNet for multimodal semantic segmentation. The inputs are an IRRGB image and another modality data (e.g., DSM, NDWI, and NDVI).
(b) Detailed architecture of the FDM, including HCE and LCE. (c) Detailed architecture of the SFE.

In addition, the existing multimodal RSI fusion methods are
especially designed for specific segmentation tasks and data
sources, but their performance is limited to specific tasks, with a
relatively narrow scope of functionality and insufficient model
generalization ability. Currently, there is a lack of a general
multimodal feature fusion method that can extract effective prior
knowledge from different data sources and perform multiple RSI
segmentation tasks. In this article, we try to address this issue.

III. METHODOLOGY

A. Framework Overview

In this work, a cross-modal fusion framework (FDGSNet)
is proposed for the semantic segmentation of multimodal RSIs.
The schematic diagram of FDGSNet is depicted in Fig. 2(a). This
framework employs two parallel backbones for extracting fea-
tures from IRRGB (NIR-RGB) images and prior knowledge in-
puts, encompassing IRRGB-DSM, IRRGB-NDWI, or IRRGB-
NDVI. Using IRRGB-NDWI image fusion as a case study, NIR
images, RGB images, and NDWI images from the same scene
share common statistical characteristics in their low-frequency
information, encompassing background elements and extensive
environmental features. However, their high-frequency informa-
tion is generally independent. Specifically, RGB images capture
detailed textures and color information, while NDWI images
highlight the distinct characteristics of water bodies. Therefore,
we design an FDM, and the data of different modes are decom-
posed into high-frequency features and low-frequency features.
The high-frequency component is used to retain the detailed
features of the data of different modes and the low-frequency
component mainly retains the main features of different objects.
The complementary information between multimodal features

is extracted by establishing the correlation between the low-
frequency components of different modal features. In addition,
we generate spatialwise gates for both correlation degree fusion
feature and multimodal features and use the soft attention mech-
anism to control the information flow between the fusion feature
and each modality feature map to realize the complementary
fusion between multimodal features. The multimodal feature
fusion method based on the frequency-domain decomposition
effectively mitigates the noise interference and the loss of edge
detail features generated during the fusion of different data
sources. This enhances the generalization capability of the model
and enables it to obtain valuable prior knowledge from various
modal data features.

B. Frequency-Domain Decomposition Module

The FDM is used to decompose the multimodal data into high-
frequency component features and low-frequency component
features. First, we define some symbols for clarity in formula-
tion. LetH ,W , andC denote the height, width, and channels of
an input image, respectively. The input-paired IRRGB images
and multimodal images are denoted as V ∈ RH×W×C and I ∈
RH×W×C . The share feature encoder (SFE), high-frequency
component extraction (HCE), and low-frequency component
extraction (LCE) are represented by SF(·), HF(·), and LF(·),
respectively.

SFE: SFE aims to extract shallow features {θSF
V , θ

SF
I } from

IRRGB multispectral and multimodal inputs {V, I}, i.e., θSF
V =

SF(V ), θSF
I = SF(I).

SFE employs a bottleneck residual block; the bottleneck resid-
ual block uses a projection shortcut structure. The overview of
SFE is shown in Fig. 2(c). SFE uses 1× 1 convolution to reduce
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the number of input channels, which can greatly reduce the
complexity and computational burden of the model. After that,
3× 3 convolution and 1× 1 convolution are used to increase
the dimension, ensure the complexity of the network, and make
full use of the input information. Batch normalization is added
after each 3× 3 convolution layer to normalize the input values,
speed up training, and improve model performance.

LCE: The LCE is to extract low-frequency base features
from the shared features. The low-frequency features of the
two modalities are obtained by the blur low-pass filter, respec-
tively. The parameter settings of the filters are based on the
parameter values used in [16]. The overview of LCE is shown
in Fig. 2(b). The obtained low-frequency component features
LV ∈ RH×W×C and LI ∈ RH×W×C are embedded into two
attention vectors along the spatial axis using global maximum
pooling and global average pooling, respectively, to retain more
information. And then you connect these two vectors. Then, the
multilayer perceptron (MLP) and sigmoid function are used to
obtain the weight WC

V ∈ RC and WC
I ∈ RC , the weight value

is multiplied by the low-frequency component features to obtain
the channel attention activation features TC

V and TC
I

WC
V = σ(fmlp(PoolMax(LV ) + PoolAve(LV ))) (1)

WC
I = σ(fmlp(PoolMax(LI) + PoolAve(LI))) (2)

TC
V =WC

V � LV (3)

TC
I =WC

I � LI (4)

where σ represents the sigmoid function, + denotes the con-
catenation, and � denotes the channelwise multiplication. The
channel attention activation features TC

V and TC
I , two kinds

of data, are embedded into two spatial weight plots along the
channel axis using global mean pooling. The embedding oper-
ation has two 1× 1 convolution layers assembled with a ReLU
function. Then, the sigmoid function is applied to get two weight
graphs WS

V ∈ RH×W and WS
I ∈ RH×W . The process formula

for obtaining the spatial weight graph is given as follows:

WS
V = σ(Conv1×1(ReLU(Conv1×1(T

C
V )))) (5)

WS
I = σ(Conv1×1(ReLU(Conv1×1(T

C
I )))). (6)

The weight value is multiplied by the low-frequency compo-
nent features to obtain the spatial attention activation features
TS
V and TS

I

TS
V =WS

V ∗ LV (7)

TS
I =WS

I ∗ LI (8)

where ∗ denotes the spatialwise multiplication.
Finally, short connections are used to fuse the low-frequency

component features that are activated through channels and
spatial dimensions to obtain the output features OL

V and OL
I

OL
V = TC

V +OS
V (9)

OL
I = TC

I +OS
I . (10)

HCE: The high-frequency component adopts the same struc-
ture as the low-frequency component. The overview of HCE
is shown in Fig. 2(b). The difference is that the high-frequency
componentsDV ∈ RH×W×C andDI ∈ RH×W×C are obtained
by using the Laplacian high-pass filter for the shared features.
The parameter settings of the filters are based on the parameter
values used in [16]. Then, the high-frequency component is used
to extract the features of the channel and spatial attention mecha-
nism, and the channel attention enhancement feature {DC

V , D
C
I }

and the spatial attention enhancement feature {DS
V , D

S
I } are ob-

tained. In addition, the module adds a short connection that fuses
the input primitive feature {θSF

V , θ
SF
I } with the low-frequency

component features activated through channels and spatial di-
mensions of attention to obtain the output features OD

V and OD
I

OD
V = θSF

V +DC
V +DS

V (11)

OD
I = θSF

I +DC
I +DS

I . (12)

As an independent branch, the high-frequency component is
not affected by the fusion features and the residual connection
retains more detailed texture features of multimodal features.
With the forward propagation of the network, the detailed fea-
tures are integrated into the gated complementary fusion features
layer by layer.

The high-frequency components of the data for different
modes are not correlated. During multimodal feature fusion,
reducing the interference of high-frequency components is ben-
eficial for extracting relevant semantic features from different
modal data. Therefore, we improve the controllability and inter-
pretability of feature extraction by adding correlation restrictions
to the extracted features. The multimodal feature fusion method
based on frequency-domain decomposition uses low-resolution
features for fusion, which has a strong generalization ability for
input data types. Therefore, compared with other methods, our
method has better interpretability, stronger robustness to differ-
ent data sources, and different semantic segmentation tasks, and
can learn effective prior knowledge from different modal data
features.

C. Gated Complementary Fusion Module

After obtaining the high-frequency and low-frequency com-
ponents of each modality, we designed a two-stage gated com-
plementary fusion module to merge the features from the two
modalities and enhance cross-modal information interaction. As
shown in Fig. 3, in the first stage, a multimodal feature corre-
lation degree fusion (MCDF) module is designed to globally
exchange information between the low-frequency components
of both modalities, achieving complementary fusion of shared
features from the two modalities and resulting in multimodal
correlation fusion features. In stage 2, through the AGF module,
the features of different modes can be self-adaptively selected
from the MCDF features for feature enhancement. Finally, the
enhanced multimodal features are fused.

MCDF: In this phase, we introduce an efficient multimodal
cross-self-attention mechanism to facilitate sufficient informa-
tion exchange between interactive vectors from diverse modal
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Fig. 3. Detailed architecture of gated complementary fusion module.

paths. Our multimodal cross-self-attention mechanism for en-
hancing cross-modal feature fusion is based on the traditional
self-attention. This establishes the correlation features between
different modal data from a sequence-to-sequence perspective.
For brevity, we take the IRRGB multispectral image path for
illustration. We first utilize two 1× 1 convolutions to extract
features from input features with sizeOL

V ∈ RH×W×C , resulting
in two feature vectors referred to as the residual vector V res and
the interaction vector V inter.

Global average pooling is applied to the interactive vector
V inter across the spatial dimension to generate the feature vector
Ux, facilitating the capture of global feature information for
each feature layer. Subsequently, the vector Px is obtained by
employing the Softmax activation function, thereby enhancing
the dynamic range of feature activation. The calculation formula
is provided as follows.

Px =
eUx∑n
i−1 e

Ui
. (13)

Then, the projective function μ(·) : RH×W×(C/2) →
R(C/2)×HW is used to change the dimension of the interactive
vector V inter.

The features Px and μ(V inter) are subjected to similarity
calculation to obtain a similarity matrix ϕ1 = Px ⊗ μ(V inter),
where ⊗ is a matrix multiplication. Then, the sigmoid function
is applied to normalize the vector ϕ1, which is subsequently
multiplied I inter to obtain the attention-activated feature map
Z1. The calculation formula is given as follows:

Z1 = I res + I inter ⊗ ψ

(
1

1 + e−ϕ1

)
(14)

where Z1 is the feature map after cross-modal cross-self-
attention activation and ψ(·) is a projection function ψ(·) :
R(C/2)×HW → RH×W×(C/2). In this process, I inter can be
called a query matrix, and Px can be called a key matrix.

For the multimodal images path, we use the same method to
calculate the feature Z2 after cross-modal cross-self-attention
activation, and addZ1 andZ2 to obtain the MCDF featureOV I .

AGF: Different modal data have different recognition ca-
pabilities for different types of targets. To fully exploit the
characteristics of different modal data, we need to aggregate
spatial cross-modal features based on the difference in the rep-
resentation ability of different modal data for different types
of objects. To achieve this, we generate spatialwise gates for
both correlation degree fusion feature OV I and multimodal
image features and use the soft attention mechanism to control
the information flow between the fusion feature OV I and each
modality feature map, which is visualized in Fig. 3, and marked
by the second red frame. To make the gate more precise, we
use an MCDF featureOV I to generate the gate. The calculation
formula was given as follows:

OL′
V = OD

V � σ(OV I) (15)

OL′
I = OD

I � (1− σ(OV I)) (16)

OV I
1 = OL′

V +OL′
I (17)

where σ represents the sigmoid function, and � is a Hadamard
product operator.OV I contains the correlation characteristics of
different modes. Sigmoid activation OV I can adaptively select
the information that is effective for the respective modal data
from the correlation degree features and carry out feature fusion.

IV. COMPARISON AND DISCUSSION

In this section, we conducted semantic segmentation exper-
iments on RSIs for water bodies, vegetation, buildings, and
panoptic images, respectively, by utilizing different combina-
tions of data sources. Then, we conducted ablation studies on
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each module of the proposed method. Finally, through compar-
isons with other methods, we further validated the effectiveness
and generality of the proposed approach.

A. Dataset

Potsdam dataset: The Potsdam dataset comprises 38 high-
resolution aerial RSIs and their corresponding DSMs. From
these, a random selection of 24 images is designated as the
training set, with the remaining images serving as the test set.
Both the images and DSMs have a spatial resolution of 5 cm
and dimensions of pixels. These high-resolution images include
the red (R), green (G), blue (B), and NIR bands. The original
labeled data encompass six major land cover classes. In this
study, buildings are defined as the foreground, while all other
objects are classified as the background.

GID dataset: The Gaofen image dataset (GID) is an open-
source satellite remote sensing dataset. It comprises 10 finely
labeled land cover images and 150 coarsely labeled land cover
images. All images are captured by the GF-2 satellite, with a
pixel resolution of 4 m. Each image contains the four bands
of R, G, B, and NIR. We obtained NDWI and NDVI data
corresponding to IRRGB images by calculating between bands.
We selected 150 large-scale images with a size of 7200 × 6800
to validate the proposed method and selected 80 multispectral
images (IRRGB) and the corresponding normalized index data
(NDVI and NDWI) as the training set, the remaining 70 for
testing. In the experiments on water body detection, we redefined
the original dataset by categorizing rivers, lakes, and ponds as
water bodies while assigning other categories as background.
Subsequently, we combined this redefined dataset with NDWI
to create the multimodal GID (water body) dataset. Similarly, in
the experiments on vegetation detection, forest, grassland, and
dry fields are divided into vegetation categories, while other
categories are divided into background, and combined with
NDVI to make the multimodal GID (vegetation) dataset.

B. Implementation Details

FDGSNet performs a downsampling operation before each
FDM and increases the number of channels. After each down-
sampling, the network passes through one FDM and one gated
complementary fusion module. Neither the FDM nor the gated
complementary fusion module changes the number of channels
in the input data. Therefore, each FDM has the same number of
channels as the adjacent gated complementary fusion module.
The model was downsampled four times in total, and the channel
number C after each downsampling was successively (128,
256, 512, 1024). We take an MLP decoder with an embedding
dimension of 512, introduced in SegFormer [42], select AdamW
optimizer [45] with weight decay 0.01, and use cross entropy as
the loss function. The original learning rate is set as 6e−5 and a
poly learning rate schedule is employed.

C. Evaluation Metrics

In our conducted experiments, we utilized the Adam opti-
mizer, configuring the learning rate to 0.0003. The evaluation of

experimental outcomes was performed using metrics, including
overall accuracy (OA), mean intersection over union (mIoU),
and frequency-weighted intersection over union (FWIoU). The
calculation formulae for these metrics are provided as follows:

OA =

∑N
k=1 TPk∑N

k=1 TPk + FPk +TNk + FNk

(18)

MIoU =
1

N

∑N

k=1

TPk

TPk + FPk + FNk
. (19)

The FWIoU metric for semantic segmentation is an improve-
ment over the original MIoU, which assigns different weights
to each class based on their frequency of occurrence

FWIoU =

∑N
k=1

(
TPk

TPk+TNk+FNk
· TPk+FNk

TPk+FPk+TNk+FNk

)
N + 1

(20)
where TPk, FPk, FNk, and TNk indicate the true positive,
false positive, true negative, and false negatives, respectively,
for object indexed as class k.

D. Ablation Study

Ablation studies were conducted to assess the effectiveness
of key components in the proposed FDGSNet. Table I provides
a detailed account of these experiments and their results. In
Table I, the symbol

√
indicates that the corresponding module

was retained, while the absence of this symbol indicates that
the module was removed. All other settings, including loss
functions and optimizers, remained consistent with the complete
FDGSNet.

1) FDGSNet Without FDM: The features of the output of the
SFE module are directly input into the MCDF module without
frequency-domain decomposition. As can be seen from Fig. 4,
if the frequency decomposition of the input multimode features
is not carried out, the global correlation degree fusion of the
features of different modes is directly carried out, resulting in
rough segmentation and failure to extract small objects.

2) FDGSNet Without MCDF: We use simple element ad-
dition instead of the MCDF module to realize feature fusion
of low-frequency features of different modal data output by
the FDM module. Fig. 5 shows that without the MCDF, the
vegetation segmented is stuck together, and it is difficult to
effectively identify regions with similar color or texture features.

To further verify the influence of selecting features of dif-
ferent frequencies on multimodal data fusion, we exchanged
the high-frequency and low-frequency features in the network,
fused the high-frequency components for cross-modal features,
and used the low-frequency components as residual features,
and designed the MCDF (H) module to verify the validity of
the model on three different datasets. The results are shown in
Table I. The experimental results show that using MCDF (H)
can also improve the performance of the model compared with
not using MCDF and verify the effectiveness of the cross-modal
feature complementary fusion method. However, compared with
the nonuse of FDM, the accuracy of the model decreased slightly.
In addition, the accuracy of using the MCDF (H) module is
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TABLE I
ABLATION EXPERIMENTAL RESULTS CONSIDERING THREE FDGSNET MODULES

Fig. 4. Semantic segmentation comparison for FDGSNet and FDGSNet without FDM on the Postdam (Buiding) dataset.

TABLE II
COMPARISON OF ABLATION EXPERIMENTS USING INPUT DATA FROM DIFFERENT MODALITIES

significantly reduced compared with that of using the MCDF
module. Therefore, we verify that when cross-mode feature fu-
sion is carried out, selecting low-frequency features of different
modes for feature fusion is conducive to improving model per-
formance, while selecting high-frequency features of different
modes for feature fusion will have a negative impact on model
performance.

3) FDGSNet Without AGF: We replaced the AGF with
simple 3× 3 and 1× 1 convolutional layers. Fig. 6 shows that
without the AGF, for the parts with small interclass differences
and large intraclass differences, the recognition ability is insuf-
ficient.

In addition, to verify the influence of different modal data
on the segmentation accuracy, we conduct extensive ablation
experiments on input data of different modalities. As shown in
Table II, we used RGB and IRRGB images as the single data
source, respectively, for model training and testing on Postdam
(Buiding), GID (Water body), and GID (Vegetation) datasets.
RGB images contain rich color and texture features, but they are
easily affected by environmental factors and other factors, and
the ability to recognize confusing objects is insufficient. IRRGB
data increase the NIR band compared with RGB data, which im-
proves the recognition ability of the model for different ground
objects. The MIoU values of the three datasets are increased
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Fig. 5. Semantic segmentation comparison for FDGSNet and FDGSNet without MCDF on the GID (Vegetation) dataset.

Fig. 6. Semantic segmentation comparison for FDGSNet and FDGSNet without AGF on the GID (Water body) dataset.

by 0.92%, 5.33%, and 3.76%, respectively. NDWI and NDVI
data can highlight the characteristics of water and vegetation,
respectively. Threshold segmentation of NDWI and NDVI data
is a common detection algorithm for water and vegetation.
However, using single NDWI and NDVI data cannot obtain the
texture features and semantic information of the target, and it
is highly dependent on the algorithm parameter settings, and
the robustness is insufficient. As shown in Fig. 7, the vegetation
detection method based on the threshold segmentation of NDVI
data can identify smaller vegetation areas but is insufficient
for detecting yellowed vegetation. The vegetation segmentation
method based on RGB images cannot recognize spatial detail
features, and the edge of the segmentation result is blurred.
Our method improves the accuracy of semantic segmentation by

combining different modal data and comprehensively utilizing
their respective advantages. The MIoUs on the three datasets are
93.61%, 88.37%, and 82.01%, respectively, which achieves the
most advanced segmentation accuracy.

E. Quantitative Comparison Diverse Methods

Our method was compared with state-of-the-art semantic
segmentation methods and included classic multiscale context
feature fusion methods, such as FCN [36], U-Net [37], and
Deeplabv3+ [38], as well as advanced RSI segmentation meth-
ods that utilize transformers for global feature extraction, such
as MANet [39], UNetFormer [27], BEDSN [43], CMTFNet



CUI et al.: FDGSNET: A MULTIMODAL GATED SEGMENTATION NETWORK FOR RSI BASED ON FREQUENCY DECOMPOSITION 19765

Fig. 7. Results of vegetation detection using different modal data.

TABLE III
EXPERIMENTAL RESULTS ON THE POSTDAM (BUIDING) DATASET, GID (WATER BODY) DATASET, AND GID (VEGETATION) DATASET

[44], and GCDNet [30]. These methods only consider RGB im-
age information. These advanced single-modality methods can
demonstrate the performance improvements brought by using
multimodal prior data. Additionally, we compared FDGSNet
with state-of-the-art multimodal feature fusion networks, in-
cluding PACSCNet [40], CMGFNet [41], FTransUNet [34], and
CMX [35]. The test results are shown in Table III.

MANet employs multiple efficient attention mechanisms
to extract contextual dependencies, addressing the issue of
underutilization of multiscale features. UNetFormer uses a
lightweight ResNet18 encoder and a transformer-based de-
coder to establish long-range dependencies, improving the
utilization of both global and local information. CMGFNet
employs end-to-end cross-modal gated fusion and multilevel

feature fusion techniques to improve the extraction of build-
ing footprints from VHR RSIs and DSM data. PACSCNet
leverages a dual-pyramid symmetric cascade decoder and a
multiscale feature extraction module to enhance segmenta-
tion accuracy by effectively harnessing multimodal contextual
features.

As shown in Table III, the numeric scores for the ISPRS
Postdam (Buiding), GID (Water body), and GID (Vegetation)
datasets demonstrated that FDGSNet delivers high accuracy,
exceeding other networks in the FWIoU, OA, and mIoU by
a significant margin. The experimental results of different
methods on the Potsdam (Buiding) dataset demonstrated that
FDGSNet delivers the highest FWIoU of 97.45%, OA of
97.68%, and mIoU of 93.61%. The experimental results of
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Fig. 8. Complete results of different methods. The first two rows are the test results of the GID (Water body) dataset, the multimodal data used is NDWI. The
middle two rows are the test results of the GID (Vegetation) dataset, the multimodal data used is NDVI. The last two rows are the test results of the Postdam
(Building) dataset, the multimodal data used is DSM.

different methods on the GID (Water body) dataset demon-
strated that FDGSNet delivers the highest FWIoU of 96.02%,
OA of 96.13%, and mIoU of 88.37%. The experimental re-
sults of different methods on the GID (Vegetation) dataset
demonstrated that FDGSNet delivers the highest FWIoU of
90.91%, OA of 91.06%, and mIoU of 82.01%. In terms of test
metrics, FDGSNet achieves the highest segmentation accuracy
in different semantic segmentation tasks, indicating that our
method not only can extract effective complementary informa-
tion from multimodal features but also has strong generalization
capabilities.

The comparison of experimental results between FDGSNet
and the state-of-the-art single-modal RSI semantic segmentation
network (GCDNet) and the state-of-the-art multimodal RSI
semantic segmentation network (CMX) is shown in Fig. 8.
In terms of segmentation performance, FDGSNet has a strong
recognition capability for confusing objects, such as paddy fields
and dry fields, and rivers with different colors. It is effective

at segmenting small objects, such as tiny buildings hidden in
forests. In addition, it achieves excellent segmentation results
for complex edge contours of objects.

The existing multimodal RSI fusion methods are especially
designed for specific segmentation tasks and data sources, but
their performance is limited to specific tasks, with a relatively
narrow scope of functionality and insufficient model general-
ization ability. For example, FTransUNet has achieved higher
detection accuracy than CMX on ISPRS Postdam (Buiding),
while CMX performs better on GID (Water body) and GID
(Vegetation). FDGSNet uses the frequency-domain decompo-
sition method to decompose the input multimodal data into
low-frequency components containing common semantic fea-
tures and high-frequency components containing their unique
fine-grained features. By establishing the correlation between
the low-frequency components of different modal features, the
effective complementary information between multimodal fea-
tures is extracted, and the residual connection is used to retain
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Fig. 9. Complete results of different methods based on the ISPRS Potsdam datasets.

TABLE IV
EXPERIMENTAL RESULTS ON THE ISPRS POSTDAM DATASETS

the fine-grained features of different modal data. The multi-
modal feature fusion method based on the frequency-domain
decomposition uses shared semantic features at low frequencies
for fusion, reducing the mutual interference problem in the
fusion process between different modalities and reducing the
sensitivity of the model to different data sources. Compared with
other methods, our method has better interpretability and strong
generalization ability for different data sources and different
segmentation tasks. To validate the exceptional performance and
generalization capability of FDGSNet in multimodal RSI se-
mantic segmentation tasks, we evaluated the model’s panoramic
semantic segmentation performance on the ISPRS Potsdam
dataset. We utilized multispectral data (IRRGB) and DSM as

inputs to accomplish the semantic segmentation tasks for various
object categories within the Potsdam dataset.

FDGSNet was compared with state-of-the-art semantic seg-
mentation methods on the ISPRS Potsdam datasets. The test
results are depicted in Fig. 9. As illustrated in Table IV, in the task
of panoramic RSI semantic segmentation, FDGSNet achieved
the optimal F1-score for most detected objects and demonstrated
the highest OA of 91.67%, mIoU of 86.34%, and AF of 92.87%.

Experimental results demonstrate that FDGSNet outperforms
other models in terms of its ability to effectively extract in-
tricate image features, accurately discern target locations and
boundaries, and exhibit superior generalization capabilities. It
successfully mitigates the challenges posed by noise interference
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TABLE V
COMPUTATIONAL COMPLEXITY ANALYSIS FOR MEASURING 512× 512 IMAGES ON A SINGLE NVIDIA GEFORCE RTX 3090TI GPU

and the loss of detailed features of different modal data, which
often leads to inaccurate target localization and boundary pixel
segmentation. Moreover, it addresses the issue of inadequate
model robustness in semantic segmentation tasks involving mul-
timodal RSIs. Our approach exhibits excellent performance on
diverse datasets and achieves superior segmentation outcomes
compared with alternative networks.

F. Model Parameters and Computation Complexity Analysis

We evaluate the computational complexity of the proposed
FDGSNet using the following evaluation metrics: the floating
point operation count (FLOP), the number of model parameters,
the memory footprint, and the frames per second (FPS). We fed
input data of size 512× 512 into all models and also evaluated
the computational complexity and parameter sizes of various
methods in the same runtime environment, and the results are
shown in Table V. From Table V, it can be seen that the computa-
tional complexity of multimodal models is generally higher than
that of single-modal models. The number of model parameters
of FDGSNet is at a medium level compared with other methods,
but the computational complexity of the models is higher. This
is mainly due to the introduction of the transformer, which is
more computationally intensive. Overall, although FDGSNet is
in the middle of the range in terms of computational complexity,
it shows superior performance.

V. CONCLUSION

In this article, a multimodal gated segmentation network
(FDGSNet) for RSIs based on frequency decomposition is pro-
posed. First, the multimodal features are decomposed into high-
frequency and low-frequency components. The high-frequency
component is used to preserve the detailed information of
different modality data, while the low-frequency component
mainly retains the semantic features of different objects. Then,
complementary information between multimodal features can
be extracted by establishing the correlation between the low-
frequency components of different modality features. Finally,
the AGF module is used to achieve adaptive fusion between
multimodal features. Frequency-domain decomposition-based
multimodal feature fusion methods effectively mitigate noise
interference and edge detail loss during the fusion of diverse data
sources. This multimodal feature fusion method has a strong

generalization capability, which enables it to obtain valuable
prior knowledge from various modal data features. The ex-
perimental results show that FDGSNet is well on the ISPRS
Postdam, ISPRS Postdam (Buiding), GID (Water body), and
GID (Vegetation) datasets, and achieves better segmentation
results than other networks. In future research, we will further
explore how to reduce the computational cost of the multimodal
data fusion module for wide applications.
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