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Abstract—Sea surface temperature (SST) plays a crucial role
in the global meteorological system, particularly as long-term sea-
sonal variations are significant for analyzing SST anomalies and
supporting long-term climate decision-making. Current forecast-
ing methods are primarily focused on short-term or fine-grained
predictions and often fail to effectively capture long-term seasonal
trends. To address this, we introduce a novel attention adaptive
temporal graph convolutional network (AA-TGCN) specifically
designed for long-term seasonal SST forecasting. Unlike traditional
adaptive graph convolutional networks, the AA-TGCN incorpo-
rates an attention mechanism to capture internode correlations
and utilizes a pruning strategy from SGAT to eliminate noisy
connections, thereby improving the model’s inductive learning ca-
pabilities. Moreover, the network employs a TCN-like architecture
to expand its receptive field, enhancing its ability to grasp long-term
trends, and employs differential embedding to further refine the
prediction accuracy of seasonal fluctuations. Practical applications
in the Bohai Sea and parts of the South China Sea demonstrate that
AA-TGCN outperforms existing technologies on multiple scales,
particularly achieving significant improvements in the South China
Sea regions.

Index Terms—Attention mechanism pruning, dynamic graph,
long-term seasonal forecasting, sea surface temperature (SST).

I. INTRODUCTION

THE ocean, as the largest ecosystem on Earth, exerts a
critical influence on global climate patterns. Even minor

variations in sea temperatures can trigger widespread ecological
and climatic effects. For instance, anomalies in sea surface
temperature (SST) are closely linked to El Niño and La Niña
phenomena, which are associated with increased frequency and
intensity of extreme weather events worldwide [1], [2], [3].
These phenomena also impact marine biodiversity and global
natural disasters [4], [5]. Consequently, accurate prediction of
ocean temperature changes is vital for scientists, policymakers,
and environmentalists.
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Currently, predictions of SST can be categorized into two
main approaches: numerical simulation and data-driven meth-
ods. Numerical simulations are based on fundamental principles
of oceanography and complex physical models. They utilize
dynamic models of sea-air interaction combined with physical
equations and various oceanographic parameters to precisely
simulate changes in SST [6], [7], [8]. This method takes into
account multiple factors including ocean currents, temperature
distribution, wind forces, and solar radiation. Although numer-
ical models can profoundly reveal the complexities of SST
variations, their modeling and computation processes require
substantial computational resources and are highly sensitive
to initial setup and parameter selection. These characteristics
increase the uncertainty in prediction outcomes.

Compared to traditional physical models, data-driven ap-
proaches rely on historical data to forecast future trends in SST.
The use of machine learning algorithms in SST prediction has
already achieved notable progress. These methods can identify
latent patterns and trends in temperature changes by analyzing
vast amounts of historical climate data, thereby providing ac-
curate predictions. The strength of this technology lies in its
ability to handle complex nonlinear relationships and adapt to
dynamically changing environmental conditions, making it an
effective tool in both research and practical applications. Ini-
tially, traditional machine learning algorithms, such as support
vector machine [9] and autoregressive models [10], were utilized
to predict SST. These algorithms have been well developed and
are capable of stable SST prediction. However, they do not fully
exploit the hidden information in historical data.

Nowadays, deep learning algorithms are extensively applied
in SST prediction [11]. For instance, recurrent neural networks
(RNNs) and their variants are used to capture temporal correla-
tions, convolutional neural networks (CNNs) and their variants
for spatial correlations, and various methods incorporating at-
tention mechanisms [12], [13], [14], [15], [16], [17]. Yet, these
algorithms have not considered the structural aspects of space.
For instance, when the selected area includes land or islands, the
performance of convolutional long short-term memory network
(ConvLSTM) [18], which simultaneously considers spatiotem-
poral information, may degrade [19]. Recently, graph neural
networks (GNNs) have been widely used for SST prediction
and have shown promising results. They effectively take into
account the structural, irregular, and connective properties of
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space. This includes graph convolutional network (GCN), graph
attention network (GAT), graph sample and aggregate networks
(GraphSAGE), and their variants [20], [21], [22], [23], [24], [25].
For example, Peng et al. [21] proposed the enhanced adaptive
graph convolutional network (EA-GCN), which is a multitime
guided gated recurrent unit (GRU) and GCN combination for
long-term fine-grained SST prediction, Gao et al. [22] developed
the global spatiotemporal graph attention network (GSTGAT),
an adaptive graph convolutional algorithm using convolution
and GAT for short-term SST prediction, and Sun et al. [25]
introduced the time-series graph network (TSGN) based on long
short-term memory network (LSTM) aggregation method for
SST prediction. These algorithms have been broadly imple-
mented in SST forecasting and have achieved state-of-the-art
results.

Most existing methods for forecasting SST predominantly
utilize daily, weekly, and monthly averages SST to make short-
to medium-term forecasts-for example, predicting temperatures
for the upcoming day, three days, week, or month, or providing
granular daily SST forecasts over an extended period such as
the next 60 days. However, these approaches often overlook
long-term seasonal variations, are biased towards predicting
short-term fluctuations, and struggle to capture the patterns of
long-term seasonal fluctuations in SST. In contrast, focusing on
long-term predictions, such as forecasting the monthly average
SST for the next twelve months, allows for a more thorough
exploration and analysis of the enduring trends and seasonal
patterns in climate change. This is extremely valuable for devel-
oping long-term policies and plans, managing marine resources,
and assessing the impact of climate change on ecosystems.
Such long-term forecasts provide a crucial tool for policymakers
and researchers, aiding in their understanding of and response
to continuous environmental changes. For instance, long-term
seasonal fluctuation forecasting is crucial for understanding
global climate patterns, assessing and predicting future climate
changes, climate sensitivity, and the anomalous phenomena of
El Niño and La Niña events [26], [27]. Additionally, the seasonal
fluctuations of SST are closely linked to seasonal variations in
rainfall and the seasonal changes in mesoscale air-sea coupling
intensity [28], [29]. A thorough exploration of the long-term
seasonal fluctuation patterns of SST and their predictability is es-
sential for forecasting future changes in marine ecosystems [30].

Long-term monthly average SST forecasting and daily av-
erage SST forecasting focus on different aspects. Daily SST
variations are continuous, involve large volumes of data, and are
susceptible to short-term noise influences. In contrast, monthly
average SST forecasting concentrates on long-term trends and
seasonal changes in specific regions, with smaller data volumes
and greater susceptibility to external factors. To date, there are
no effective machine learning methods specifically tailored for
long-term monthly average SST forecasting. To address this gap,
we propose the attention adaptive temporal graph convolutional
network (AA-TGCN) designed to capture the long-term trends
and seasonal variations of SST. Unlike traditional adaptive graph
convolutional networks, AA-TGCN does not use a node embed-
ding matrix to build adaptive weights. Instead, it incorporates an
attention mechanism, utilizing learnable attention coefficients to

dynamically change the weights of the edges. This approach not
only allows the model to focus on more critical edges but also
provides the model with inductive learning capabilities suitable
for dynamic graphs. Additionally, we employ a special pruning
method to prevent overfitting. We also introduce differencing to
simulate the monthly variations of SST, enabling the model to
capture these trends effectively. Finally, we use a structure simi-
lar to temporal convolutional networks (TCN) to better integrate
the seasonal differences throughout the year. Experiments were
conducted in select maritime regions of the Bohai Sea and the
South China Sea to explore the effectiveness of the model.

In the following sections, we will provide detailed descrip-
tions of our proposed model in Section II, elucidate our experi-
mental setup, data, and results in Section III, analyze the exper-
imental outcomes in Section IV. Finally, Section V concludes
this article.

II. METHODS

A. Problem Formulation

For forecasting SST using GNNs, we typically divide the
study area into a grid based on latitude, longitude, and reso-
lution, creating N data points. For instance, Fig. 1 illustrates the
division of a section of China’s Bohai Sea. The target geographic
range extends from 117◦E to 122◦E and from 37◦N to 41◦N,
subdivided into 16×20 grid points with a resolution of 0.25◦ by
0.25◦. Due to the Bohai Sea being an inland sea, some areas
within this range are land, resulting in 162 effective grid points.
In addition, we selected a region in the South China Sea, between
longitudes 112–117◦E and latitudes 12–16◦N. This region was
divided into a grid of 16×20 points. Due to the absence of land
or islands, all 320 grid points within the region are valid points.
These grid points are structured into a graph model G = (V,E),
where V represents the nodes of the graph, and E represents
the edges connecting these nodes. The connections between
nodes can be represented by an adjacency matrix A ∈ RN×N .
If there is an edge eij between node i and node j, then Aij = 1,
otherwiseAij = 0. We enhance this adjacency matrix by adding
a self-loop to each node, resulting in the final adjacency matrix
Â = A+ In, where In is the identity matrix.

In the graph model, SST data are typically represented as
a series of time-sequenced observations, X = X1, X2, . . ., Xt,
where Xt indicates the SST data for all nodes at time t. Our
objective is to utilize the SST data from the past p time steps to
train a model that can predict the SST data for the next q time
steps. Formally, the model function can be expressed as

Xt+1, Xt+2, . . ., Xt+q = F(Xt−p+1, Xt−p+2, . . ., Xt) (1)

where F represents the forecasting function developed to esti-
mate future SST values based on past observations.

B. AA-TGCN Structure

Fig. 2. illustrates the structure of the AA-TGCN model, which
is primarily composed of temporal graph convolutional network
(TGCN) blocks. Initially, the SST data X are processed to
calculate its difference ΔX . Subsequently, both the original
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Fig. 1. Grid partitioning in part of the Bohai Sea, divided into 16×20 grid points, with 162 valid points.

Fig. 2. AA-TGCN model, Δt indicates differencing the data in time.

data X and its difference ΔX are fed into the TGCN blocks
for encoding, and the encoded information from both is concate-
nated and input into a fully connected layer for decoding. Before
obtaining the final output, X and ΔX are concatenated and
input into another fully connected layer, where they are added
to the encoded information to implement a residual connection.
This process results in the predicted output. Each TGCN module
utilizes an attention mechanism and TCN [31] to jointly capture
temporal and spatial information. The attention mechanism,
with its unique pruning strategy, constructs a dynamic graph
structure to capture spatial correlations in the data. TCN forms
the main structure of TGCN. By expanding the receptive field of
the model, it enables the model to capture temporal information.
We effectively integrated the attention mechanism into the TCN

structure, allowing each layer of TGCN to capture both temporal
context information and spatial structure information.

C. TGCN Block

In studying the long-term monthly seasonal variations of SST,
we note distinct differences from daily variations. Specifically,
daily changes tend to be continuous, whereas monthly average
SST variations are generally larger. To effectively capture these
fluctuations, particularly seasonal ones, it is crucial that the
encoded information comprehensively includes past variation
data. The key lies in ensuring that each output maximizes the
receptive field. Therefore, we have designed a structure similar
to TCN, utilizing dilated convolution techniques. The purpose of
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Fig. 3. TGCN block structure, where H1 and H2 encode information, and Y represents the output.

this structure is to expand the model’s receptive field, allowing it
to detect cross-quarterly fluctuations while ensuring predictions
are based solely on past and present information to prevent
“looking ahead.” As shown in Fig. 3. Specifically, our model
uses the past 12 months of monthly average SST data to predict
the next 12 months’ monthly SST. To cover the entire 12-month
sequence with the receptive field and capture long-term depen-
dencies, specific dilation rates, kernel sizes, and the number of
convolution layers are selected to meet the required receptive
field size. The relationship among these parameters can be
determined using the following formula:

r = 1 + (K − 1) ·
n−1∑
i=0

di (2)

where r is the receptive field size, K is the convolutional kernel
size, n is the number of convolutional layers, and di represents
the dilation rate for the ith layer. In this experiment, we set the
dilation base to 2, the kernel size to 3, and the total number of
layers in the model to 3. The specific operational procedure is as
follows. First, the input SST sequence is padded in the first layer
to ensure that its length remains unchanged postconvolution.
Concurrently, a size-3 AAGC block processes the sequence
in a sliding manner. With a dilation rate of 1 in this layer,
no additional expansion is required. The same procedure is
applied in the second layer, where the dilation rate increases
to 2. This increment means introducing a gap of one data point
between every three consecutive data points, thereby enlarging
the receptive field while maintaining consistency in sequence
processing. The third layer follows a similar approach to further
expand the receptive field, accommodating the long-term depen-
dencies of the sequence. These operations can be described by
the following formula:

H(t) = (x ∗ ω)(t) =
k−1∑
τ=0

x (t− d · τ) ·ω(τ) (3)

where H represents the encoded information, x is the input
sequence, w denotes the weights of the AAGC block, t indicates
the time step, k is the kernel size, and d is the dilation factor.
Through this design, we ensure that each output from the model
has a maximized receptive field, effectively capturing the long-
term dependencies present in the SST data. This enables more
accurate predictions of the monthly average SST fluctuations for
the upcoming 12 months.

D. AAGC Block

To better capture the long-term dynamic correlations in SST,
we have developed a method called attention adaptive graph con-
volution (AAGC). Unlike traditional adaptive graph convolution
(AGC), which requires the initialization of a node embedding
matrix to represent inter-node relationships before training, our
AAGC method does not rely on a predefined node embedding
matrix. This traditional approach necessitates access to the entire
graph for transductive learning and needs retraining if there are
changes in the graph’s nodes, limiting its applicability in future
or cross-disciplinary studies. Our AAGC method utilizes an
attention mechanism to directly capture the interactions between
nodes, thereby endowing the model with a stronger capability for
inductive learning. Given that long-term monthly average SST
predictions are susceptible to external influences and exhibit
significant fluctuations, identifying and eliminating disadvan-
tageous connections (or edges) becomes crucial. Traditional
GAT often perform poorly in this respect, as they are prone
to overfitting due to noise and fluctuations. Therefore, we have
implemented a special sparse attention mechanism using the
LO-norm as a strategy to identify and remove noisy edges
in the graph. This approach effectively eliminates redundant
information within the graph, enhancing model performance and
suitability for long-term SST forecasting tasks. This is described
in detail below.
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A conventional multilayer GAT can be represented by the
following:

hl+1
i = σ

⎛
⎝∑

j∈Ni

a
(l)
ij h

(l)
j W (l)

⎞
⎠ (4)

a
(l)
ij =

exp(LeakyReLU(b(l)[W (l)xi‖W (l)xj ]))∑
k∈Ni

exp(LeakyReLU(b(l)[W (l)xi‖W (l)xk]))
(5)

where h
(l+1)
i is the new feature of vertex i at layer l + 1 ob-

tained by aggregating neighbor information, b(l) represents the
learnable attention coefficient at layer l, and W is the learnable
weight matrix. The essence of the model is to identify significant
edges. Inspired by the SGAT model [32], we introduced a binary
mask to control the edges eij ∈ E, expressed as

Ā = A� Z,Z ∈ {0, 1}M (6)

where M is the number of edges, with Z = 1 if edge conditions
are satisfied, otherwiseZ = 0. SinceZ is a set of binary variables
and nondifferentiable, we employ a hard concrete estimator [33]
to approximate the distribution of discrete variables. This ap-
proximation facilitates the optimization of the original problem
and the generation of the binary mask with added randomness,
represented as

R̂(W, logα) =
1

n

n∑
i=1

Eu∼U(0,1)L(fi(X,A� g,W ), yi)

+ λ
∑

(i,j)∈E
σ

(
logαij − β log

−γ

ζ

)
(7)

f(logα, u)=σ((log u− log (1− u) + logα)/β)(ζ−γ) + γ
(8)

g = min (1,max (0, g(f(logα, u)))) (9)

where E denotes the expectation, u is uniformly distributed be-
tween [0,1], f is the encoding function, and λ is a regularization
parameter. σ is the sigmoid function, β = 2

3 , γ = −0.1, and
ζ = 1.1 are parameters typical for the hard concrete distribution.
The log attention coefficients logαij are computed as follows:

logαij = bT (xiW
(1)
1 ‖ xjW

(1)
1 ) (10)

where bT is a learnable parameter, andW (1)
1 is the weight matrix

for the first layer and first head. From this, we derive the maskZij

from the hard concrete distribution q(z|logα). During the testing
phase, randomness is eliminated, and a deterministic mask Ẑ is
generated using

Ẑ = min (1,max (0, σ((logα)/β)(ζ − γ) + γ)). (11)

This process generates a continuous mask within the range of
0–1, effectively pruning redundant connections. Subsequently,
normalization is applied

aij =
Aijzij∑

k∈Ni
Aikzik

. (12)

To preserve the information of the nodes themselves, we set
zii = 1. In multilayer graph attention networks, using different

Fig. 4. AAGC block structure.

attention coefficients for each layer is redundant for our pre-
dictive tasks; instead, assigning the same attention coefficient
across layers can significantly reduce computational time. This
uniform attention coefficient simplifies understanding the im-
portance of edges and facilitates targeted learning by the model.
This approach has been validated in SGAT implementations.
Therefore, we derive the following formula:

hl+1
i = σ

⎛
⎝∑

j∈Ni

aijh
(l)
j Wk

(l)

⎞
⎠ . (13)

We then obtain a multihead, multilayer attention model ex-
pression as follows:

hl+1
i = σ

⎛
⎝∑

j∈Ni

aijh
(l)
j Wk

(l)

⎞
⎠ . (14)

Through these steps, we have established an attention adaptive
graph convolution (AAGC) block based on adaptive attention
weights. The structure of this block can be straightforwardly
visualized in Fig. 4. After the sea temperature data are processed
and converted into node data, the attention mechanism is used to
obtain the relevant edge weights between nodes, resulting in the
initial graph structure. At this stage, the graph structure contains
many noisy edges. Through a special pruning operation using
the hard concrete distribution, sparse sampling is performed to
obtain the pruned edges, thus achieving the final graph structure.
Finally, the graph structure is combined with the sea temperature
node data, and neighbor aggregation is performed on the nodes
to obtain new feature representations.

E. Complexity

We will analyze the time and space complexity of AA-TGCN
model in detail.

1) Time Complexity: The base AAGC module of AA-TGCN
is a variant similar to the GAT model, so its time complexity is
similar to that of GAT. During the training phase, GAT mainly
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involves two multiplication operations. First is the feature map-
ping of the vertices, i.e., mapping each node’s features fromF di-
mensions toH dimensions, whereH is the dimension of the hid-
den layer. The time complexity for this is O(N × F ×H). The
next step is the computation of attention weights, where attention
weights are computed between each node and its neighbors,
resulting in a time complexity of O(E ×H), where E is the
number of edges of the graph. Additionally, AAGC requires the
computation of a mask Z for each attention weight, with a time
complexity of O(E). Thus, the time complexity for each layer
of the AAGC module is O(K(N × F ×H + E ×H) + E),
where K is the number of attention heads.

The main structure of AA-TGCN is the TGCN module. This
module, similar to the TCN structure, in our design, the AAGC
module’s kernel size is 3, and there are three layers, with each
layer’s output being 12 new feature representations for each
node. Hence, the time complexity for the entire TGCN module
is O(3× 12× (K(N × F ×H + E ×H) + E)), where F is
the kernel size of 3. For the entire AA-TGCN, which includes
two TGCN modules for the original data and differential data,
the time complexity analysis is similar. Therefore, simplifying
the model’s time complexity, it becomes O(K(N ×H + E ×
H) + E).

2) Space Complexity: For the space complexity of AA-
TGCN, we start by considering the model’s base components.
The space complexity of the AAGC module is primarily deter-
mined by the following factors. First is the feature storage of sea
temperature node data, with a space complexity of O(N × F ).
Second is the feature space complexity after transformation,
which is O(N ×H ×K). Next is the space complexity of
the computed attention weights, O(E ×K), followed by the
storage of model weight parameters, O(F ×H ×K). Lastly,
there is the storage of the mask Z, with a space complexity
of O(E). Thus, the space complexity of the AAGC module is
O(N ×H ×K + E ×K + F ×H ×K + E). Similarly, un-
der the TGCN structure, each layer’s space storage is constant,
hence for the AA-TGCN model, the space complexity can be
simplified to O(N ×H ×K + E ×K +H ×K + E).

III. EXPERIMENTS

A. Datasets

Our study utilizes the optimum interpolation sea surface
temperature (OISST) V2.1 dataset provided by the National
Oceanic and Atmospheric Administration (NOAA), based in
Boulder, Colorado, USA. This dataset is available online1[34].
It offers daily, weekly, and monthly average SST data globally
from September 1981, covering from 89.875◦ South to 89.875◦

North latitude and from 0.125◦ East to 359.875◦ West longitude,
with a spatial resolution of 0.25◦ × 0.25◦.

For this research, we selected monthly average SST data for
specific regions in the Bohai Sea and the South China Sea,
spanning from January 1982 to December 2021. Specifically, the
data range for the Bohai Sea is from 117◦ to 122◦ East longitude
and from 37◦ to 41◦ North latitude, while for the South China

1[Online]. Available: www.ncei.noaa.gov/

Sea, it is from 112◦ to 117◦ East longitude and from 12◦ to 16◦

North latitude.
To train and validate our model, we used data from 1982 to

2001 as the training set, from 2002 to 2011 as the validation set,
and from 2012 to 2021 as the test set for analysis.

B. Settings

Before conducting comparative experiments, we need to se-
lect different hyperparameters to test the sensitivity of the model
to parameter selection. We have chosen the following hyperpa-
rameters for the experiment: hidden layer dimensions: [16, 32,
64]; learning rates: [0.001, 0.0001]; number of attention heads:
[4, 8, 16]. We use grid search to obtain experimental results
for different combinations. Finally, we determine the optimal
hyperparameters to be a learning rate of 0.001, a hidden layer
dimension of 32, and four attention heads. Additionally, other
parameter choices exhibit robust performance.

In this study, we compared the performance of attention adap-
tive AA-TGCN with EA-GCN, sparse graph attention network
(SGAT), GAT, TSGN, ConvLSTM, TCN, LSTM, and support
vector regression (SVR). All models were trained using the
same sliding window length, predicting the monthly average
SST for the next 12 months based on the past 12 months’ data.
A 12-month period was chosen for the sliding window to cover
all seasonal variations, providing comprehensive background
information for the models.

To ensure the fairness of the experiments and the validity of
the model structure comparison, all models were set to have
the same dimensionality in their hidden layers, fixed at 16.
The AA-TGCN’s AAGC block, along with SGAT and GAT,
implemented a dual-layer structure equipped with eight attention
heads. EA-GCN, due to differences in the research field, did not
have daily average SST data input into the model for fairness.
TSGN aggregated using two layers of LSTM units. ConvLSTM
and LSTM used a two-layer structure. TCN and AA-TGCN used
the same kernel size, dilation rate, and number of layers. SVR
optimized its parameters through grid search.

We used the Python programming language and frameworks
such as Torch and DGL to build and test all neural network mod-
els. The experiments were conducted on a high-performance
computing platform equipped with a 5.4 GHz Intel Core pro-
cessor, an 8 GB NVIDIA GeForce RTX 4060 graphics card,
32 GB of 5600 MHz DDR5 RAM, and a 1 TB solid-state drive.

The models were trained using the Adam optimizer with
an early stopping mechanism (patience set at 20 iterations) to
prevent overfitting and ensure model stability. The learning rate
was set at 0.001, with a batch size of 8.

To assess the performance of the different models on the SST
prediction task, we used mean squared error (MSE) and mean
absolute error (MAE) as performance metrics. Lower values
of these metrics indicate better predictive performance of the
model.

C. Result

Tables I and II, respectively, present the experimental results
of five different methods (AA-TGCN, EA-GCN SGAT, TSGN,
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TABLE I
PREDICTION PERFORMANCE OF VARIOUS MODELS AT DIFFERENT FORECASTING SCALES IN THE BOHAI SEA

TABLE II
PREDICTION PERFORMANCE OF VARIOUS MODELS AT DIFFERENT FORECASTING SCALES IN THE SOUTH CHINA SEA

GAT, ConvLSTM, TCN, LSTM, SVR) on datasets from the
Bohai Sea and the South China Sea.

We visualized the MSE and MAE results for the different
models across these regions, as shown in the Fig. 5.

The results are presented in Tables I and II, where the bold
numbers indicate the best outcomes. It is evident from the data

that our AA-TGCN model outperforms other models across
various temporal scales of long-term prediction. Specifically,
compared to the next best model, AA-TGCN shows an average
improvement of 5% in MSE and 4% in MAE for the Bohai Sea
dataset; and an even more significant improvement in the South
China Sea dataset, with increases of 15% in MSE and 8% in
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Fig. 5. Prediction results of different models at various forecasting scales in different regions, left subfigure shows MSE evaluation, right subfigure shows MAE
evaluation. (a) Bohai Sea. (b) South China Sea.

MAE. Notably, we observed that all models generally perform
better in the South China Sea than in the Bohai Sea, which
can be attributed to different geographic and meteorological
conditions of the two maritime areas. The Bohai Sea, located
in northern China, is a semienclosed sea surrounded by land.
This geographic characteristic means its hydrological and mete-
orological conditions are heavily influenced by the surrounding
land, which itself varies greatly. In contrast, the South China
Sea is an open sea connected to the Pacific Ocean, with a larger
area and more frequent water exchanges, providing a relatively
stable environment.

Further analysis of different models in various maritime areas
showed that the LSTM model performs worse compared to the
TCN model, which demonstrates that, despite both being time
series models, TCN is more suitable for long-term unstable
sequence prediction. This is because TCN can aggregate overall
information by expanding the receptive field.

Additionally, we can observe that ConvLSTM performs
poorly in the Bohai area but better in the South China Sea area.
This is because the presence of some land in the Bohai area
causes issues with convolutional effects. The EA-GCN model
uses GRU, a variant of LSTM, to aggregate temporal informa-
tion, which might be the primary reason for its poor performance.
The SGAT model has consistent predictive performance in the
Bohai Sea but exhibits significant fluctuations in the South China
Sea. This variation may be due to SGAT’s pruning operations
that control information aggregation, which are particularly
effective in the unstable and externally influenced Bohai Sea

environment, removing noise and enhancing model stability.
However, in the South China Sea, where the environment is
more stable and exchanges with other water bodies are frequent,
SGAT’s pruning may inadvertently remove nodes containing
useful information. It was observed that the AA-TGCN model
remains stable across different maritime regions, demonstrating
its robustness.

We also found that SVR performed better than other models
in the Bohai Sea in some respects, possibly due to the lower
temporal and spatial resolution and smaller data size in the
Bohai Sea, which may prevent deep learning models from fully
exploiting their advantages and lead to overfitting. In contrast,
SVR is comparatively more robust. The significant performance
enhancement of the AA-TGCN model in the South China Sea
validates its capability in capturing stable long-term seasonal
trends, underscoring its superior robustness. These findings
not only highlight the potential of the AA-TGCN model but
also provide valuable insights for more accurate temperature
prediction in different maritime regions in the future.

IV. DISCUSSION

A. Seasonal Error Analysis

We conducted tests on various models in different seasons for
the Bohai Sea in Northern China and the South China Sea in
the south to analyze the predictive effectiveness of each model
and their relationship with seasonal fluctuations. Using the year
2020 as a case study, we predicted the entire year’s monthly
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TABLE III
PREDICTION PERFORMANCE OF DIFFERENT AA-TGCN VARIANTS IN THE BOHAI SEA AT VARIOUS FORECASTING SCALES DURING ABLATION STUDIES

average SST using data from 2019 and grouped the results by
season to calculate the MAE for each season. Additionally, we
compared the seasonal fluctuation absolute errors between 2019
and 2020, as illustrated in Figs. 6 and 7.

From these figures, it is evident that the error distribution areas
of different models often overlap significantly with the areas of
seasonal fluctuations, indicating that the accuracy of seasonal
SST predictions is linked to these annual seasonal variations.
Specifically, while models generally capture the long-term SST
trends over different periods, they struggle to predict seasonal
SST trends accurately.

Comparing different models, we observed that GAT shows in-
stability in its predictions under complex fluctuation conditions.
TSGN, which uses a unique node aggregation method (LSTM),
exhibits uneven prediction results. Interestingly, EA-GCN uses a
variant of LSTM, GRU, as its main structure, while ConvLSTM
uses LSTM as its main structure. The error distributions of the
three are very similar, especially in the South China Sea region.
And both SGAT and AA-TGCN employ specialized pruning
techniques for node aggregation, resulting in similar areas of
error distribution, with our AA-TGCN fitting the long-term
seasonal fluctuations of SST more accurately.

These comparisons validate that our model outperforms the
others in terms of prediction stability, error distribution, and
overall performance, confirming its superiority in forecasting
seasonal SST variations accurately.

B. Ablation Experiment

We conducted a series of ablation experiments to explore
and validate the effectiveness and necessity of our model.
These experiments primarily involved removing or replacing
certain modules within the model and performing predictions
for the Bohai Sea area. The specific experimental results are
summarized in Table III, where R-LSTM denotes replacing
the TGCN structure with an LSTM structure that includes the

AAGC block, R-Adapt indicates replacing the attention adaptive
dynamic graph with an embedding-based adaptive dynamic
graph. D-Differences refers to the deletion of the differencing
auxiliary. We have visualized these results, as shown in the
Fig. 8.

The results indicate that R-Adapt outperformed AA-TGCN
in the October and December forecasting periods. This could
be attributed to the complexity of influences on sea tempera-
ture in long-term, large-scale predictions. Unlike AA-TGCN,
which controls edges with a pruning objective, R-Adapt adjusts
edge weights by initializing a learnable N*D dimensional node
embedding matrix, allowing it to capture more information
after selecting an appropriate D. However, this method is also
more susceptible to noise, potentially leading to overfitting,
as indicated by the fluctuating predictive performance shown
in the figures. On the other hand, AA-TGCN might remove
informative edges through its pruning process. Nonetheless,
such modifications are necessary; we observed that AA-TGCN
generally shows better performance and stability on other tem-
poral scales, whereas R-Adapt’s results are more volatile. Most
importantly, AA-TGCN changes the nature of the model from
a transductive to an inductive learning approach, allowing it to
predict unseen data without retraining. In contrast, transductive
learning would require retraining upon the introduction of new
nodes. This broadens the applicability of AA-TGCN, affirm-
ing the necessity of this modification. Furthermore, examining
changes in other modules, we found that R-LSTM performed
poorly. Unlike the continuous changes in fine-grained long-
term predictions, coarse-grained long-term predictions are more
volatile.

The former can be easily remembered by an LSTM structure,
while the latter may disrupt the memory capability of LSTM’s
memory cells due to significant fluctuations. Thus, AA-TSGN
more effectively integrates overall information and captures
long-term seasonal trends. The removal of the D-Differences
differencing module also led to fluctuations in predictive
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Fig. 6. Average absolute prediction error by season in the Bohai Sea using different models, “Seasonal” refers to the distribution of absolute differences for the
same season over two years. (a) Spring. (b) Summer. (c) Autumn. (d) Winter.
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Fig. 7. Average absolute prediction error by season in the South China Sea using different models, “Seasonal” refers to the distribution of absolute differences
for the same season over two years. (a) Spring. (b) Summer. (c) Autumn. (d) Winter.
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Fig. 8. Prediction performance of different AA-TGCN variants in the Bohai Sea at various forecasting scales during ablation studies, left subfigure is MSE
evaluation, right subfigure is MAE evaluation.

performance by losing the ability to enhance memory through
differencing. Overall, AA-TGCN demonstrated superior stabil-
ity and effectiveness, and each module’s design was thoroughly
justified and necessary.

V. CONCLUSION

In this article, we introduce a novel AA-TGCN model aimed
at addressing the challenge of long-term seasonal prediction
of SST. We initially incorporate an attention mechanism to
learn internode correlations and utilize a unique binary mask
for pruning edges, which enhances the model’s inductive learn-
ing capabilities beyond those of traditional adaptive GNNs.
Subsequently, we design a structure similar to TCN to maxi-
mize the model’s receptive field, enabling it to observe annual
SST seasonal fluctuations and long-term trends. Through the
application of first-order differencing, we further improve our
model’s ability to capture SST seasonal variations. Experiments
conducted in the Bohai Sea and South China Sea validate its
excellent performance in long-term seasonal SST forecasting.
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