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DEPDet: A Cross-Spatial Multiscale Lightweight
Network for Ship Detection of SAR Images
in Complex Scenes

Jing Zhang ", Fan Deng

Abstract—Nowadays, the intricate nature of synthetic aperture
radar (SAR) ship scenes, coupled with the presence of multiscale
targets, poses a significant challenge in detection accuracy. Fur-
thermore, to reduce the financial outlay on hardware, there is also
a considerable challenge in lightweighting the model. In order to
resolve the aforementioned concerns, we propose a cross-spatial
multiscale lightweight network, designated as DEPDet. First, a
new efficient multiscale detection backbone network DEMNet is
redesigned. To improve the feature extraction capability of the
network, a cross-spatial multiscale convolution (CSMSConv) is
designed and a new CSMSConv module CSMSC2F is constructed.
Meanwhile, we introduce an efficient multiscale attention module.
DEMNet is capable of more effectively extracting information
pertaining to multiscale ships. Moreover, to enhance the fusion
of features at diverse scales, we design a new path aggregation
feature pyramid network DEPAFPN, which combines deformable
convolution and CSMSC2F. Finally, we introduce partial convolu-
tion to construct a lightweight detection head module PCHead,
which can be employed to extract spatial features with greater
efficiency. The publicly available SAR ship datasets, SAR Ship
Detection Dataset and High-Resolution SAR Image Dataset, are
employed for the purpose of conducting experiments. The mean
average precision (mAP) obtained was 98.2% (+1.4%) and 91.6 %
(41.6%), respectively. The F1 obtained 0.950 (41.7%) and 0.871
(+1.4%), respectively. Concurrently, the Params decreased from
3.2M to 2.1M, a decrease of approximately 34 %. The floating-point
operations (FLOPs) decreased from 8.7G to 4.5G, a decrease of
approximately 48%. The experimental results indicate that the
network achieves an effective balance between detection accuracy
and lightweight effect with good generalization and extensibility.

Index Terms—Complex scenes, cross-spatial multiscale
convolution (CSMSConv), lightweight network, multiscale ships,
synthetic aperture radar (SAR).
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1. INTRODUCTION

YNTHETIC aperture radar (SAR) is an active microwave
S imaging radar that provides all-day, all-weather observa-
tion capabilities, including the ability to penetrate clouds and
ground, enabling it to capture ground feature information even
in harsh weather and lighting conditions [1]. Consequently, it
has been extensively employed in a multitude of fields, such as
target reconstruction [2], target detection [3], and disaster and
environmental monitoring [4]. In these applications, the use of
SAR ship detection is of paramount scientific, technical, and
operational significance in both military and civilian fields, in-
cluding maritime transportation supervision and rescue, national
defense and security, and fishing vessel monitoring [5], [6], [7],
[8]. Nevertheless, the continuous improvement of SAR image
resolution and the development of diversified ship sizes have
posed greater challenges for the accurate detection of multiscale
ships in complex scenes. At the same time, reducing the cost of
hardware, increasing its availability, and deploying models on
limited-resource devices have become the current pursuit [9].
This necessitates the development of innovative approaches to
address these issues.

Lately, a variety of methods have been put forth with the aim
of SAR ship detection. The aforementioned methods may be
broadly classified into two distinct categories based on their fea-
ture extraction methods: traditional methods and deep learning
methods.

Traditional SAR ship detection algorithms are mainly based
on grayscale characteristics, whereas the constant false alarm
rate (CFAR) [10] is the most commonly used algorithm based
on grayscale features. By comparing the greyscale value of a
single pixel with the discrimination threshold, it completes the
detection of the target pixel. The discriminative threshold is de-
termined based on the probabilistic properties of the backscatter,
assuming a given false alarm rate. However, the uncertainty
factor of background clutter is strong, especially in complex
scenes where there are too many interference factors, resulting
in low detection accuracy of the algorithm.

For the past few years, deep learning methods have found a
wide range of applications in remote sensing, yielding promising
results in tasks such as building change detection [11] and forest
fire detection [12]. Concurrently, object detection algorithms
based on deep learning performed exceptionally well in the com-
puter science community, showcasing high detection accuracy,
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advanced capabilities for extensibility, and the ability to learn
features automatically, particularly in complex scenes [13], [14].
Consequently, these methods have been adapted for use in the
detection of ships in SAR images [15].

SAR ship detection methods based on deep learning may
be categorized according to their network architectures as ei-
ther one-stage or two-stage. One-stage detection methods are
characterized by the ability to accomplish object detection
with a single feature extraction step, which results in faster
processing in comparison to the two-stage. Representative al-
gorithms in the category include the You Only Look Once
(YOLO) [16] series and the Single Shot Multibox Detector
(SSD) [17] series. Conversely, two-stage detection methods
involve first locating candidate regions in the input image fea-
tures and subsequently classifying these regions. This approach,
exemplified by the earlier proposed region with convolutional
neural network (R-CNN) [18] method and its derivatives such
as Faster R-CNN [19] and Mask R-CNN [20], is more complex
and computationally intensive, posing significant challenges for
real-time detection and model deployment. Consequently, most
researchers opt for one-stage detection algorithms for SAR ship
detection.

However, despite their speed, one-stage detection algorithms
still exhibit shortcomings in detection accuracy, particularly
concerning small- and medium-sized ships in complex scenes
[21]. Thus, existing SAR ship detection methods struggle to give
attention to both detection accuracy and lightweight effect. SAR
ship detection continues to confront challenges in achieving this
balance, including the following.

1) Ship scenes are complex. In SAR images, the real-time
captured ships are not just simple images of ships on the
sea but more often in complex scenes such as rivers, ports,
and islands, which affect the accurate detection of ships.

2) Multiscale ships. The scale of ships is diverse, in particular
with a higher proportion of small- and medium-sized
dense ships.

3) Models are not lightweight enough. The majority of ship
detection methods exhibit high computational complex-
ity and memory consumption, which presents significant
challenges in their deployment on resource-limited hard-
ware devices. This, in turn, increases the hardware cost
and markedly reduces the usability and ease of use of the
model.

In order to overcome all of these aforementioned challenges,
DEPDet is proposed in this article, a cross-spatial multiscale
lightweight network. The essential dedications made by the
algorithm are presented as follows.

1) A new efficient multiscale detection backbone network
DEMNet is redesigned. To tackle the multiscale problem,
we design CSMSConv and construct a new CSMSConv
module CSMSC2F, which better extracts and fuses the
details and metaphorical features of multiscale ships, pro-
viding increased ship detection capability. In addition,
we introduce efficient multiscale attention (EMA) mech-
anisms, which improve the performance of the model in
terms of feature extraction, in particular with diminutive
dense ships in complex scenes. It effectively suppresses
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the interference of complex backgrounds and highlights
ship targets.

2) We design a new feature fusion module DEPAFPN that
fuses deformable convolutions, enhancing the merging of
feature information at different levels of detail.

3) A lightweight detection head module PCHead is con-
structed by introducing partial convolution (PConv),
which can abstract spatial information more effectively
through a concerted effort to reduce duplicated computa-
tions and storage operations.

4) As a basis for evaluating the effectiveness of DEPDet,
comprehensive comparative and ablation experiments are
conducted on two challenging public datasets, SAR Ship
Detection Dataset (SSDD) and High-Resolution SAR
Image Dataset (HRSID). Our model demonstrated sat-
isfactory performance with regard to both detection ac-
curacy and computational complexity in both datasets.
To further evaluate the lightweight performance of the
model, we deployed it on a resource-limited device for
experiments. Generalizability experiments and extensibil-
ity experiments are also conducted, and our model can be
applied to a large remote sensing scene for ship detection
and can be extended to multispectral ship detection tasks.
Our model has good ease of use, generalization, and
extensibility.

The rest of this article is organized as follows. In Section II, we
provide a detailed introduction to some related work. The overall
architecture and details of DEPDet are presented in Section III.
Experimental results are presented in Section IV. We present a
discussion of our model and delineate future work directions in
Section V. Section VI is devoted to the drawing of conclusions.

II. RELATED WORK

A. Traditional SAR Ship Detection Methods

Most of the traditional methods are improved algorithms
based on the CFAR, such as GO-CFAR [22], SO-CFAR [23],
and CA-CFAR [24]. In addition, in order to enhance the detec-
tion accuracy, a number of CFAR detection methods have also
emerged in combination with other methods [25], [26], [27].

Li et al. [25] developed an adaptive superpixel level CFAR
detector for dense ship detection tasks in nearshore areas.
This method proposes a nonlocal superpixel topology strategy
that has the capacity of distinguishing between pure clutter
superpixels and mixture superpixels, adaptively determining
an adequate quantity of pure superpixels for taking stock of
detection thresholds. Ai et al. [26] proposed AIS-RCFAR. With
the assistance of AIS data, this method has great improvement
in both uniform and nonuniform multitarget environments and
has better detection speed, but for particularly complex sce-
narios, this article does not make corresponding experimental
evaluation. Madjidi and Laroussi [27] proposed an improved
algorithm based on the CFAR, a bilateral automatic review
method based on an approximate maximum likelihood estima-
tion. This method demonstrates superior performance compared
to any other CFAR improvements in the field of simple maritime
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scenes, but the algorithm is not applicable to scenes with com-
plex backgrounds.

In general, traditional methods still rely on the setting of
parameters. Even though many researchers are carrying out the
research of adaptive parameters with the objective of enhancing
the accuracy of detection, the majority of application scenarios
are still limited to simple scenes of ships on the sea, and there
is still a certain degree of difficulty to use it in complex scenes,
especially in the remote sensing large scene maps. Therefore,
this type of detection method has weak generalization ability
and poor universality.

B. SAR Ship Detection Methods Based on Deep Learning

Due to the high-accuracy advantage of two-stage target al-
gorithms, some researchers have begun to attempt to introduce
two-stage algorithms into the field of SAR ship detection. ISAS-
DNet [28] was proposed in 2021, which is a two-stage detector
with two branches drawing inspiration from Mask R-CNN. For
the multiscale problem of ships, it designs a global reasoning
module and a mask-assisted ship detection module to interact
with the information of the two branches, thereby enhancing
the detection results. Tang et al. [29] proposed PPA-Net. The
design strategy of the model is to enhance its ability to learn
multiscale ship features by introducing an attention mechanism,
spatial pooling, and feature balancing methods. Lv et al. [30]
proposed SRDet, which is an anchor-free SAR ship detection
method. This algorithm uses the two-stage method CenterNet2
[31] as ade facto standard. In addition, it develops a novel hybrid
domain attention mechanism, which effectively suppresses the
impact of complex land backgrounds.

Due to a simpler structure and stronger real-time performance
of the one-stage detector, more researchers choose one-stage
object detection algorithms as the baseline model. For example,
Zhang et al. [32] proposed the introduction of LFO-Net, which
originated from the SSD. The approach focuses on using a new
bidirectional feature fusion module, comprising a semantic ag-
gregation module and a feature reuse module, with the objective
of enhancing the performance of multiscale object detection.
This is achieved by optimizing the features of low and high
feature layers. Zhao et al. [33] proposed D2ADet, improving by
RetinaNet [34]. Specifically, it incorporates an enhanced feature
pyramid network (FPN) that leverages its inherent strengths to
more effectively and adaptively acquire superior ship features.

In response to the challenge of multiscale ship detection in
complex scenes, Zhou et al. [35] presented HRLE-SARDet,
which is a lightweight SAR target detection algorithm. It draws
inspiration from the design concept of YOLOVS, a lightweight
scattering feature extraction backbone and a lightweight hy-
brid representation learning enhancement module has been re-
designed. It has proven effective in terms of both model accuracy
and its lightweight design. In addition, Zhang et al. [36] proposed
ESarDet. It adopts YOLOX [37] as the baseline model. The
authors propose the CAA-Net with a larger ERF to facilitate the
integration of contextual and semantic information pertaining
to ships, and design a new convolutional block A2CSPlayer and
a new spatial pyramid pooling network A2SPPF to heighten
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Fig. 1. Overall structure of DEPDet.

the fusion of feature images across distinct scales. ESarDet has
achieved good results in accuracy and speed. In light of the recent
advances in object detection algorithms, CSD-YOLO [38] based
on improved YOLOV7 [39] was put forth for consideration. Its
principal innovation is to propose SAS-FPN that combines spa-
tial pyramid pooling and attention transfer to enable the model
to focus on the most pertinent information regarding ships.
Meanwhile, it integrates different scales ship features, thereby
improving detection accuracy. It is experimentally verified that
CSD-YOLO performs well in overall performance. In addition,
Sun et al. [40] and Xiong et al. [41] designed a rotating ship
detection model so that it can detect ships with arbitrary heading,
which greatly enhances the accuracy of ship detection.

III. METHOD
A. Overall Network Structure

Addressing the complexity of SAR ship backgrounds and
multiscale targets of SAR ships, while also considering the
industrialized needs of easier deployment, we put forward a
cross-spatial multiscale lightweight network named DEPDet.
Fig. 1 shows its overall network structure. We choose the mature
and efficient anchor-free real-time detection algorithm YOLOvV8
as the reference model, and redesign the backbone, neck, and
detection head. We design a new CSMSConv to replace part of
the traditional convolution, so as to construct a new convolution
module CSMSC2F. In backbone and neck of the model, the
deformable convolution and the CSMSC2F are fused to achieve
more efficient feature extraction and feature fusion. Further-
more, in addition to solving the problem of complex scenes,
the backbone component incorporates the EMA mechanism to
enhance the saliency of the ships. In the meantime, we also
introduce the PConv to design a lighter and more efficient
detection head.

YOLOVS represents the most mature iteration of the YOLO
algorithm and is currently being employed extensively in object
detection [42], [43]. Our model is based on the framework
structure of Yolov8, with certain components of Yolov8 retained
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Fig. 2. Specific process structure diagrams. (a) CBS structure diagram.
(b) SPPF structure diagram. (c¢) C2f structure diagram.

in the backbone and neck network parts: the CBS, C2f, and SPPF.
Fig. 2 shows the specific process structure of each module. The
role of the CBS module is to extract the feature maps. The role of
the C2f structure is to obtain richer information about the gra-
dient flow. Finally, the role of the SPPF module is to fuse the
different scales of the features. The role of the backbone is to
extract features. The neck primarily performs feature fusion and
employs the path aggregation network (PAN) [44] and the FPN
[45] structures, which enhance the ability to express and local-
ize semantic information across multiple scales. Head partially
replaces the current mainstream decoupled head structure and
separates the classification and detection heads, which solves the
issue of the distinct focuses of classification and positioning.

B. DEMNet

The composition framework of DEMNet adopts the cross-
stage partial network (CSPDarkNet53), mainly using informa-
tion extracted from C3, C4, and C5 modules to create features
and classify things. It may optimize the network’s learning
capacity while reducing memory costs. Nevertheless, multiscale
SAR ship detection in complex scenes represents a significant
challenge. Therefore, when we use simple traditional convolu-
tional networks for feature extraction, it is easy to lose impor-
tant information. To solve the problem of complex scenes, we
introduced deformable convolution to enhance the edge feature
extraction of ships. In addition, to address the issue of multiscale,
we designed the CSMSConv and constructed a new convolution
module CSMSC2F to enhance feature extraction at different
scales by introducing an EMA attention mechanism to enhance
feature fusion. Fig. 3 shows the overall module structure of
DEMNet.

The core of DEMNet consists of six stages. First, C1 and C2
layers are located in the shallow region of the network, and we
used traditional convolution to obtain high-resolution feature
information. Then, we added deformable convolutions to C3,
C4, and C5 layers instead of traditional convolutions to enhance
ship edge features and obtain richer detailed information. In
addition, due to the low resolution of C4 and C5 layers, tra-
ditional convolution can cause many small ships to lose some
or all of their detailed features. Therefore, the CSMSConv was
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added to C4 and CS5 layers to reconstruct the convolution mod-
ule CSMSC2F. CSMSC2F facilitates the acquisition of feature
information via disparate receiving fields, thereby enhancing the
semantic information available to the network. Finally, with the
aim of improving the efficacy of feature fusion, EMA attention
mechanism was added to enhance feature fusion at different
scales before transmitting the output feature information to the
network neck DEPAFPN in C3, C4, and SPPF layers.

1) Deformable Convolution: Ships exhibit irregular shapes
and sizes in SAR images, accompanied by intricate edge details.
The ordinary convolution operation is typically fixed in size,
which lacks the flexibility required for the shape perception field
of ships, thereby diminishing the model’s ability to recognize
objects with significant deformation. To address this issue, we
employ deformable convolution to enhance feature extraction,
enabling adjustment of the target’s shape based on its actual
configuration for extracting feature images. In comparison to or-
dinary convolution, deformable convolution incorporates learn-
able offsets into the receptive field. These offsets can adjust the
sampling position of the convolution kernel on the feature map,
rendering the receptive field no longer fixed in size but closely
aligned with the actual shape of the object. In Fig. 4, on the input
feature map, the ordinary convolution operation corresponds to
a convolutional sampling region of a square with the size of a
convolutional kernel (orange box), while the deformable convo-
lution corresponds to a convolutional sampling region of some
points indicated by green boxes. This illustrates the difference
between deformable convolution and ordinary convolution.

Fig. 4 provides a detailed illustration of the feature extraction
process using deformable convolution. First, the input image is
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subjected to processing in order to extract the feature maps, with
the use of conventional convolution kernels. Then, in order to
obtain the offset of deformations of the deformable convolution,
we take the obtained feature maps as inputs and add an additional
convolution layer to the feature maps. This convolution is not
the same as the final convolution operation to be performed. The
N in the figure refers to the number of channels within the input
feature. In our proposed algorithm, we use a 3 * 3 convolutional
kernel, resulting in N = 9. The orange process in the figure
represents the convolution process for offset learning, where
the dimension of channels of the offset field is 2, indicating
that the convolutional kernel learns the offset in the x-direction
and y-direction, respectively. Finally, during the training phase,
convolution kernel employed in generating output features and
those involved in generating offsets are synchronously learned,
where the learning of offset is achieved through backpropagation
using interpolation algorithms.
The deformable convolution formula is presented as

y (po) = > w(pn) - (po+pu+Ap,) (1)
pnER

where pg represents the input feature image pixel position, R
represents the relational proximity of other pixel points in rela-
tion to the central pixel point, p,, represents the relative position
in R with respect to pg, Ap,, represents the offset, x symbolizes
the input feature map, y symbolizes the output feature map,
besides, and w symbolizes the weight of the sampling position.

However, since the offset Ap,, is usually a fraction, the image
value of the input feature map x cannot be obtained directly, and
the backpropagation cannot be performed if the offset is rounded
directly, and it is necessary to perform a bilinear interpolation,
the expression of which is denoted as

z (p)=>_ Glgp) -z(q) )

where G(q,p) is the bilinear interpolation kernel function, ¢
symbolizes the total integral spatial positions within the map of
features, and p represents the sum of pg, p,,, and Ap,,.

2) CSMSC2F: To dispose of the challenge of SAR multi-
scale ships, we designed the CSMSConv and constructed a new
convolution module CSMSC2F to augment feature extraction
across various scales. The CSMSConv draws inspiration from
grouped convolution and pointwise convolution. Nonetheless,
it is not equivalent to grouped convolution or pointwise con-
volution. It cleverly utilizes interchannel information exchange
to achieve the combination of detailed positional information
from low-order feature maps and rich semantic information from
high-order feature maps while reducing network parameters.
This better avoids the situation of redundant information in
feature maps and thus enhances the detection capabilities.

The function of C2f structure is mainly to enrich the gradient
flow information, but the existence of traditional convolution
and residual structures incurs substantial computational costs
for the model, and the capacity of extracting multiscale ship
features, especially small- and medium-sized ship features, is
limited. Consequently, we integrate CSMSConv into the C2f
structure and reconstruct a new CSMSConv module CSMSC2F.
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CSMSC2F achieves the enrichment of the interaction of mul-
tiscale gradient flow information while mitigating excessive
redundancy in channel information.

Fig. 5 illustrates the specific implementation process
of CSMSC2F and CSMSConv. The feature extraction of
CSMSC2F mainly relies on multibranch gradient flow. During
the iterative process of the gradient flow information, CSM-
SConv is designed to facilitate the extraction and fusion of
multiscale ship features. The design idea of CSMSConv is as
follows.

1) Initially, the input feature map is partitioned into four
subchannels, each of which is defined by the channel
dimension. Half of them do not perform any operations,
while the other half use convolution kernels of different
sizes to obtain perceptual fields at different scales. Given
that diminutive ships occupy the majority of the ship
detection task, we have opted for two types of convolution
kernels: 3 * 3 and 5 * 5. One-fourth of the subchannels
employ a 3 * 3 convolution operation to extract features,
while the remaining one-fourth utilize a 5 % 5 convolution
operation to extract features. These two subchannels facil-
itate the acquisition of target information at varying sizes
and scales.

2) Subsequently, after BN and SiLU operations, they are
restored to the original dimensional order.

3) Ultimately, the attributes of all subchannels are integrated
and merged, and the number of channels is reinstated
through the application of 1 % 1 convolution, BN, and
SiLU operations, thereby generating a multiscale feature
map with a size equivalent to that of the original feature
map.

3) Efficient Multiscale Attention: The complexity of scenes
and the presence of multiscale ships present a significant chal-
lenge to the accuracy. In order to overcome the aforementioned
obstacles, we introduce an attention mechanism allowing for
the dynamic reallocation of the model’s weight to each region
within the image before transmitting the feature information to
the neck network in C3, C4, and SPPF output feature layers
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of the backbone part. This enhances the attention of the model
to the target area and improves the capability of the detection
model to extract multiscale ships in complex scenes.

Presently, numerous scholars have investigated attention
mechanisms. For example, the SE [46] attention mechanism
learns the weight of each channel through global average pooling
and fully connected layer, a procedure that can significantly
enhance the representation and generalization capacity, but it
lacks the understanding of spatial information. Conversely, the
CA [47] attention mechanism is concerned with the relationship
between pixels within the feature map. It obtains the spatial
remote interaction relationship by calculating the coordinate
information and the relationship between the feature values
but the significance of the entire spatial location interaction is
ignored.

EMA [48] mechanism employs parallel substructures to re-
duce network depth and furnish more suitable attention in-
formation for sophisticated features without reducing channel
dimensions. EMA not only adjusts the channel weights of
parallel subnetworks by encoding global information but also
fuses the output of the above by establishing cross-dimensional
interaction. Fig. 6 shows the overall module structure of EMA.
The g represents the divided groups, X Avg Pool stands for 1-D
horizontal global pooling, and Y Avg Pool stands for 1-D vertical
global pooling in the figure.

First, for the input feature X eRM W it s catego-
rized to g subfeatures based on the number of channels
to learn different semantics, where the input feature X =
(X0, X, ..., Xg1] , X;eR¢//9*7*w et us assume that g is
much smaller than ¢ without losing generality, and assume that
the learned weights will be used to result in an improvement in
the focus area of the subfeatures.

Then, EMA employs two parallel paths on the 1 * 1 branch and
one parallel path on the 3 * 3 branch to extract the figured weights
of filtered feature maps. In 1 * 1 branch, X and Y Avg Pool are
employed for the purpose of encoding spatial channel informa-
tion in two distinct directions; besides, two encoded features
are connected. These will keep it from dimensionality reduction
on the 1 * 1 branch. Furthermore, the output is decomposed
into two vectors and subsequently mapped using two sigmoid
functions; besides, finally a multiplicative aggregation of the

g*batch size

channel attention feature maps to facilitate distinct cross-channel
interactions between two parallel paths. In 3 * 3 branch, one 3 * 3
convolution is employed for the purpose of capturing multiscale
feature representations.

Finally, a cross-spatial learning method is employed in order
to obtain a more extensive and detailed feature aggregation. The
green part in Fig. 6 represents the process of cross-spatial learn-
ing. It achieves cross-spatial channel information aggregation of
feature maps with different spatial dimension directions. First,
Avg Pool function is applied to the output of 1 * 1 branch with the
intention of encoding the global spatial information. Output re-
sults are transformed into the corresponding dimensional shape
of R//9 by fitting a linear transformation with the nonlinear
function softmax, while the spatial feature information of the 3 *
3 branch is passed in at the same time with the dimensionality of
Re//9*hw The results of the aforementioned two branches are
subsequently matrix-dot multiplied, thus yielding the initial set
of spatial attention maps. In the same way, Avg Pool function
is applied to the output of 3 % 3 branch with the intention of
encoding the global spatial information. The output undergoes
a transformation to assume a corresponding dimensional shape
of Rx¢//9 through softmax fitting linear transformation, and
the spatial feature information of 1 % 1 branch is passed in
with a dimension of R®//9*"* The results of the aforemen-
tioned two branches are subsequently matrix-dot multiplied,
thus yielding the second set of spatial attention maps. In this
way, the two sets of spatial attention maps exhibit a uniform
scale, with dimensions of R'*"*%_ Subsequently, the outputs for
each group are calculated as a function of the corresponding
weight values, which are then fitted using sigmoid. Different
scales of spatial information interaction are achieved through
multiplication aggregation.

C. DEPAFPN

DEPDet adopts the PAN-FPN method framework in the
neck part, which transfers the deep and shallow information
to each other, achieves the unification of parameters, and im-
proves the effective extraction of target deep semantic details
and superficial positional details by the model. In the domain
of the SAR ship detection task, effective fusion of disparate
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Fig. 7. Overall architecture of DEPAFPN.

scale features extracted from the backbone represents a pivotal
challenge. Therefore, we improve the structure of part of the
neck and design a method framework DEPAFPN that integrates
the deformable convolution and the CSMSC2F. Fig. 7 shows the
overall architecture. DEPAFPN effectively merges feature maps
derived from disparate scales.

DEPAFPN mainly consists of modules such as DCBS, C2F,
and CSMSC2F, Upsample. It directly concatenates P3, P4, and
P5 shallow information output from C3, C4, and SPPF layers
of the backbone with the extracted deep information so that the
model output results contain shallow position information. Since
the upsample of the neck is an upsampling method, it inserts
more elements between the individual image pixels, thereby en-
larging the image and facilitating the acquisition of greater image
information. In addition, the DCBS and the CSMSC2F modules
expand the receptive field, which can provide powerful feature
extraction from tiny ships scattered across multiple channels.

D. PCHead

PCHead uses three detection heads with different scales to
detect targets from feature maps at different levels. Each detec-
tion head is tasked with the prediction of a range of bounding
boxes, along with the respective class probability and target
confidence associated with each box. However, with an increase
in the number of layers in the convolutional neural network,
semantic information of feature maps is gradually extracted
and aggregated, resulting in deep feature maps often contain-
ing much similar information. In addition, due to the weight
sharing mechanism of convolutional layers, different positions
of the deep feature maps share convolutional kernel parameters,
resulting in redundant feature map information, which in turn
leads to the complexity of model computation. For the reason
that reduces the complexity of the model, we construct a new
lightweight detection head PCHead using the PConv, which is
the convolution used in FasterNet [49]. Its working principle is
shown in Fig. 8. By reducing redundant calculations and simul-
taneously storing access, spatial features can be extracted more
effectively. It achieves higher operating speed than alternative
neural networks while maintaining the desired levels of target
task accuracy.

PConv employs conventional convolution operations on some
subsets of input channels, whereas the residual channels undergo
no modification. The computational complexity and memory
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TABLE I
CONFIGURATION OF THE EXPERIMENTAL ENVIRONMENT
Configuration Parameter
CPU Intel(R) Xeon(R) Gold 6330
RAM 80GB
GPU NVIDIA GeForce RTX 3090 24GB
Operating system Ubuntu20.04

Development tools PyTorch2.0.0; Python3.8; CUDA11.8

access situation of PConv are as follows:
hxwxk®xcl (3)
hxwx 2c, + k> x ¢ =~ hxwx 20 “4)

where the width and height of the feature map, denoted by h
and w, respectively, k represents the size of the convolution
kernel, besides, c, represents the number of channels utilized
for conventional convolution. As a matter of fact, there is mostly
r = ¢, /c=1/4, resulting in a computational cost for PConv
that is only 1/16 of that for conventional convolution. It has been
established that the memory access required of a PConv oper-
ation is only 1/4 that of a conventional convolutional process,
allowing for greater efficiency in data processing. Besides, it can
be observed that the rest of ¢ — ¢,, channels are not implicated
in the aforementioned calculation; thus, there is no necessity for
any kind of memory access.

From this, it can be seen that introducing the PConv operator
into the detection head can considerably alleviate computational
complexity and memory access, thereby making the detection
head network lightweight and accelerating the inference speed
of the model.

IV. EXPERIMENTS AND RESULTS
A. Experimental Environment and Details

Table I illustrates the configuration of the experimental envi-
ronment. All comparative and ablation experiments are executed
on the same platform. In all experiments, the same parameter
settings were employed for training a total of 200 epochs on the
datasets, with a batch size of 32 and an initial learning rate of
0.01. In addition, the stochastic gradient descent optimizer was
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TABLE II
DETAILS OF THE SSDD AND THE HRSID

Dataset Date Source  Resolution Image Size Images/Ships
| December Sentinel-1
SSDD ;C)e” " RadarSat-2 1 m-15m  190-668  1160/2456
TerraSAR
29 June  Sentinel-1 0.5m, 1 m,3
HRSID 2020 TerraSAR 800 x 800  5604/16,951

employed in conjunction with the weight decay of 0.0005 as
well as the optimizer momentum of 0.937.

B. Datasets

So as to validate the efficacy and effectiveness of DEPDet, two
datasets were selected for the purpose of experimentation: the
SSDD [50] and the HRSID [51]. In experiment, the datasets are
partitioned into three distinct subsets: training, validation, and
testing. These subsets are allocated a ratio of 7:1:2, respectively.

1) SSDD: The SSDD, released in 2017, was the first publicly
available SAR ship detection dataset. It has become the standard
against which researchers assess and train their algorithms [50].
The SSDD contains a total of 1160 images and 2456 ships. In
addition, the resolution range of the SSDD is from 1 to 15 m,
with polarizations of HH, HV, VV, and VH, and it is derived from
the combined data of three satellites: RadarSat-2, TerraSAR-X,
and Sentinel-1. The SSDD covers locations such as Yantai in
China and Vishakhapatnam in India. It contains diverse ships,
including multiscale SAR ships captured from different scenes
by different sensors with different resolutions under different
polarizations. This includes small ships with complex scenes,
as well as the dense distribution of ships near ports.

2) HRSID: The HRSID, a high-resolution SAR image
dataset, is utilized for ship detection. It is a publicly available
dataset released by Wei et al. [51] in January 2020. It has a
richer representation of ship features, consisting of 99 Sentinel- 1
images, 36 TerraSAR-X images, and 1 TanDEM-X image. The
HRSID comprises 5604 images and 16 951 ships. The resolution
of the HRSID is 0.5 m, 1 m, and 3 m. This dataset covers
cities such as Houston in the United States, Sdao Paulo in Brazil,
the Aswan Dam in Egypt, and Shanghai in China. It includes
multiple complex scenes such as nearshore, ports, and islands,
as well as a richer variety of multiscale target ships.

Table Il lists the details of the SSDD and the HRSID, including
date, source, resolution, image size, image number, and ship
number.

In addition, we calculate the pixel sizes of all ships in two
datasets and display diverse ship sizes in the form of scatter
plots. Fig. 9 illustrates that both datasets consist of multiscale
ships with significantly large spans, predominantly comprising
diminutive ships. This makes the multiscale ships detection
capability of our trained DEPDet model possible.

C. Evaluation Metrics

The precision (P), recall (R), mean average precision (mAP),
and F1 score (F1), which are commonly used in the field of target
detection, are selected as the evaluation metrics of the model
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Fig. 9. Diverse ship sizes distribution. (a) SSDD. (b) HRSID.

detection performance. In addition, this article also quotes the
parameters (Params) and the floating-point operations (FLOPs)
to evaluate the complexity of the model. They are calculated as
follows:

TP
P=——
TP + FP ®)
TP
TP ©
TFN
1
AP — / P(R)dR )
0
1 N
mAP = — Z AP (k) ®)
k=1
P xR
Fl = 2 9
“PIR ©)

TP stands for the number of instances in which the predicted
and actual results are true, indicating that the detected ship is
a true ship; FP stands for the number of instances in which the
predicted result is true but the actual result is false, indicating
that the detected ship is a fake ship; FN stands for the number
of instances in which the predicted result is false but the actual
result is true, that is, the real ship is not detected. Thus, P stands
for the proportion of genuine ship targets among all detected ship
target samples, while R stands for the percentage of accurately
identified ship samples among real ship targets.

Generally, in order to provide a comprehensive evaluation
of the model’s detection accuracy, a plot of the P-R curve is
required. The area between the curve and the coordinate axis is
the average precision (AP). AP metric assesses the efficacy of the
model across distinct categories. The mAP is taken as the average
precision of the AP across all categories, providing an overall
assessment of the model’s performance across all categories.

In addition, due to the interdependent relationship between
P and R, we introduce F1 to characterize the model’s ability to
have both good P and R.

Params = (K}, K., Cin) Cou (10)
(11

The lightweight of the model is one of the important goals
we aim to achieve. Params metric is employed to quantify the
spatial complexity of the model, which mainly depends on the

FLOPs = 2HW (CinK? + 1) Cou.
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TABLE III
COMPARISON WITH CLASSICAL OBJECT DETECTION MODELS ON SSDD

Method P (%) R (%) mAP (%) F1 Params (M) FLOPs (G)
Faster R-CNN 909 879 91.2  0.894 41.1 134.4
SSD 90.1 87.6 92.7  0.888 243 87.7
YOLOvVS 919 904 96.1 0911 72 16.7
YOLOvV8n 952 915 96.8  0.933 3.2 8.7
DEPDet (Ours) 97.9  92.3 98.2  0.950 2.1 4.5

The bold values indicate the best results.

dimensions of the convolution kernel and the number of channels
in the input and output feature maps. In addition, FLOPs metric
is employed to ascertain the time complexity associated with a
given model, which mainly depends on the dimensions of the
input feature map, the number of channels for the input and
output feature maps, the dimensions of the convolution, and the
number of convolution layers.

D. Experimental Results

1) Comparison Experiments on SSDD: SSDD represents the
de facto standard for the SAR ship detection task, which is
the most prevalent and authoritative in the field of SAR ship
detection [15]. In order to ascertain the efficacy of DEPDet, we
initially conduct comparative experiments with some excellent
classical object detection algorithms. Table III presents the
results of the comparative experimental study. We chose the
classical two-stage algorithm Faster R-CNN, and the classical
one-stage algorithms SSD, YOLOVS5, and the baseline model
YOLOVS8n for comparison to ascertain the efficacy of DEPDet.

DEPDet demonstrated the most optimal performance on mAP,
F1, Params, and FLOPs, with respective values of 98.2%, 0.950,
2.1M, and 4.5G. Compared with Faster R-CNN, DEPDet im-
proves mAP and F1 by 7% and 5.6%, respectively, while our
Params and FLOPs almost decrease by about 95% and 97%.
Compared with SSD, DEPDet improves mAP and F1 by 5.5%
and 6.2%, respectively, while Params and FLOPs decrease by
about 91% and 95%, respectively. Compared with YOLOVS,
mAP and F1 increase by 2.1% and 3.9% respectively, while
Params and FLOPs decrease by about 71% and 73%, respec-
tively. Compared with YOLOvV8n, mAP and F1 increase by 1.4%
and 1.7%, respectively, while Params and FLOPs decrease by
about 34% and 48%, respectively. The results of SSDD indicate
that DEPDet is lighter than ordinary object detection models,
and the detection accuracy and precision are also the best. In
addition, we visualize the test results of DEPDet on SSDD, as
shown in Fig. 10.

Fig. 10 visually illustrates the detection performance of our
model. Even though the resolution of the SSDD dataset is low
and there are many background clutter interference factors, our
model can still accurately detect the position of ships.

So as to further verify the efficacy of DEPDet, we selected
a number of models for comparison that had been developed
for the purpose of detecting ships using SAR technology over
the past few years. Due to the confidentiality of most SAR ship
detection models and the fact that their source code has not been
disclosed, we directly conduct a simple comparison based on
the data they provided. We sort the models according to the year
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Fig. 10. Visualization test results of DEPDet on SSDD. (a) Ground truth.
(b) Our results.

TABLE IV
COMPARISON RESULTS WITH OTHER SAR SHIP DETECTION
MODELS ON SSDD

Method mAP (%) F1 Params (M) FLOPs (G)
LFO-Net [32] 80.12 - - -
FBR-Net [52] 94.10 0.934 32.5 -

ISASDNet [28] 96.80 - - -
D2ADet [33] 96.41 - - -
undefined name [53] 94.70 0913 33.6 236.8
LPEDet [54] 97.40 - 5.7 18.4
ATSD [55] 96.80 0.958 61.5 7.3
MHASD [56] 96.80 0.940 55 13.7
PPA-Net [29] 95.19 0.930 - -
ESarDet [36] 97.96 0.960 6.2 7.5
DEPDet (Ours) 98.20 0.950 2.1 4.5

The bold values indicate the best results.

they were proposed, and the comparative experimental results
are given in Table IV.

In previous years, most researchers chose a relatively single
evaluation index, only concerned about the detection accuracy,
besides, did not pay much attention to the issue of real-time
detection. Over the past two years, the development of SAR ship
detection and the emergence of new challenges have prompted a
growing number of researchers to adopt a more comprehensive
approach to evaluating the performance of models, employing
multiple indicators. The experimental results indicate that our
model still demonstrates the most optimal overall performance.
MHASD has the smallest params except for our model. Com-
pared with MHASD, we increase mAP and F1 by 1.4% and
1%, respectively, while ensuring the lowest Params and FLOPs.
ATSD has the smallest FLOPs besides our model. Compared
with ATSD, our mAP has increased by 1.4%, and Params is only
about 1/30 of ATSD’s Params. Therefore, our model has better
lightweight performance. Although ESarDet has the highest F1,
our model’s mAP is 0.24% higher than ESarDet, while our
Params decrease by approximately 66% and FLOPs decrease by
approximately 40% compared with ESarDet. In a comprehen-
sive comparison, our model has better performance. In addition,
compared with PPA-Net, our model is 3.01% and 2% higher
in mAP and F1, respectively. In summary, our model performs
excellently in both detection accuracy and Lightweighting of the
model.

2) Comparison Experiments on HRSID: So as to better as-
certain the efficacy of our model for multiscale ship detection
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TABLE V TABLE VI
COMPARISON WITH CLASSICAL OBJECT DETECTION MODELS ON HRSID COMPARISON RESULTS WITH OTHER SAR SHIP DETECTION
MODELS ON HRSID
Method P (%) R (%) mAP (%) F1 Params (M) FLOPs (G)
Faster R-CNN 912 786 87.8 0.844  4l1.1 1344 Method mAP (%) F1  Params (M) FLOPs(G)
SSD 89.5 747 843 0.814 243 87.7 undefined name [53] 87.80 0.871 33.6 236.8
YOLOV5 91.7 80.5 89.4  0.857 7.2 16.7 LPEDet [54] 89.70 - 5.7 18.4
YOLOv8n 91.2  80.8 90.0 0.857 32 8.7 ATSD [55] 88.19 0.883 61.5 7.3
DEPDet (Ours) 924 824 91.6 0.871 2.1 4.5 YOLO-SD [57] 83.70 - 59.6 -
The bold values indicate the best results. SRDet [30] 90.60 - 35.1
CSD-YOLO [38] 86.10 - - -
DEPDet (Ours) 91.60 0.871 2.1 4.5

(b)

Fig. 11.  Visualization test results of DEPDet on HRSID. (a) Ground truth.
(b) Our results.

in complex scenes, we chose the HRSID dataset with larger
data volume, more complex scenes, and containing abundance
remote sensing large-scale scene images for further validation.
The experimental results are given in Table V. Similar to the
SSDD dataset, we compare DEPDet with Faster R-CNN, SSD,
YOLOVS5, and baseline model YOLOvS8n.

DEPDet still has excellent detection performance on HRSID,
with mAP and F1 reaching 91.6% and 0.871, respectively,
while ensuring the lightweight. Compared with these models,
DEPDet has the lowest Params and FLOPs, which are 2.1M and
4.5G, respectively. In addition, compared with Faster R-CNN,
DEPDet improves mAP and F1 by 3.8% and 2.7%, respectively.
Compared with SSD, DEPDet improves mAP and F1 by 7.3%
and 5.7%, respectively. Compared with YOLOvVS, mAP and
F1 increased by 2.2% and 1.4%, respectively. Compared with
YOLOvV8n, mAP and F1 increased by 1.6% and 1.4%, respec-
tively. The results of HRSID indicate that DEPDet is validated
with more reliable results for the multiscale ship detection tasks
in complex scenes. In addition, we visualize the test results of
DEPDet on HRSID, as shown in Fig. 11.

In Fig. 11, HRSID has a higher resolution, but at the same
time, the background factors are also more complex, adding
many complex scenes such as islands and ports. In addition, the
ship targets of HRSID are significantly multiscale, especially for
small and medium-sized ships. In comparison to SSDD, HRSID
is perceived to be more challenging and difficult to detect, but
at the same time, HRSID is also closer to real remote sensing
images. Our model still has high detection accuracy in HRSID.

Similarly, to provide additional corroboration for the efficacy
of DEPDet, a comparison is made between DEPDet and the
latest SAR ship detection model on HRSID. Table VI presents
the comparative experimental results.

The bold values indicate the best results.

Our model has the highest mAP, as well as the lowest Params
and FLOPs. Although ATSD is 1.2% higher than our model’s F1,
our Params have decreased by about 97% compared to ATSD’s
Params. As a result, our model better meets the lightweight
requirements of the model. LPEDet is the smallest Params
besides our model. Compared with LPEDet, we increase mAP
by 1.9% while ensuring the lowest Params and FLOPs. There-
fore, our model has better detection performance. Compared
with the improved algorithms YOLO-SD and CSD-YOLO in
the YOLO series, our model has increased mAP by 7.9% and
5.5%, respectively. Experimental results indicate that DEPDet
balances detection performance and lightweight requirements
and can satisfy the detection task of multiscale ships in complex
scenes.

3) Visualization Results of Comparative Experiments: So as
to ascertain the efficacy of DEPDet in different backgrounds,
we visualized the results of comparative experiments. First, four
SAR images of large dense ships with simple maritime scenes
as well as with fewer disturbing elements were selected, and
detection results of distinct models are provided in Fig. 12.
Then, we selected six SAR images of multiscale ships with
complex backgrounds, such as rivers, ports, and islands. Fig. 13
provides detection results of distinct models. Among them, the
first column of each figure is the ground truth of the scene.

InFig. 12(a), when detecting ships of nondense areas in simple
scenes, only Faster R-CNN and SSD have false detections.
Originally, there was only one ship but it is detected as two.
Other models have excellent detection performance; in short,
there are no missed detections in this case. In Fig. 12(b), when
ships are denser and multiscale with different sizes, both Faster
R-CNN and SSD exhibit false detections and missed detections,
and Faster R-CNN is severely missed in the area in the upper left
corner of the SAR image. YOLOvVS and YOLOv8n also exhibit
slight false detections, with only detection results of DEPDet
approach are observed to be in close approximation to the ground
truth. However, in Fig. 12(c), when conducting ship detection of
dense area in simple scenes, Faster R-CNN shows multitudinous
missed detections, and the other three models also have a few
missed detections and false detections. Only our model approach
is observed to be in close approximation to the ground truth. In
addition, in Fig. 12(d), when the background contains a minor
degree of clutter interference and ships are densely packed, the
difficulty of ship detection increases. Faster R-CNN and SSD
have a significant degree of false detection, and they incorrectly
detect the background clutter in the upper left corner of a ship.
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Fig. 12.
the false detection area, while the blue circle indicates the missed detection area.

Although YOLOVS distinguishes the clutter, it has multitudinous
missed detections, and extremely small ships in the upper right
corner have not been detected. YOLOv8n has also experienced
many missed detections. Only our model DEPDet did not show
any missed detections, with only a very small number of false
detections of ships. Compared with other models, our model
detects closer the ground truth. In conclusion, our model has
excellent detection performance in simple scenes, whether it is
for multiscale ships or small dense ships.

Fig. 13 provides detection results of distinct models in six
different complex scenes. In Fig. 13(a), the size of ships in the
river is inconsistent, leading to the problem of multiscale ships.
The detection results of Faster R-CNN and SSD demonstrate
that both models have significant instances of missed detections
and false positives. Moreover, YOLOvVS missed two ships and
did not detect them. YOLOVS8n identified a background clutter
as a ship. Only our results approach is observed to be in close
approximation to the ground truth. In Fig. 13(b), there are multi-
tudinous dense diminutive ships in the river. SSD only detected

Comparative experimental results in simple maritime scenes. (a) Scene one. (b) Scene two. (c) Scene three. (d) Scene four. The yellow circle indicates

a very small number of ships. Faster R-CNN and YOLOVS also
exhibit a high degree of false and missed detections. YOLOvV8n
has a better detection effect but there are still cases of missed
detections. Only our model has no missed detections, and by
comparison, our model is closer to the ground truth. In Fig. 13(c),
the port area, which is subject to the additional challenge of
accommodating ships of varying dimensions, was selected as
the site for this study. Due to stronger interference factors at the
port, the detection performance of Faster R-CNN and SSD is
very poor. YOLOVS and YOLOvV8n also have a large number
of false detections. Our model only has one false detection area
in the bottom right corner, so it is closer to the ground truth. In
Fig. 13(d), we chose a port scene containing containers, which
has a more complex background. All four models have missed
detections, and only our model can accurately detect ships.
In Fig. 13(e), we selected the image near islands containing
small ships. Faster R-CNN and SSD have a large number of
missed detections, while YOLOvVS and YOLOv8n have superior
performance in terms of detection. However, there are still some
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Fig. 13. Comparative experimental results in complex scenes. (a) Scene one. (b) Scene two. (c) Scene three. (d) Scene four. (e) Scene five. (f) Scene six. The
yellow circle indicates the false detection area, while the blue circle indicates the missed detection area.
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TABLE VII
ABLATION EXPERIMENT

SSDD

HRSID

DEMNet DEPAFPN  PCHead Too R0 mAP(s I T Koo mAPC T Params (M)  FLOPs (G)
952 915 96.8 0933 912 808 90.0 0.857 32 8.7
V 951 953 97.5 0951 908  83.8 90.8 0.871 2.8 7.6
\ 948 939 97.1 0943 909 809 90.2 0.856 2.8 7.8
Y 928 924 97.0 0926 918  80.9 90.1 0.860 23 55
\ \ \ 97.9 923 98.2 0950 924 824 91.6 0.871 2.1 45

The bold values indicate the best results.

missed detections of individual ships. In contrast to them, our
model has detected all ships. In Fig. 13(f), we chose a more
complex image near the island. Our model has the lowest missed
detection rate, with only small ships docked on the island not
detected. Compared with other models, our model approach is
observed to be in close approximation to the ground truth. In
summary, our model effectively solves the problem of multiscale
ship detection in complex scenes.

4) Experiment on Resource-Limited Devices: In order to
mitigate the financial burden associated with hardware costs,
it has become feasible to deploy models on resource-limited
computing devices by lightweighting models. To evaluate the
lightweight effect of our model, we select a laptop with an
Intel Core 17-10750H CPU and an NVIDIA GeForce GTX 1650
4G GPU for the deployment of our model in an experimental
setting. The SSDD dataset is selected as the validation test,
and the results demonstrate that our model exhibits satisfactory
detection performance on a laptop with limited computational
resources, where the P18 93.7%, R 15 93.3%, mAP is 96.2%, and
F1is 0.935.

E. Ablation Experiment

In order to ascertain the efficacy of DEPDet, we conducted
two sets of ablation comparative experiments using SSDD and
HRSID datasets. On each dataset, we conducted five ablation
experiments for comparison. First, the first experiment used
YOLOvS8 with no improvement as the baseline, serving as a foun-
dation for subsequent experiments. The objective of the second
experiment is to evaluate the effectiveness of feature extraction
by replacing the backbone network with our proposed DEMNet.
In the third experiment, in order to ascertain the efficacy of the
proposed feature fusion, the neck network was replaced with
our DEPAFPN module. In the fourth experiment, we replaced
the detection head with our newly designed lightweight detec-
tion head PCHead to verify the effectiveness of lightweighting.
Finally, in the fifth experiment, we superimposed the second,
third, and fourth experiments to validate the effectiveness of
the proposed DEPDet. The results of ablation experiments are
presented in Table VII.

Our proposed model DEPDet achieved 98.2% and 91.6%
mAP on the SSDD and HRSID datasets, respectively, and the
F1 values reached 0.950 and 0.871. Compared with the baseline
model, our model has improved in accuracy, with mAP improv-
ing by 1.4% and 1.6%, and F1 improving by 1.7% and 1.4%,
respectively. Meanwhile, our model achieves a more lightweight
effect. Among them, the Params of the model decreased from
3.2Mto 2.1M, a decrease of approximately 34%, and the FLOPs

of the model decreased from 8.7G to 4.5G, a decrease of approx-
imately 48%.

In the second experiment, the DEMNet backbone network
greatly demonstrated a significant enhancement in the model’s
feature extraction capabilities. In comparison to the baseline
model, it demonstrated an improvement of mAP by 0.7% and
F1 by 1.8% on SSDD, with mAP by 0.8% and F1 by 1.4%
on HRSID. In the third experiment, so as to better fuse ex-
tracted features, the neck network used our designed DEPAFPN.
Compared with the baseline model, it increased mAP by 0.3%
on SSDD and 0.2% on HRSID. These two experiments have
verified the effectiveness of our improvement strategy, and while
the accuracy has improved, the number of model parameters has
not increased. However, the model is not lightweight enough at
this point, so in the fourth experiment, we used our designed
lightweight detection head PCHead. Compared with the baseline
model, although the detection accuracy on SSDD and HRSID
was not significantly improved, it reduced the Params of the
model by about 28%, and the FLOPs of the model by about
37%, achieving a good lightweight effect.

Furthermore, so as to gain a more intuitive understanding of
the performance of our model, we introduced LayerCAM [58]
heatmaps to visualize the ablation experiment. Fig. 14 shows the
fitting effect of different modules on the ship.

From the results of the heat map, compared with the baseline
model, DEPDet fits the ship features better and takes more
care of the overall features of the ship. In Fig. 14(a), DEMNet
enhances the model’s learning ability and focuses more on the
edge features of ships, achieving multiscale feature extraction.
In Fig. 14(b), DEPAFPN helps the model achieve better feature
fusion and reduces the influence of interference factors. In
Fig. 14(c), the final output result of PCHead is the output result of
DEPDet. The experimental results show that the three modules
proposed in this article can effectively improve the performance
of multiscale SAR ship detection in complex scenes.

F. Generalization Experiment

Ultimately, one of China’s Gaofen-3 complex large-scene
remote sensing images from the AIR_SARShip_1.0 [59] dataset
was selected to assess the generalization performance of the pro-
posed model. The remote sensing image, which has the dimen-
sions of approximately 3000x3000 pixels, depicts a multitude
of concentrated maritime traffic, as well as a variety of ships
navigating within the confines of inland ports. As illustrated in
Fig. 15, our model is capable of extracting the ship positions
with a high degree of effectiveness, which can be applied to
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Ground Truth baseline DEPDet

Fig. 14.
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Visual results of ablation experiment. The first column is the ground truth. The second column is the output of the baseline model. The third column is

the output of DEPDet. The last three columns represent the process of feature extraction, feature fusion, and feature output of DEPDet. (a) Output of the backbone
network layers. (b) Output of the backbone network layers and the neck network layers. (c) Output of the backbone network layer, the neck network layers, and

the detection head layers.

Fig. 15.

real remote sensing scenarios with satisfactory generalization
performance.

V. DISCUSSION

So as to address the challenges posed by complex scenes,
multiscale ships, and difficult model deployment in SAR images,
we propose DEPDet and design a backbone network DEMNet,
a neck network DEPAFPN, and a lightweight detection head
PCHead. In order to ascertain the efficacy of the proposed

Visual result of the Gaofen-3 complex large-scene remote sensing image.

DEPDet, a series of comparative experiments were conducted
on the SSDD and HRSID datasets. Empirical evidence indicates
that our model obtains 98.2% and 91.6% mAP on SSDD and
HRSID, respectively, and the F1 reaches 0.950 and 0.871. At
the same time, the Params and FLOPs of our model are only
2.1M and 4.5G, respectively. Compared with some classical
target detection models and SAR ship detection models, our
proposed model demonstrates effective detection of multiscale
ships in complex scenes while the model is lightweighted, with
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Fig. 16.

Multispectral image ship detection effect.

outstanding performance with regard to both detection accuracy
and lightweight effect.

To validate the reliability of our proposed modules, we con-
ducted a series of ablation experiments and employed heat
maps to illustrate the impact of each module. DEMNet has
been sufficiently enhanced with CSMSConv and EMA, thereby
facilitating the more efficient extraction of edge features and
multiscale features. DEPAFPN is more effective at fusing
multiscale features and suppressing the interference of back-
ground factors. PCHead is capable of achieving efficient detec-
tion accuracy while maintaining a lightweight effect. Finally,
when applied to complex large-scale scene remote sensing im-
ages, the model is still able to effectively extract ship positions
with good generalization performance.

The model’s extensibility can enhance its potential for appli-
cation. In ship detection tasks, in addition to SAR remote sensing
images, multispectral remote sensing images are frequently
employed for this purpose. In order to evaluate the extensibility
of our proposed model, the optical remote sensing image dataset
NWPU VHR-10 [60] was selected for experimental testing. The
dataset comprises a total of 800 VHR optical remote sensing
images.

Following experimentation, the values of P, R, mAP, and
F1 are 88.1%, 76.6%, 88.1%, and 0.819, respectively. Fig. 16
provides a visual representation of the multispectral image
ship detection effect. Although our model can be extended
to multispectral image ship detection tasks, the presence of
cloud cover leads to a reduction in detection accuracy. In ad-
dition, multispectral images also lack the capacity of providing
comprehensive ship detection. It is for these reasons that ship
detection applications are more commonly used in SAR images,
which allows for comprehensive monitoring of ships and thus
facilitates real-time detection.

Although DEPDet has good performance, it still has some
limitations. Due to the fact that our detection results are not
directional boxes, we cannot detect the direction of ships. When
the real ships on the ground are densely overlapped, our model
may detect multiple ships as one, resulting in incorrect detection.
Furthermore, as our methodology employs a fixed dataset and
lacks an associated embedded device, it is unable to provide an
accurate assessment of the detection speed.

In future work, we will further improve these bottlenecks
that affect model performance and attempt to apply directional
boxes for ship detection. At the same time, we will investigate
further research into the potential of lightweight methodologies,
including pruning and distillation. In addition, we will introduce
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pertinent embedded devices with the objective of evaluating
the detection speed of the model using FPS metrics, thereby
facilitating the deployment of our detection model on hardware
platforms and enabling real-time detection.

VI. CONCLUSION

This article introduces DEPDet, which is a cross-spatial mul-
tiscale lightweight network for SAR ship detection. First, so
as to better enhance the efficacy of the detection of multiscale
ships, we design the CSMSConv, and introduce deformable
convolution to enrich the edge information of ships. Then, it is
combined with the EMA to design the DEMNet, which enhances
the multiscale information and contextual information of the
ship and effectively eliminates the background clutter, thereby
enabling the operator to focus on the target ship. Furthermore,
so as to facilitate the integration of disparate scale features, we
design a new path aggregation FPN DEPAFPN, which combines
deformable convolution and CSMSConv module CSMSC2F,
which effectively avoids information redundancy. Second, we
introduce PConv to construct a lightweight detection head
module PCHead, which can abstract spatial information more
effectively through a concerted effort to reduce duplicated com-
putations and storage operations. Extensive comparative exper-
iments are carried out on SSDD and HRSID, and the results
demonstrated that our model has excellent performance. In ad-
dition, we successfully deployed the model on low-configuration
device, and our model still maintained good detection accuracy.
Furthermore, a sequence of ablation and heatmap experiments
prove the efficacy of DEMNet, DEPAFPN, and PCHead, and
they can prove beneficial in terms of the efficacy of DEPDet.
Ultimately, the model has been tested on ship detection in remote
sensing of large-scale scene images and multispectral images.
This provides evidence that the model has good generalization
and extensibility.

In conclusion, DEPDet achieves a balance between detec-
tion accuracy and lightweight effect in the SAR ship detection
task. The experimental results demonstrate that the model is
capable of achieving satisfactory results in the multiscale SAR
ship detection task in complex scenes, and at the same time,
while achieving the lightweight requirements of the SAR ship
detection model, as well as good generalization and extensibility.
Subsequently, our research team will continue to refine our
model with the aim of implementing it on various hardware
platforms and achieving real-time ship detection. The code can
be obtained by https://github.com/Marine0011/DEPDet.
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