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Spatial–Spectral Interaction Super-Resolution
CNN–Mamba Network for Fusion of Satellite

Hyperspectral and Multispectral Image
Guangwei Zhao , Haitao Wu, Dexiang Luo , Xu Ou, and Yu Zhang

Abstract—The tradeoff between spatial and spectral resolution
in sensor design is inevitable, and spatial–spectral fusion aims to use
low spatial resolution hyperspectral image (HSI) and high spatial
resolution (HR) multispectral image (MSI) obtained at the same
time and in the same area to reconstruct HR HSI. Recently, a
large number of deep-learning methods have been applied in this
field and achieved success. However, these methods do not fully
utilize the characteristics of data for network design, and cannot
guarantee effective computational efficiency in extracting local and
global features. To solve the above problems, we designed a spatial–
spectral interaction super-resolution convolutional neural network
(CNN)–Mamba fusion network for satellite HSI and MSI, which
uses mutual guidance to improve the spatial and spectral resolution
of different data, and obtains the final fused image through feature
fusion. In addition, we combined Mamba with CNN to effectively
explore global and local features of images. Extensive experiments
have proven that our method can reconstruct fused images of high
quality and is superior to current state-of-the-art fusion methods.

Index Terms—Convolutional neural network (CNN), fusion,
hyperspectral, Mamba, multispectral.

I. INTRODUCTION

S PECTRAL resolution of hyperspectral image (HSI), span-
ning from 400 to 2500 nm and boasting more than a hundred

bands, has made it a powerful tool for environmental monitoring
and resource exploration [1], [2], [3]. However, due to sensor
design tradeoffs, such data often miss crucial spatial details (the
spectral resolution of GF-5, ZY-1 02D from China, or PRISMA
satellites from Italy reaches 10–20 nm, with a spatial resolution
of only 30 m) [4], [5], [6]. Fortunately, other remote sensing
data like multispectral image (MSI) can be acquired from dif-
ferent platforms, offering valuable assistance in enhancing the
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spatial resolution of HSI [7], [8], [9]. This process, known
as spatial spectral fusion, extracts and reconstructs spectral
and spatial information from both sources to generate high
spatial resolution (HR) HSI [10], [11], [12].

The existing spatial–spectral fusion techniques are catego-
rized into component substitution (CS), multi-resolution anal-
ysis (MRA), matrix decomposition (MD), and deep-learning
(DL) approaches depending on their fundamental principles
[13], [14], [15]. These CS methods assume that the MSI is a
subspace of HSI. The forward transformation is performed to
obtain the subspace of HSI, and the MSI is used to replace
the subspace of HSI for the inverse transformation to improve
the spatial resolution of the HSI [16], [17]. Typical methods
include the intensity hue saturation (IHS) proposed by Carper
et al. [18], which converts images from red–green–blue space
to IHS space and uses MSI to replace the intensity component
of HSI for inverse transformation to achieve image fusion. Pal
et al. [19] introduced principle component analysis into image
spatial–spectral fusion and obtained the fused image by replac-
ing the first principle component of HSI with an MSI through
inverse transformation. Aiazzi et al. [20] proposed adaptive
Gram–Schmidt (GSA), which uses a multiple linear regression
algorithm to extract the intensity component of HSI. The CS
methods directly replace the component of HSI with MSI, and
the fused data have obvious spatial detail information. How-
ever, component replacement alters the spectral characteristics
of HSI, resulting in severe spectral distortion in fused images
[21], [22]. These MRA methods assume that the information
differences between images exist at multiple scales, and cal-
culate the difference information between images at different
scales through multiscale decomposition. By injecting differ-
ence information into HSI, spatial–spectral fusion is achieved
[23], [24], [25]. Typical methods include modulation transfer
function—generalized Laplacian pyramid (GLP) proposed by
Javan et al. [26]. Wady et al. [27] introduced wavelet decompo-
sition theory to achieve image fusion in the frequency domain,
and proposed “A Ì Trous” wavelet transform. Thanks to the
unchanged spectral characteristic of HSI, the MRA methods
have better spectral fidelity. However, some spatial informa-
tion from MSI has not been injected into the fused image,
resulting in limited spatial resolution enhancement [28]. Various
matrix factorization techniques, utilizing theories like mixed
pixel factoring, low rank factorization, sparse representation,
tensor factorization, etc., are employed for image fusion [29],
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[30], [31], [32], [33]. They split HSI and MSI into spectral
and spatial matrices before reintegrating them for fusion. For
instance, Yokoya et al. [34] applied image unmixing theory to
spatial spectral fusion, merging the endmember matrix of HSI
with the abundance matrix of MSI. Nezhad et al. [35] proposed a
nonlocal sparse representation method using pixel group theory.
Dian et al. [33] developed nonlocal sparse tensor factorization
(NLSTF) based on tensor decomposition theory. These methods
often employ alternating direction method of multipliers or
augmented Lagrangian method (ALM) for optimization, yield-
ing satisfactory fusion results [36], [37], [38], [39]. However,
numerous parameters are required, these methods exhibit lim-
ited robustness, and be computationally inefficient [40], [41],
[42]. On the other hand, DL methods achieve the fusion of
test datasets by training the nonlinear regression relationship
between Low spatial Resolution (LR) HSI+HR MSI and HR
HSI, and mapping network parameters [43], [44], [45]. Network
architectures like convolutional neural network (CNN) [46],
[47], [48], generative adversarial network (GAN) [49], [50],
[51], and transformers [52], [53], [54] are commonly used.
For example, Yang et al. [55] designed a deep CNN with two
branches for HSI–MSI fusion. Wang et al. [44] proposed a novel
variational probability autoencoder framework using CNN for
fuse LR HSI and HR MSI. To explore long-range dependencies
in the feature space, Ran et al. [56] proposed kernel space non-
local convolution, which explores nonlocal dependencies in the
generated kernel space to utilize this global information to guide
the network in extracting image features more flexibly. Peng
et al. [57] proposed a spatial–spectral integrated dual U-shaped
network U2Net for image fusion. U2Net utilizes spatial U-Net
and spectral U-Net to extract spatial details and spectral features,
enabling differentiation and hierarchical learning of features
from different images. It also introduces a novel spatial–spectral
ensemble structure called S2Block to fuse features. Numerous
GAN fusion networks have also emerged, including one pro-
posed by Zhu et al. [58] that employs a lightweight adversarial
network with quadtree implicit sampling (QIS). Zhang et al.
[59] proposed a GAN-based fusion method for HSI and PAN
images. Additionally, transformers have become increasingly
popular in image fusion recently; Jia et al. [60] proposed a
multiscale spatial–spectral transform network (MSST-Net) with
two branches—one for spectral feature extraction from HSI and
another for spatial feature extraction from MSI. Wang et al.
[15] presented a new multilevel cross-transformer (MCT-Net)
for HSI and MSI fusion. This MCT-Net comprises a multi-
level cross-modal interaction module and a feature aggregation
reconstruction module. In summary, DL methods have shown
promising results in spatial spectral fusion of HSI and MSI [61],
[62], [63]. In addition, in order to improve the computational ef-
ficiency of long-range dependency modeling, Mamba networks
have recently been applied to remote sensing image processing
and have achieved great success [64], [65], [66], [67].

Overall, the following conditions hold.
1) Although component replacement can significantly im-

prove the spatial resolution of HSI, severe spectral
distortion is achieved. MRA methods exhibit minimal

spectral distortion, but limited spatial enhancement. MD
methods have a large number of parameters, poor compu-
tational efficiency, and insufficient robustness.

2) DL has recently surpassed traditional methods in image
fusion and become a focus in this field. However, current
DL spatial spectral fusion methods face challenges, such
as when using MSI data to assist HSI for spatial super-
resolution (SpaR), significant data differences can lead to
damage to the spatial spectral information in the fused im-
age. In addition, the receptive field of convolutional fusion
networks is limited and cannot consider the global infor-
mation correlation in remote sensing images. Although
transformers can extract global feature information, their
computational efficiency is still a concern.

To tackle these issues, we propose spatial–spectral interaction
super-resolution CNN–Mamba fusion network for satellite HSI
and MSI (SSRFN). To mitigate the tradeoff between spatial
and spectral information due to data differences, we initially
downsampled HR MS, and extracted the shallow and deep
feature information of LR HSI, LR MSI, and HR MSI. To correct
the channel relationship of HR MSI, we propose a change feature
extraction module to compute the error information between LR
HSI and LR MSI, then use this error information to refine the
features of HR MSI in the spectral correction module (SCM).
Subsequently, we employ features of LR HSI to guide feature
extraction of HR MSI for spectral super-resolution (SpeR), and
features of HR MSI to guide feature extraction of LR HSI for
SpaR. By focusing on different aspects of super-resolution (i.e.,
SpeR prioritizes spatial information, while SpaR ensures spec-
tral information), we construct a feature fusion module (FFM)
to merge and reconstruct super-resolution results, yielding the
final HR HSI with superior precision. Furthermore, to effectively
extract local and global features from remote sensing images
for precise reconstruction of HR HSI, we integrate Mamba
network with CNN, offering satisfactory inference speed and
efficient feature extraction. Our main contributions include the
following.

1) SSRFN is the first to combine Mamba with CNN for HSI
and MSI fusion, effectively achieving the extraction of
local and global features. In addition, SpeR and SpaR
networks are designed to interactively reconstruct fused
images, avoiding spatial spectral distortion caused by a
single network.

2) SSRFN proposes an effective difference information ex-
traction module and devises a suitable SCM. Besides,
SpaR–SpeR networks are proposed. Moreover, the design
of the FFM module not only eliminates redundant feature
information but also significantly enhances the spectral
and spatial fidelity of fusion results.

3) SSRFN demonstrates comparable fusion performance
across simulated and real datasets, and outperforms eight
state-of-the-art methods in spatial and spectral fidelity.

The rest of this article is organized as follows. Section II
presents our proposed SSRFN in detail. Section III analysis
the experimental results on simulated and real datasets. Finally,
Section IV concludes this article.
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Fig. 1. SSRFN (the size of HSI is m × n × C, and the size of MSI is M × N × c, where M > m, N > n, and C > c).

II. METHODOLOGY

A. Mamba

State space models (SSMs) have emerged as a competitive
backbone network in DL, demonstrating the ability to model
long-range dependencies with a linear expansion in sequence
length and showing significant potential in image processing.
Mamba relies on classical continuous systems, mapping a one-
dimensional (1-D) input function or sequence [denoted as x(t)]
to an output y(t) via an intermediate hidden state h(t). SSMs
can be represented by the following linear ordinary differential
equations:

h′ (t) = αh (t) + βx (t)

y (t) = φh (t) +ψx (t) (1)

whereα represents the state matrix, whileβ,φ, andψ denote the
projection parameters. Subsequently, a discretization process is
typically applied in practical DL algorithms. Specifically, let Δ
represent the time-scale parameter for converting continuous
parameters α and β to their discrete counterparts ᾱ and β̄.
A commonly used discretization method is the zero-order hold
rule, which is defined as follows:

ᾱ = exp (Δα)

β̄ = (Δα)−1 (exp (Δα)− I) ·Δβ. (2)

After discretization, the discrete version of (1) with step size
Δ can be rewritten in the following recurrent neural network
form

hk = ᾱ hk−1 + β̄xk

yk = φhk +ψxk. (3)

Additionally, (3) can also be mathematically equivalently
transformed into the following CNN form:

K̄
Δ
=

(
φβ̄,φαβ, · · · ,φᾱL−1β̄

)

y = x⊗ K̄ (4)

where ⊗ denotes the convolution operation, K is a structured
convolutional kernel, and L represents the length of the input
sequence x.

B. Overview of SSRFN

Employing MSI as auxiliary information for SpaR of HSI re-
sults in a compromise between spatial and spectral information,
potentially leading to a reduction of some spatial information in
merged images. Furthermore, SpeR does not guarantee accurate
transfer of band relationships, resulting in severe spectral distor-
tion. Given these considerations, we propose a spatial–spectral
interaction super-resolution CNN–Mamba network for the fu-
sion of HSI and MSI. Fig. 1 illustrates the network architecture
of SSRFN. To acquire sufficient prior feature information for
precise reconstruction of HR HSI, SSRFN initially executes
shallow feature extraction (SFE) and deep feature extraction
(DFE) on HR MSI and LR HSI to standardize the number
of channels. Specifically, HR MSI is downsampled and the
feature information of LR MSI is extracted by using the feature
extraction weights of HR MSI. To ensure that the features of
HR MSI and LR HSI maintain similar channel relationships,
i.e., band relationships, we designed a CFE to extract residual
information between LR MSI and LR HSI features, and con-
structed an SCM to utilize residual information to guide HR
MSI features for channel correction. Subsequently, we designed
a SpaR network and enhanced the spatial resolution of LR HSI
features using modified HR MSI features. Additionally, an SpeR
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was constructed, and we used LR HSI features to guide HR MSI
features to establish accurate channel relationships. Finally, we
constructed a feature fusion network to fuse SpeR and SpaR
features to yield the final HR HSI.

C. Network Architecture

1) Shallow Feature Extraction Module (SFE) and Deep Fea-
ture Extraction Module (DFE): Remote sensing image possess
substantial feature information. To extract comprehensive fea-
tures and precisely reconstruct the fused results, we established
the SFE and DFE modules. SFE can retrieve more minute feature
details, ensuring that the network can apprehend more HR detail
information. Moreover, as the number of convolutions increases,
DFE can ensure that the network extracts extensive LR semantic
information.

Specifically, SFE is a residual network composed of four
convolutional layers with 3 × 3 kernel. In the experiment, HR
MSI and LR HSI are initially fed into SFE to obtain shallow
features, and the feature extraction parameters of HR MSI are
shared with LR MSI to procure the feature information of LR
MSI. The formula can be expressed as follows:

Fh = Convi
h

(
Convi−1

h (X)
)
+X, i = 1, · · · 4 (5)

Fm = Convi
m

(
Convi−1

m (Y)
)
+Y, i = 1, · · · 4 (6)

Flm = Convi
m

(
Convi−1

m

(
Ỹ
))

+ Ỹ, i = 1, · · · 4 (7)

where X is LR HSI, Y represents HR MSI, Ỹ is the downsam-
pled Y, Fh, Fm, and Flm are the features of LR HSI, HR MSI,
and LR MSI, respectively, and i represents the ith convolutional
layer.

Recently, Mamba networks have gained substantial adop-
tion in image processing and have shown superior perfor-
mance, attributable to their advantages compared to transform-
ers [68]. The Mamba network can execute rapid inference
and its performance escalates linearly with the increase of se-
quence length. The universal Mamba block can be expressed
as ρ(ssm(σ(Conv(ρ(I))))⊗ (σ(ρ(I)))), where I represents the
input data, ρ is a multilayer perceptron, σ denotes the sigmoid
activation function, ssm is a structured SSM. Nevertheless,
Mamba has not been extensively examined in remote sensing
image super-resolution. Given that the information in remote
sensing images possesses global relevance, the Mamba network
can proficiently extract the global features of images. In DFE,
we employed the Mamba network to extract global informa-
tion of images, and considering the local similarity of remote
sensing images, we integrated a 3 × 3 convolutional layer to
extract the local information of images. It is noteworthy that
convolutional layers and Mamba networks are not two distinct
extraction branches, but rather interactive extraction of local
and global information. As illustrated in Fig. 2, DFE comprises
15 convolutional layers and 5 Mamba blocks, with a Mamba
network interspersed every 3 convolutional layers extracting
global features based on local image features and transmitting
them downstream. Specific formulas can be represented as

F j
du = Conv3 (Conv2 (Conv1 (u)) + (Mamba (u))) (8)

Fig. 2. DFE.

Fig. 3. CFE.

where u = [Fh, Fm, Flm] is the input data,Fdu represents the
deep features of the output, and j represents the jth convolutional
Mamba block. It is worth noting that the SSM state expansion
factor in the Mamba block is set to 64, the local convolution
width is 4, and the block expansion factor is set to 2.

2) Change Feature Extraction Module (CFE): Upon extract-
ing both shallow and profound features, although Fdm shows
an identical channel count as Fdh, inconsistent channel rela-
tionships will induce significant SpeR errors. To rectify the
channel relationship of Fdm, we engineered CFE to extract
the error information E between features using Fdh and Fdlm

as input data. As illustrated in Fig. 3, CFE employs the gated
recurrent unit (GRU) framework, which adaptively erases sim-
ilarity information between features via gating operations and
preserves difference information between features [69]. Unlike
conventional GRU, in this experiment, we devised a cyclic GRU,
which continually adjusts network parameters to optimize the
ultimate difference information by reinputting each output as a
new state h. In addition, we incorporated channel stacking toFdh

and Fdlm as input data and set the number of cyclic iterations to
6. It is worth noting that in CFE, we embedded a Mamba module
during the operation process to explore the global correlation
of features based on local features. The specific mathematical
expression is as follows:

P = σ
(
𝒯� wi

xp +Hi ⊗ wi
hp + bip

)
(9)

Oi = σ
(
𝒯⊗ wi

xq +Hi ⊗ wi
hq + biq

)
(10)
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Fig. 4. SCM.

H̃i = tanh
(
𝒯⊗ wi

xh +
(
P i �Hi

)⊗ wi
hh + bih

)
(11)

Hi = Oi � H̃i +
(
1−Oi

)� H̃i (12)

where 𝒯 represents the input data, P denotes the output of the
reset gate, O signifies the output of the update gate,H represents
the hidden layer, tanh represents tanh activation function, w de-
notes the weight, b denotes the bias,⊗ represents the convolution
operation, and � represents multiplication.

3) Spectral Correction Module (SCM): It is paramount to
employ error information to correct channel correlation of Fdm.
To accurately transmit channel correlations, we designed SCM
in the experiment. As depicted in Fig. 4, SCM initially trig-
gers E via a sigmoid function and multiplies it with Fdm to
augment error information in Fdm. Subsequently, employing
skip connections, the enhanced Fdm is added into the original
Fdm, and a 3 × 3 convolution is executed to eliminate error
information in Fdm. The aforementioned process underwent 16
identical correction operations to attain the ultimate optimized
Fdm. It is noteworthy that our SCM is a recurrent network that
utilizes output features to refine the input Fdm for subsequent
network parameter update after each output feature is acquired.
Specifically, in the experiment, SCM implemented an initialized
identity matrix L, and L was updated for each iteration using
the output features attained from the preceding iteration. Specific
formulas can be expressed as

Fop
dm = Conv

(
σj
i (E)�

(
vj � Fj

dmi

)
+ Fj

dmi

)
(13)

where Fop
dm represents the final channel corrected Fdm, i rep-

resents the ith correction operation, and j represents the jth
iteration.

4) Spatial Super-Resolution Network (SpaR) and Spectral
Super-Resolution Setwork (SpeR): After obtaining the features
Fdh and Fop

dm of LR HSI and HR MSI, we designed SpaR and
SpeR for SpaR of Fdh and SpeR of Fop

dm, respectively. Fig. 5
shows SpaR. SpaR first performed channel stacking on Fdh and
Fop

dm, and used 3-D convolution with 3 × 3 × 1 convolution
kernels and Mamba networks to construct local and global
feature extraction modules, respectively. This can be represented
as

Flocal = 3D Conv (cat (Fdh,F
op
dm)) (14)

Fglobal = Mamba (cat (Fdh,F
op
dm)) (15)

where Flocal represents a local feature and Fglobal is a global
feature. To reduce informational redundancy between Flocal and

Fglobal, we implemented a sigmoid activation function for Flocal

and Fglobal separately, then multiplied the sigmoid parameters
of Flocal with Fglobal to extract the unique information of Fglobal,
which was subsequently added to Flocal. Similarly, the sigmoid
parameter ofFglobal was multiplied byFlocal to extract the unique
information of Flocal, which was subsequently added to Fglobal.
This process can be expressed as

Ff local = σ (Flocal)� Fglobal + Flocal (16)

Ffglobal = σ (Fglobal)� Flocal + Fglobal (17)

where Ff local is the local feature after SpaR and Ffglobal repre-
sents the global features after SpaR. Finally, after four stages of
global and local feature fusion, a 1 × 1 × 1 convolutional layer
was used to obtain the final SpaR feature.

It is worth noting that, as shown in Fig. 6, SpeR and SpaR
have the same network structure. However, in order to perform
SpeR, SpeR used a 1 × 1 × 3 convolution kernel to obtain the
final SpeR features.

5) Feature Fusion Module (FFM): As shown in Fig. 7, after
obtaining the SpaR features of LR HSI and the SpeR features of
HR MSI, we constructed an FFM to fuse Fspa and Fspe to obtain
the final HR HSI. Specifically, to explore the global correlation
between features and reduce information redundancy, FFM first
constructed a Mamba cross-attention network to fuse Fspa and
Fspe, and then constructed a Mamba self-attention network to
reduce the dimensionality of the fused features and obtain the
final HR HSI.

For cross-attention networks, Fspa was first used to extract
features Q and K from two Mamba branches, respectively, Fspe

was used to extract feature V from a Mamba branch, which can
be represented as follows:

Q = Mamba (Fspa)

K = Mamba (Fspa)

V = Mamba (Fspe) . (18)

Then, K and V are dot products and subtracted from 1 to
obtain attention matrices, and unique feature information ofFspa

is obtained by multiplying the attention matrix with Q. The
final fusion feature was obtained by adding the unique feature
information of Fspa into V

Fhrhsi = (1− Softmax (K�V))�Q+V (19)

where Fhrhsi represents the fused features. However, compared
to HR HIS, Fhrhsi has more channels. We constructed a self-
attention mechanism, first extracting three branch Mamba fea-
tures from Fhrhsi, adjusting the feature channels to calculate the
conversion relationship between channels, and finally obtaining
the fused image

A = Mamba (Fspa)

B = Mamba (Fspa)

D = Mamba (Fspe) (20)

Z = (1− Softmax (B�D))�A+D (21)

where Z is the final fused image.
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Fig. 5. SpaR.

Fig. 6. SpeR.

Fig. 7. FFM.

III. EXPERIMENTS

A. Experimental Setting

To train SSRFN, Adam optimizers with α= 0.9 and β = 0.99
and a batch size of 8 were used, and the learning rate was set to

1e−4. In addition, SSRFN is trained on a Linux computer with
128-GB CPU memory and 1 × GPU GeForce GTX 4090D. SS-
RFN uses the MSE loss equation for network optimization, and
the loss function can be expressed as loss =

∑n
j=1 (Z−GT)2,

where GT is the ground truth and n is the number of pixels.
To verify the performance of SSRFN, two simulated and

real HSI datasets were used. The HSI of two of the simulated
datasets comes from the Chikusei dataset (https://naotoyokoya.
com/Download.html) and the Pavia Center dataset (http://www.
ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_
Scenes#Pavia_University_scene). The Chikusei dataset was
captured by the Headwall Hyperspec-VNIR-C sensor, with
a spectral range of 343–1018 nm and a pixel count of
2517 × 2335 × 128. The final 2000 × 2000 × 100 pixels were
used for the experiment. The Pavia Center dataset was obtained
by ROSIS sensors, with a spectral range of 400–1000 nm
and an image size of 512 × 1400 × 115 pixels. The final
512 × 1400 × 100 pixels met the experimental requirements.
In order to train SSRFN and quantitatively evaluate the fusion
results, the above datasets were used as a reference image in
the experiment, and the spectral response function of SPOT-4
multispectral satellite was used to simulate MSI. In addition,
Gaussian blur operation and a downsampling factor of 4 are used

https://naotoyokoya.penalty -@M com/Download.html
https://naotoyokoya.penalty -@M com/Download.html
http://www.penalty -@M ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_University_scene
http://www.penalty -@M ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_University_scene
http://www.penalty -@M ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_University_scene
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Fig. 8. Experimental datasets.

to simulate HSI. For the above datasets, we cut 512× 512× 100
pixels from the Chikusei dataset and 512 × 512 × 100 pixels
from the Pavia Center dataset as test samples to verify the
fusion performance of SSRFN. The size of the reference
training sample, reference validation sample, and reference
test sample in the experiment is 512 × 512 × 100 pixels. In
order to expand the sample size, a spatial step of 80 was used
in the image cropping process, which ensured that the sample
size in the experiment was greater than 1000. In the end, 1300
samples from simulated dataset-1 were used for training and
236 samples were used for validation. A total of 1100 samples
from simulated dataset-2 were used for training, and 104
samples were used for validation. In addition, two real datasets
were used to verify the real application performance of SSRFN.
The HSI of these two datasets were obtained from PRISMA
hyperspectral satellite sensors, with a spatial resolution of 30
m and a spectral range of 400–2500 nm. After removing the
bad bands, a total of 100 bands were used for experiments. The
corresponding MSI at that time were obtained from Sentinel-2
A satellite, including four bands with a spatial resolution of 10
m. In the experiment, we trained SSRFN on real datasets using
a reduced resolution dataset, and tested it on a full resolution
dataset (see Fig. 8).

To evaluate the fusion performance of SSRFN, eight dif-
ferent traditional and DL methods were selected, including
CS method: GSA [20], MRA method: GLP [26], MD meth-
ods: coupled nonnegative matrix factorization (CNMF) [34],
NLSTF [33], and DL methods: spatial–spectral reconstruction
network (SSRNET) [70], MSST-Net [60], unsupervised hybrid
network of transformer and CNN (UHNTC) [71], multi-input
multioutput spatial–spectral transformer (MIMO–SST) [72],
Fusionmamba (FMamba) [73], and QIS–GAN [58]. It is worth
noting that in the DL method, SSRNET is designed based
on CNN network, MSST Net, UHNTC, and MIMO–SST are
designed based on transformer network, FMamba is designed

based on Mamba network, and QIS–GAN is designed based on
GAN network. In order to fairly compare these methods, the
same training strategy was used, and the epoch of all methods
was set to 200. Other parameters were sourced from relevant
references.

In addition, peak signal-to-noise ratio (PSNR) [2], spectral an-
gle map (SAM) [10], Erreur Relative Globale Adimensionnelle
de Synthèse (ERGAS) [23], root mean square error (RMSE)
[40], and cross-correlation (CC) [71] were used as quantitative
evaluation indicators for the experiment.

B. Experimental Results of Simulated Datasets

Fig. 9 shows the experimental results of the simulated
dataset-1. The first row shows the fusion results of different
methods, the second row shows a locally enlarged image of the
fusion results, and the third row shows SAM maps of the fusion
results. GSA and FMamba have good spatial enhancement ef-
fect; however, significant spectral distortion occurs in bare areas.
GLP produces the worst visualization result, with all spatial in-
formation lost. NLSTF and MSST-Net enhance spatial informa-
tion, but introduce significant noise signals. Other methods have
better visualization results, and our method achieves the closest
result to the reference image. For SAM maps, GSA, GLP, NL-
STF, and MSST-Net exhibit significant spectral errors, the spec-
tral distortion of CNMF mainly exists in the building area, SSR-
NET, UHNTC, MIMO–ST, FMamba, QIS–GAN, and SSRFN
exhibit spectral distortion in water extraction, but our method
achieves minimal spectral reconstruction error. Fig. 10 shows the
fusion results of the simulated dataset-2. Compared with the ref-
erence image, GSA has significant visual errors and severe spec-
tral distortion. GLP and NLSTF exhibit blurring effects in the
edge regions of the features. Other methods have visualization
results that are consistent with the reference image. However,
SAM maps show GSA, NLSTF, and SSRNET exhibit significant
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Fig. 9. Experimental results of simulated dataset-1.

Fig. 10. Experimental results of simulated dataset-2.

TABLE I
QUANTITATIVE RESULTS OF SIMULATED DATASETS

spectral distortion in vegetation regions, MSST-Net, MIMO–
SST, FMamba, and QIS–GAN exhibit spectral reconstruction
errors in edge regions of objects, while other methods achieve
better spectral fidelity.

In order to fairly compare different methods, Table I presents
the quantitative evaluation results of the fusion results of dif-
ferent methods. In simulation dataset-1, PSNR of GSA, GLP,
and NLSTF is less than 20, ERGAS is greater than 9, SAM
of GSA, GLP, CNMF, NLSTF, and MSST-Net is greater than
4, and GLP achieves the worst CC. The RMSE of GSA, GLP,

CNMF, and NLSTF is greater than 0.08. Our method achieves
the best results among all indicators. In dataset -2, GSA, NLSTF,
and SSRNET achieve the worst PSNR and SAM, with PSNR
less than 20, SAM is greater than 10. The ERGAS of GSA,
GLP, CNMF, NLSTF, and SSRNET is greater than 10. GSA
and NLSTF achieve the worst CC and RMSE. SSRFN has
consistently maintained the best results among all indicators.
Fig. 11 shows the PSNR and CC of each band in the fusion
results, and our method obtains the best results in almost all
bands in both datasets.
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Fig. 11. PSNR and CC of each band in the fusion results.

Fig. 12. Experimental results of real dataset-1.

Fig. 13. Experimental results of real dataset-2.

C. Experimental Results of Real Datasets

Fig. 12 shows the experimental results of different methods
in the real dataset-1. The first row shows the fusion results of dif-
ferent methods, the second row shows a locally enlarged image
of the fusion results, and the third row shows the spectral curve
of typical features in the fusion results. All methods achieve
better spectral reconstruction results, but there are significant
differences in spatial information enhancement. SSRNET and
MSST-Net exhibit significant spectral distortion in vegetation
regions, with a large amount of detailed information smoothed
out. NLSTF loss some detailed information at the edges of
features. Due to the lack of reference images, we selected pure
pixels that are common to LR HSI and fused images, and
compare the spectral curves of these pixels. GLP has severe
spectral reconstruction errors, which are completely inconsistent
with the trend of the reference curve. The peak and valley values

of other methods have significant reconstruction errors, but have
a trend consistent with the reference curve. Our method achieves
the most consistent results with the reference curve. Fig. 13
shows the fusion results of different methods in real dataset-2.
GSA, GLP, CNMF, and NLSTF loss some spatial information
at the edges of features, especially for buildings. Compared to
other DL methods, SSRNET has the worst spatial enhancement
effect. MSST-Net, UHNTC, MIMO–ST, UHNTC, FMamba,
QIS–GAN, and SSRFN have good visualization results. In
addition, the comparison results of spectral curves show GSA,
NLSTF, SSRNET, and MSST-Net exhibit significant spectral
errors, with significant errors in both trend and peak values
compared to the reference curve. Other benchmark methods
obtain better spectral reconstruction results; however, some peak
errors exist. Our method still achieves the most consistent results
with the reference curve.
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Fig. 14. Mamba ablation experiments in DFE and CFE.

TABLE II
QUANTITATIVE RESULTS OF ABLATION EXPERIMENT OF MAMBA IN DFE AND

CEF

TABLE III
QUANTITATIVE RESULTS OF ABLATION EXPERIMENT OF CNN AND MAMBA

D. Discussion

To verify the important role of Mamba in DFE and CFE, we
performed ablation on Mamba blocks in DFE and CFE, and the
visualization results are shown in Fig. 14. When the Mamba
module of DFE is ablated, spatial information can still be sig-
nificantly improved, but some color distortion exists. Moreover,
when the Mamba module of CFE is ablated, the fusion result is
very similar to SSRFN. Table II shows the quantitative evalua-
tion results, where CFE without Mamba module caused a slight
decrease in network performance, and DFE without Mamba
module had a significant impact on network performance.

During this experimental process, we integrated CNN with
the Mamba network to ascertain the local and global features
of the image. To validate the feasibility of this integration of
CNN and Mamba, we executed ablation procedures on CNN and
Mamba separately. Fig. 15 and Table III exhibit the fusion results
of simulated dataset-1. The fused output of CNN outperforms
that of the Mamba network markedly, and the amalgamation of
CNN and Mamba network escalates PSNR by approximately 7,
SAM has been diminished by approximately 9, signifying that
the design is plausible.

In the experiment, we designed spectral and SpaR networks
to improve the spectral resolution of HR MSI and the spatial
resolution of LR HSI, respectively. To verify the rationality
of the spatial spectral interaction super-resolution network, we

Fig. 15. Results of ablation experiment of CNN and mamba.

Fig. 16. Results of ablation experiment of SpeR and SpaR.

TABLE IV
QUANTITATIVE RESULTS OF ABLATION EXPERIMENT OF SPER AND SPAR

conducted ablation experiments on SpeR and SpaR networks,
respectively. Fig. 16 and Table IV show the experimental results
of the simulated dataset-1, and indicate that using only SpeR
or SpaR has significant spectral distortion, the combination of
SpeR and SpaR effectively improves the fusion performance
of the network, PSNR has increased by about 9, and SAM has
improved by about 5.

In the experiment, we used a combination of CFE and SCM to
correct the channel relationship of HR MSI features. To verify
whether this correction can effectively improve the fusion per-
formance of the network, we conducted ablation experiments.
Fig. 17 and Table V show the fusion results. When CFE and
SCM are ablated, the fusion result has serious spectral recon-
struction errors, PSNR decreases by about 12, SAM increased
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Fig. 17. Results of ablation experiment of CFE and SCM.

TABLE V
QUANTITATIVE RESULTS OF ABLATION EXPERIMENT OF CFE AND SCM

TABLE VI
RUN TIMES FOR THE DIFFERENT METHODS ON THE SIMULATED DATASETS-1

by about 11. The experimental results indicate that CFE and
SCM are crucial for the network.

Table VI shows the training and testing time of different
methods in the simulated datasets-1, and the computational effi-
ciency of GSA and GLP is superior to other traditional methods.
In DL methods, SSRNET, FMamba, QIS–GAN, and SSRFN
have achieved high computational efficiency, while MSST-Net,
UHNTC, and MIMO–SST have achieved lower computational
efficiency in the transformer framework. The experimental re-
sults show that the introduction of Mamba effectively extracts
global features of images to improve fusion performance while
ensuring low computational cost.

IV. CONCLUSION

This article proposes a spatial–spectral interaction super-
resolution CNN–Mamba network for fusion of HSI and MSI.
SSRFN uses bidirectional guidance to perform SpeR and SpaR
on MSI and HSI, respectively. To some extent, this avoids
the problem of spatial spectral information balance caused
by information differences, effectively improving the fusion
quality. Specifically, we designed novel difference information
extraction modules and SCMs to correct the feature channels
of MSI, and designed SpeR and SpaR networks, using MSI
and HSI as auxiliary information for super-resolution of each
other. The design of FFM module effectively improves the
reconstruction accuracy of fusion results while avoiding in-
formation redundancy. In addition, the Mamba network was
introduced to combine with CNN to extract local and global
features of images, exploring the distribution characteristics of
image information while ensuring the computational efficiency
of the network. A large number of experiments were conducted
on both simulated and real datasets. Experimental results show
that our method achieves perfect performance compared to other
advanced methods.
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