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Abstract—Hyperspectral imagery with high spatial resolution
(H2) imagery can synchronously obtain the spectral and spatial fea-
tures of objects, thus providing richer information. However, the ex-
acerbated spatial–spectral heterogeneity poses new challenges for
classification. In this study, an interactive learning framework was
proposed to address the current issues in H2 imagery classification.
Specifically, we propose a spectral–spatial purification network
(S2PNet) to improve classification accuracy. First, a multistage
spectral purification module is designed to purify noisy information
and mitigate spectral heterogeneity, achieving interaction between
spectral optimization and classification. Second, a global–local
mutual guide module is utilized to realize image–pixel-level feature
interaction, thus enhancing the spatial discriminability of extracted
features and reducing spatial heterogeneity. Third, the introduction
of dual-stream semantic progressive module facilitates shallow-
deep feature interaction, reducing the semantic gap in internal
network and enabling a smoother information flow. We validated
our approach using the public WHU-Hi hyperspectral datasets and
large-scale Houston datasets. Experimental results demonstrate
that S2PNet achieves the highest classification accuracy across all
tests, significantly outperforming state-of-the-art methods.

Index Terms—High spatial resolution (H2) imagery, Houston
datasets, interactive learning, semantic gap, spatial–spectral
heterogeneity, WHU-Hi datasets.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) is renowned for provid-
ing continuous spectral information integrated with spa-

tial data, and this crease rich and crucial data support in various
fields, such as geological surveys, environmental monitoring,
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Fig. 1. Spatial–spectral heterogeneity. (a) H2 Imagery. (b) We used the Sobel
operator to extract the gradient map of the selected region, illustrating the
heightened spatial heterogeneity in H2 imagery. (c) Spectral curve demonstrates
the spectral heterogeneity within the same category.

urban planning, and precision agriculture [1], [2]. With the rapid
development of hyperspectral technology in recent years, HSI
has evolved toward higher spectral and spatial resolutions [3].
HSI with high spatial resolution (H2) imagery provides narrower
spectral bands and more detailed spatial information. However,
this also leads to more severe spatial–spectral heterogeneity,
resulting in increased intraclass variance and reduced interclass
differences [4], as shown in Fig. 1. This severely affect the
ability of the image to distinguish between land cover categories,
making HSI classification extremely challenging.

Numerous studies have aimed to improve the performance
of HSI classification. Traditional methods primarily rely on
spectral features, such as kernel-based classifiers [5], sup-
port vector machines (SVM) [6], [7], random forests [8],
[9], and multinomial logistic regression [10]. Owing to the
heightened spectral heterogeneity in H2 imagery, these meth-
ods face significant challenges. Subsequent research revealed
that spatial information is more crucial than spectral in-
formation for HSI classification [11]. Therefore, methods
that integrate both types of information, such as wavelet
transformation [12], gray-level co-occurrence matrix [13],
Gabor filters [14], [15], and Markov random fields [16], have
been proposed to maintain the local consistency of class labels
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in pixel neighborhoods. However, the features extracted using
aforementioned traditional methods require manual design
based on prior knowledge and empirical data, resulting in in-
stability to the classification effect.

Recently, deep learning technology has made significant ad-
vances in remote sensing image understanding, particularly in
the imaging and analysis of HSI. For example, Li et al. [17]
introduced the CasFormer model, which combines deep learn-
ing with RGB image fusion, focusing on both spatial and
spectral domains to significantly enhance the quality of HSI.
Hong et al. [18] proposed a subpixel level hyperspectral super-
resolution framework, which progressively integrates HS-MS
information from the pixel level to the subpixel level, and
from the image level to the feature level. Hong et al. [19]
designed a domain-adaptive network that effectively preserves
the spatial topology of remote sensing images through paral-
lel high- and low-resolution fusion, achieving improved seg-
mentation performance and generalization capability. Notably,
deep learning-based methods have gradually become the main-
stream approach for HSI classification due to their ability
to adaptively extract and integrate advanced spatial–spectral
features from images [20]. These methods primarily include
stacked sparse autoencoders [21], convolutional neural networks
(CNN) [22], [23], recurrent neural networks [24], and deep
belief networks [25]. Among these, CNNs and their variants
have significantly improved the accuracy of HSI classification
when labeled samples are abundant, and they have consequently
received widespread attention [26]. Although current deep learn-
ing methods have achieved excellent performance, difficulties
and challenges remain when dealing with H2 imagery. Specific
limitations include the following.

1) Due to the higher spatial resolution of H2 imagery, the
number of mixed pixels is reduced, and the degree of
mixing between different components is significantly low-
ered, resulting in more pronounced spatial heterogeneity
in the images. Specifically, the spectral differences be-
tween pixels in H2 imagery become more distinct, and the
boundaries between different materials are clearer. This
enhanced spatial heterogeneity imposes greater demands
on existing image processing models, requiring them to
better understand and integrate both global and local in-
formation.

2) H2 imagery, characterized by narrower spectral bands
and reduced mixing degrees, leads to more pronounced
spectral differences within the same object, resulting in
stronger intraclass spectral heterogeneity. This increased
intraclass spectral heterogeneity complicates classifica-
tion, as even within the same plot, identical objects may
exhibit significantly different spectral characteristics. This
complexity demands that models more accurately capture
spectral variations and effectively differentiate between
different object classes.

However, existing methods predominantly use patch-
based processing, where the patch size directly affects the
model’s ability to capture global contextual information. This
limitation renders current models inadequate for addressing the

enhanced spatial heterogeneity in H2 imagery. And the signif-
icant overlap between adjacent pixel patch regions increases
computational redundancy and reduces the model’s inference
speed. In addition, current approaches to addressing spectral
heterogeneity mainly involve band selection to stack dominant
bands, with little consideration given to nonlinear relationships
or band combinations, resulting in limited effectiveness. More-
over, these methods struggle with end-to-end optimization and
cannot adaptively adjust based on a classification performance
feedback.

In this study, to address the challenges posed by the spatial–
spectral heterogeneity in H2 imagery classification, we propose
a spectral–spatial purification network (S2PNet) based on an
interactive learning framework. In S2PNet, we drew inspiration
from neural architecture search (NAS) [27] and designed an
interactive multistage spectral purification module (MSSP). This
module is guided by the classification results and selects most
distinguishable bands and their combinations for each category.
Unlike NAS, we did not alter the network structure; instead, we
implemented this process using learnable convolutional kernel
operations, which significantly reduces the computational com-
plexity. In addition, we have discovered a strong underlying con-
nection between convolution and self-attention. Leveraging this
relationship, we propose a global–local mutual guide (GLMG)
module to facilitate the mutual fusion and complementation of
global and local features. It is worth noting that we integrate
the parallel concept of grouped convolution into this process,
further reducing computational complexity. Furthermore, we
re-evaluated the skip connections and designed a dual-stream se-
mantic progressive module (DSSP), which considers local infor-
mation correlations and the bidirectional long-term dependency
to mitigate this semantic gap between encoder and decoder
features. The main contributions of this study are summarized
as follows.

1) We designed an interactive MSSP that integrates spec-
tral optimization and classification tasks within a unified
framework. MSSP allows band selection to be guided by
classification results and dynamically evaluates the con-
tribution and relevance of each band to the classification
task, thus seeking the optimal spectral combinations for
each category, effectively solving the problems associated
with spectral heterogeneity and information redundancy.

2) We propose a GLMG, which combines the advantages of
convolution and Transformer to enhance the interaction
and compensation between image-level and pixel-level
features to cope with the challenge of spatial heterogene-
ity. By frozen kernel shift convolution and the edge masked
multihead window self-attention (MWSA) mechanism,
more discriminative spatial features are captured, which
play a crucial role in solving the spatial heterogeneity
problem.

3) We reexamined information interaction across various
stages of the network and propose a DSSP that allows
information to flow bidirectionally between shallow and
deep features, progressively aligning the semantic repre-
sentations of the shallow features with the deeper ones,
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thereby mitigating the semantic discrepancies associated
with skip connections and facilitating a more coherent and
enriched feature representation.

4) An interactive learning framework is proposed for H2

imagery classification, which can effectively address the
spatial–spectral heterogeneity particularly for limited la-
beled samples. We conducted extensive experiments on
five datasets to demonstrate the superiority of the proposed
approach.

The rest of this article is organized as follows. In Section II,
we review related studies on HSI classification. In Section III,
we provide a detailed description of S2PNet. An analysis of
the experimental results is provided in Section IV, and ablation
studies are discussed in Section V. Finally, Section VI concludes
this article.

II. RELATED WORK

In this section, we provide a comprehensive review of the
CNN-based HSI classification methods and band selection meth-
ods.

A. Band Selection

Researchers have employed preprocessing techniques, such
as band selection and feature extraction, to address the chal-
lenges of spectral variability [13]. Strategies for hyperspectral
band selection include methods based on ranking, clustering,
searching, embedding, and deep learning [28]. Ranking-based
approaches evaluate the importance of each band by using
manually selected criteria. For instance, Chang et al. [29] pro-
posed the minimum-variance PCA (MVPCA) method while
MVPCA does not account for the band correlation. To address
this limitation, Chang et al. [30] introduced a method based
on the Kullback–Leibler distance to eliminate redundant bands.
Clustering-based methods fully consider the relationships be-
tween bands. Sun et al. [31] proposed sparse subspace clustering
to obtain the required subset of bands, and Zhai et al. [32] de-
veloped Laplacian-regularized low-rank subspace clustering to
reduce the representation bias in candidate bands. Search-based
and embedding-based methods optimize objective functions to
obtain optimal band subsets. Zhang et al. [33] used conflict-
ing indicators, such as information content and redundancy to
jointly constrain the search process. In addition, embedding
methods, such as REF-SVM, rank feature weights during the
training phase to eliminate unimportant features [34]. Recently,
deep learning has been widely applied in band selection. Zhan
et al. [35] proposed a method combining CNN and distance
density. Cai et al. [36] added an attention mechanism to CNN
and proposed a unified band selection framework, and Sellami
et al. [37] designed a semisupervised low-redundancy criterion
to combine semisupervised 3D-CNNs to extract features from
the selected bands. Moreover, Feng et al. [38] introduced fixed
and adaptive band selection strategies using reinforcement learn-
ing, avoiding repeated selection of the same bands. However, the
existing band selection methods suffer from two main shortcom-
ings. First, they require manual parameter tuning for evaluation
and primarily focus on selecting significant bands, while paying

less attention to band combinations. These methods do not
screen band information at the initial stage of the model but
rather perform equivalent feature selection in the feature space,
which still retains noisy band information, making it difficult to
effectively address spectral heterogeneity issues. Second, these
methods are not coupled with the classification task, thus they
cannot optimize the band subset based on feedback from the
classification results.

B. CNN-Based HSI Classification

Owing to the fine feature extraction ability of convolution
operations, a series of CNN-based methods has been exten-
sively investigated for HSI classification and achieved markable
performance. For example, Lee and Kwon [39] introduced a
deeper and wider contextual CNN, which uses multiple con-
volutional layers of different sizes and residual connections
to form joint feature maps. Wang et al. [40] presented a fast
dense spectral–spatial convolution network (FDSSN) maximiz-
ing the network information flow through dense connections,
effectively improving training speed and classification accu-
racy. Zhong et al. [41] developed a spectral–spatial residual
network (SSRN), employing consecutive learning modules and
utilizing 3D-CNN to consider HSI structural characteristics and
extract discriminative spectral–spatial features. Yu et al. [42]
leveraged the strengths of both GNN and CNN to propose
the graph polarization fusion network, which uses GCN and
graph attention networks as feature extraction operators to learn
features from large, irregular target regions effectively. However,
existing CNN-based methods ignore the different importance
of spatial pixels and unequal contributions of spectral bands,
leading to inaccurate identification of ground objects with sim-
ilar local context and spectral characteristics. The tremendous
success of attention mechanisms in computer vision has attracted
widespread attention in the remote sensing domain. Ma et al. [43]
proposed a double-branch multiattention (DBMA) mechanism
network, where each branch focuses on extracting either spectral
or spatial information independently to avoid interference, thus
ensuring the extraction of the most discriminative features.
Inspired by DBMA, a double-branch dual-attention (DBDA)
mechanism network was proposed to further refine and optimize
the extracted spectral–spatial features [44]. Zhu et al. [45] pro-
posed a residual spectral–spatial attention network (RSSAN),
incorporating both spectral and spatial attention modules to
suppress noisy bands. Roy et al. [46] introduced an adaptive
spectral–spatial kernel (A2S2KNet) autonomously adjusting re-
ceptive field size using adaptive attention kernels in residual
blocks. Yu et al. [47] introduced a feedback-attention CNN by
incorporating a feedback mechanism into the attention module,
thereby enhancing the attention weights with high-level se-
mantic knowledge. However, these attention-based approaches
are essentially the enhanced versions of CNN-based methods
and suffer from the inherent limitations of local convolution
kernels, failing to model long-range dependencies effectively.
Transformers, due to their superior capabilities in modeling
long-range dependencies and remote information interactions,
have shown competitive performance in computer vision tasks
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and have attracted interest in the HSI classification task. Gao
et al. [48] designed a spatial–spectral vision transformer sep-
arately extracting spatial and spectral sequences from HSIs,
mapping flattened patches and spectra to the transformer’s input
vectors. Yang et al. [49] proposed a GCN and Transformer fusion
network for spatial–spectral feature extraction, which effectively
leverages the contextual information of classified pixels while
establishing long-range dependencies in the spectral domain.
Hong et al. [50] introduced SpectralFormer, utilizing a pure
Transformer to process spectral features. Sun et al. [51] proposed
a network comprising 2-D and 3-D convolution layers to prepro-
cess input HSI images, followed by a Gaussian-weighted feature
tokenizer to generate input tokens for Transformer blocks. Song
et al. [52] proposed a novel bottleneck spatial–spectral trans-
former (BS2T) to depict the long-range global dependencies
of HSI pixels, and on this basis, defined a dual-branch HSI
classification framework based on 3D-CNN and BS2T for jointly
extracting the local–global features of HSI. Xu et al. [53] pro-
posed the cross spatial–spectral dense transformer for spatial–
spectral feature extraction and fusion, utilizing an adaptive dense
encoder module and a cross spatial–spectral attention module.
Although the vision transformer allows for learning long-range
dependencies from a global perspective, it tends to overlook
local region features. To address these limitations, Qi et al. [54]
proposed a novel method called the global–local 3-D convolu-
tional transformer network, embedding 3-D convolution into a
dual-branch transformer to simultaneously capture global–local
associations in both spectral and spatial domains. However, these
transformer-based approaches are still constrained by the patch
size, limiting their ability to effectively capture global informa-
tion and handle the high spatial heterogeneity in H2 imagery. To
mitigate the issues, Zheng et al. [55] first proposed an FPGA
framework and a variant of FCN (FreeNet). However, when
the sample distribution is imbalanced, FreeNet cannot extract
the most discriminative features. Zhu et al. [56] proposed a
spectral–spatial-dependent global learning (SSDGL) framework
that combined global convolutional long short-term memory and
a global joint attention mechanism to capture the long-term de-
pendency of spectral features. Similarly, Yu et al. [57] introduced
the cross-level spectral–spatial joint encoding (CLSJE) method.
However, existing patch-free methods do not effectively address
the spectral heterogeneity issues—caused by narrower spectral
bands and higher spatial resolution, leading to negatively impact-
ing classification results. The emergence of large models has sig-
nificantly accelerated the development of HSI processing. Hong
et al. [58] identified a substantial gap in spectral data research and
introduced a general remote sensing foundation model called
SpectralGPT, offering new approaches for applying spectral
information in HSI. Wang et al. [59] introduced a novel sparse
sampling attention mechanism and developed HyperSIGMA,
effectively addressing spectral and spatial redundancy issues in
HSI.

III. PROPOSED METHOD

Fig. 2 illustrates the proposed interactive learning frame-
work, in which S2PNet comprises MSSP, GLMG, and DSSP.

Fig. 2. Overall architecture of the proposed interactive learning framework.
Where Yi, i ∈ (1, 2, 3, . . .), represent the labeled pixels obtained from each
stratified sampling, and Ytotal represents the total number of sampled labeled
pixels. Oi, i ∈ (1, 2, 3, . . .), and Ti, i ∈ (1, 2, 3, . . .), represent the features at
different layers of the encoding and decoding stages, respectively. Different
shapes indicate different sizes after pooling layers, with O1 illustrating the result
of band selection and the gray box indicating the selected bands. Finally, C1–Cn

represent each category in the dataset.

Because of the spectral similarity between the phenologically
similar crops, H2 imagery exhibits significant spectral hetero-
geneity, which leads to spectral mixing issues. Therefore, at the
beginning of the network, MSSP was introduced to purify noisy
spectral bands and reduce the spectral variance of the imagery.
Improvements in image resolution result in the intensification
of spatial heterogeneity. In the encoder section, GLMG is in-
troduced to adaptively aggregate global contextual information
and pixel-level local information, leveraging the advantages
of convolution and self-attention to establish long-term depen-
dency relationships between features and spatially enhance the
discriminability of each pixel. Finally, the semantic gap between
the features in the encoding and decoding stages was minimized
using DSSP, ensuring a smoother flow of information throughout
the network.

A. MSSP Module

An effective approach to addressing spectral heterogeneity is
to find the most discriminative combination of bands for each
category and remove less distinguishable bands. Fig. 3 shows
the average spectral curves for each category in the LongKou
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Fig. 3. Average spectral curves for each class in the LongKou dataset, with
significant differences in the red-boxed region and severe band mixing in the
blue-boxed region.

Fig. 4. Structure of MSSP. FCin×HW and UCout×HW represent the input
and output features of MSSP, while M denotes importance matrix. The gray and
white squares represent learnable and zeroed convolution weights, respectively.

dataset. As can be clearly seen from the figure, in the region
marked by the red box, the spectral curves of different categories
exhibit significant differences, indicating high separability. In
contrast, in the region marked by the blue box, the spectral
bands are more mixed, which can have a negative impact on
classification. Therefore, we consider the bands in the blue
region as noisy bands that need to be removed. Inspired by NAS,
we propose an MSSP, as shown in Fig. 4. Unlike NAS, which
aims to determine the optimal network architecture, MSSP aims
to identify an optimal spectrum combination.

MSSP consists of two modules: learnable spectral selection
and spectral combination. The former filters out noisy bands to

Fig. 5. Learning process of convolutional kernels in the MSSP. (a) Initial
convolutional kernels in Stage I. (b) Learned convolutional kernels in Stage II.

obtain class-contributing bands for classification, whereas the
latter randomly combines selected bands to search for optimal
spectral combinations. We start by defining the input bands as
Cin and the output bands as Cout. The size of the convolution
kernel is denoted as Cout × Cin × k × k, where k represents
the kernel size. Fig. 5 illustrates the learning process of the
convolutional kernels in MSSP. In the first stage, we use the
entire spectral band as the input for classification, where the
information from each band flows into the network and all
the convolutional kernels (indicated in gray) are updated with
gradient propagation during this stage, as shown in Fig. 5(a). In
the second stage, after a certain number of iterations, each band
contributes to the classification result with an initial estimate.
We simplify the convolutional kernel as a matrix M of size
Cin × Cout, where each position in this matrix is computed as
the L1 norm of the corresponding filter Fi,j ∈ R1×1×k×k, where
i and j represent the input and output channels, respectively. The
importance of each band is quantified using the values in matrix
M, such as

∑CoutCin |Fi,j |. If the L1 norm of the current position is
smaller than that of the other positions, as shown on the left-hand
side of Fig. 5(b), we zero all the weights of the corresponding
convolutional kernel to mask the ith input band. The right-hand
side of Fig. 5(b) illustrates this process, where the white color
indicates the convolutional kernels corresponding to the noisy
bands that have been zeroed out. To enhance the generalization
capability of the MSSP, we introduced a purification factor P
(where P = 1, 2, 3,. . .) to adjust the sparsity of the convolu-
tional kernel. The purification factor determines the step size
for searching class-specific bands, where 1/P of the bands is
purified at each step. In the third stage, we fixed the positions of
the convolutional kernels corresponding to the optimal bands
and conducted further fine-tuning using the sparsified input
to achieve a stable and high-performance classification. The
process of spectral selection can be represented as

Fsubset = δ

(
gn

(∑G

g=1

(∑P

p=1
wg

pF + bg

)))
(1)

where δ represents the sigmoid function; gn stands for group
norm; G and P denote the number of groups and purification
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Algorithm 1: Spectral Process of the MSSP.

Input: F = RCin×H×W

1: Learnable Spectrum Selection :
2: if Stage I then
3: Fsubset = GroupConv(F ;w)
4: else if Stage II then
5: Purify noisy bands to obtain the optimal bands

subset.
6: Get kernel matrix M ∈ RCout×Cin

7: for p ∈ P do
8: M

Cout∗Cin

n = 0, n = (Cin ∗ p)/P
9: wp

ikjk
= 0, where

i ∈ (1, Cout), j ∈ (1, Cin), k = 1, 2, . . .Cin ∗ p/P
10: Fsubset = GroupConv(F ;wp)
11: end for
12: else if Stage III then
13: Fsubset = GroupConv(F ;wP )
14: end if
15: Spectral Combination :
16: Get combination Fcombin = Shuffle(Fsubset)
17: Get final FU = GroupConv(Fcombin)
Output: U ∈ RCout×H×W

factors, respectively; w is the convolutional kernel weights; bg
represents the convolutional residual; and F is the input feature.

Selecting the optimal subset of class-specific bands is the first
stage of spectral purification. Subsequently, we determine the
best spectral combination for each class, which involves a search
process. The sparse input bands underwent a shuffle operation
to randomize the original order. Subsequently, grouped convo-
lution was applied to the shuffled bands for random grouping
and feature extraction. By introducing random spectral combi-
nations, we can limit excessive focus on highly significant bands
during the selection stage. This helps prevent selection results
from being biased toward the mere superposition of significant
bands, thereby enhancing the overall performance of MSSP. The
process of spectral combination can be represented as follows:

U = δ

(
gn

(∑G

g=1
wgFsubset + bg

))
(2)

where U represents the feature obtained after spectral purifi-
cation. We designed the module to maintain consistent output
dimensions across three stages for seamless integration with
subsequent networks. To clearly illustrate the process described
above, we present it in Algorithm 1.

Finally, to mitigate the negative impact of excessive sparsity
on classification accuracy, we incorporate a regularization term
into the loss function to balance the sparsity of MSSP. Typically,
regularization is achieved through L1

Lsp =
∑G

g=1

∑P

p=1

∑Cout×Cin ∣∣F g
p

∣∣. (3)

B. GLMG Module

Convolution and self-attention are two distinct paradigms
widely employed for feature extraction. The former is adept at

perceiving local regions and effectively capturing local spatial
features, such as edges and textures. The latter, which uses a
weighted averaging operation based on contextual features, can
simultaneously consider various positions in the image, facilitat-
ing a better capture of global information and the establishment
of long-term dependencies. In our research, we observed a strong
underlying relationship between self-attention and convolution.
We define the input and output features as F ∈ RCin∗H∗W and
G ∈ RCout∗H∗W , respectively, where Cin and Cout represent the
input and output channels of the convolution, respectively and
H and W represent the height and width of the feature map,
respectively. Given a kernel size of k. Finally, the traditional
convolution can be divided as follows:

gi,j =
∑H,W

i,j

∑K

m,n
wm,nfi,j (4)

gi,j =

(∑H,W

i,j

∑K

m,n
wm,nfi,j ,m− [k/2], n− [k/2]

)

(5)

where fi,j ∈ RCin represents the position in the input feature
map, gi,j ∈ RCout represents the corresponding position in the
output feature map, and wm,n ∈ R

Cin∗Cout represents the weight
at the current position in the kernel. We then delve into the self-
attention portion, where the attention weights are obtained by
dynamically calculating the similarity function between related
pixel pairs. This flexibility allowed the network to adaptively
focus on different regions. Similarly, given F ∈ RCin∗H∗W and
G ∈ RCout∗H∗W , the output calculation of self-attention is com-
puted as follows:

gn
i,j

=
∑N

n=1

∑H,W

i,j
A(qn

i,j
, kn

i,j
)vn

i,j
(6)

qn
i,j

=
∑N

n
wn

q fi,j , k
n
i,j

=
∑N

n
wn

k fi,j , v
n
i,j

= wn
v fi,j (7)

where N represents the number of attention heads, qn
i,j
, kn

i,j
,

and vn
i,j

, wn
q , w

n
k , and wn

v denote the query, key, and value,
respectively, and A(qn

i,j
, kn

i,j
) are the corresponding projection

matrices, and represent the attention weights.
The above analysis shows that convolution and self-attention

are similar in process: first, the input is mapped to a higher
dimensional space by feature learning, and second, the learned
features are aggregated. In addition, computational complexity
was primarily concentrated in the preliminary mapping phase,
whereas the subsequent aggregation phase was lightweight and
required almost no additional parameters. Based on this obser-
vation, we designed the GLMG shown in Fig. 6. The feature
maps in the network were first projected to three times their
original dimensions using a 1 × 1 projection and then divided
into N groups, as shown in Fig. 6(a). Subsequently, the mapped
information flow enters the designed branch 1, which represents
the offset and aggregation operations in the convolution. How-
ever, during implementation, we observed that tensors tended
to disrupt data locality when moving in different directions,
making it challenging to achieve vectorization and severely
affecting the propagation efficiency of the network. Therefore,
we optimized this process by introducing frozen kernel shift
convolution, in which all positions in the convolution kernel
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Fig. 6. Structure of GLMG. (a) Feature mapping stage, (b) convolution branch,
and (c) edge mask MWSA.

Fig. 7. Frozen kernel shift convolution.

were replaced with 0, except for the direction of movement.
This achieved tensor-shifting effects with carefully designed
convolution weights specific to offset directions, as illustrated in
Fig. 6(b). To further combine features from different directions,
we concatenate all input features and convolutional kernels.
During training, we initialized the shift kernel to learn the
weights of the convolutional kernel and enhance the flexibility of
the model. In addition, we incorporated the concept of grouping
into modules to further reduce computational complexity, as
shown in Fig. 7. We then input the remapping features from
Fig. 6(a) into Branch II. Branch II employs MWSA to compute
and aggregate the similarity between the remapping features,
as depicted in Fig. 6(c). We observed that the increased spatial
resolution of the H2 imagery exacerbates spatial heterogeneity,
where adjacent regions in the image are more likely to exhibit
similar features, whereas distant areas may contain more noise.
Hence, we designed a windowed feature map to perform self-
attention operations. However, this lead to a lack of connec-
tion between windows. We employ an edge weights method
to supplement features, extracting boundary features between
windows through a simple mask operation to establish connec-
tions between them. Specifically, we first locate the partitioning
boundary in the mapped convolution, which is a straightforward
operation by averaging the feature map and grouping the excess

Fig. 8. Edge mask MWSA.

separately. Then, we expand pixels upward and downward from
the boundary line, performing self-attention calculations on the
areas these pixels belong to. The processed value is zero-padded
to match the shape of the value in MWSA, followed by feature
weighting, as shown in Fig. 8. In this scenario, the self-attention
process is described as follows:

gn
i,j

=
∑N

n=1

∑
a,b∈Pk(i,j)

A(qn
i,j
, kn

a,b
)vn

a,b
(8)

where Pk(i, j) denotes a window of size k around the current
pixel (i, j). Similarly, we integrated the MWSA with a grouping
approach to reduce the complexity of the computation while
matching the output dimensions of Branch I. The information
flows from both branches were fused and finalized for the output
by assigning each branch a learnable weight. In summary, the
convolution and self-attention branches share a feature mapping
operation, and the intermediate feature maps are reorganized and
reused. Branch I compensates for the lack of feature-learning
ability and local feature information in self-attention, whereas
Branch II supplements the difficulty of establishing long-term
dependencies in features owing to the limited receptive field of
convolution. These dual branches facilitate the exchange of local
and global information in an image through the reorganization
and reuse of intermediate feature maps, thereby achieving inter-
active guidance.

C. DSSP Module

The cleverness of skip connections lies in their ability to trans-
fer lost spatial information from the encoder to the decoder. This
assists the decoder in combining semantic information to restore
the features to the same spatial resolution as the original im-
age [60]. Encoders primarily capture low-level spatial informa-
tion, whereas decoders extract high-level semantic information.
There is often a significant semantic gap between the mapped
features. This disparity is particularly noticeable in the first skip
connection (between the first and last decoding layers). Direct
fusion of these incompatible features can introduce disturbances
during the learning process and affect the outcome. We designed
a new DSSP to mitigate abrupt transitions between information
flows. DSSP consists of down and up progressive blocks, as
illustrated in Fig. 9. We begin by discussing the information
flow within the entire module. First, the features after the four
pooling layers flowed into the downward progressive block.
Information exchange occurs between features from adjacent
encoding layers. Given the features of the four pooling layers of
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Fig. 9. Structure of DSSP. where Oi, i ∈ (1, 2, 3, . . .), is the input feature.

O1, O2, O3, and O4, we sequentially fused (O1, O2), (O2, O3),
and (O3, O4). In this way, O2 interacted with O1 before being
fused with O3.

The fused features then flow into the upward progressive
block, which involves a backward layerwise interaction on
feature. This enables the bidirectional exchange of information
between the shallow and deep layers. Consequently, shallow
features gradually approach the semantic representation of deep
features, thereby reducing semantic gaps. Finally, the exchanged
features are concatenated with the features of the decoder. In
the downward progressive block, merging between O1 and O2

involves a scale transformation. Common pooling operations
and strided convolutions may cause information loss. Therefore,
we devised a simple yet effective method to mitigate this loss. We
uniformly sample the original feature map O1 in both horizontal
and vertical directions, dividing it into multiple subfeature maps
of the same size as O2. After stacking, the channels become
four times the original and are then projected to a feature tensor
with the same dimensions as O1 through a 1 × 1 convolution.
Finally, a learnable weight is assigned for weighted summation.
Specifically, within any 2 × 2 window, the sampling of O1

is stacked and then weighted and summed with O2, and the
calculation formula is as follows:

−→
O = [Oi,j , Oi,j+1, Oi+,j , Oi+1,j+1], i, j ∈ Rh×w (9)

(O1, O2) = α ∗ Conv1(
−→
O1) + β ∗O2 (10)

where Conv1 represents the 1 × 1 projection, and α and β are
the learnable weights. The upsampling process follows a similar
procedure, and the details have been omitted.

IV. EXPERIMENT

In this section, we provide an overview of the experimental
data, evaluation metrics, and experimental settings. Finally, a
comprehensive comparison of the various methods used in the
experiment is conducted.

A. Datasets and Experimental Settings

1) Datasets: WHU-Hi-LongKou dataset [61] was acquired
on July 2018, in Longkou Town, Hubei Province, China, using a
DJI Matrice 600 Pro UAV platform equipped with a focal-length
Headwall Nano-Hyperspec imaging sensor. The image resolu-
tion was 550 × 400 pixels, and spatial resolution was 0.463 m.
The Nano-Hyperspec imaging sensor comprises 270 bands
covering a wavelength range of 400–1000 nm. Background

Fig. 10. WHU-Hi-LongKou dataset. (a) H2 imagery. (b) Ground-truth map.
(c) Legend.

TABLE I
PIXELS USED FOR TRAINING AND TESTING FROM THE LONGKOU DATASET

pixels within the image scope were removed, leaving 204 542
labeled pixels, which were classified into nine categories. For
convenience, we use C1–C9 to represent these categories in the
following figures and tables. A visualization of the dataset is
shown in Fig. 10. The training setup used for the LongKou
dataset is given in Table I. A total of 10 pixels were randomly
selected from each class for training, accounting for 0.04% of
the total number of pixels. The remaining pixels were used to
test the model performance.

WHU-Hi-HanChuan dataset [61] was collected in June 2016,
in Hanchuan, Hubei Province, China. The image resolution was
1217×303 pixels, and spatial resolution was 0.109 m. It consists
of 274 bands ranging from 400 to 1000 nm. Within the image
scope, land objects were classified into 16 categories. The WHU-
Hi-HanChuan dataset contained 257 530 labeled pixels. We use
C1–C16 to represent these categories in the following figures
and tables A visualization of the dataset is shown in Fig. 11.
For the HanChuan dataset, 50 pixels were randomly selected
from each class for training, accounting for 0.3% of the total
number of pixels. The remaining pixels were used to test model
performance, as given in Table II.

WHU-Hi-HongHu dataset [61] was collected in Honghu,
Hubei Province, China. The UAV platform travelled at a height
of 100 m, resulting in a spatial resolution of 0.043 m and an
image resolution of 940 × 475 pixels. The dataset consists of
270 bands ranging from 400 to 1000 nm. The land parcels within
the image scope were noticeably fragmented, and the crop types
included different varieties of the same crop. This is a typical area
for studying the spatial–spectral heterogeneity of H2 imagery.
The image contained 386 693 labeled pixels classified into 22
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Fig. 11. WHU-Hi-HanChuan dataset. (a) H2 imagery. (b) Ground-truth map.
(c) Legend.

TABLE II
PIXELS USED FOR TRAINING AND TESTING FROM THE HANCHUAN DATASET

categories, as shown in Fig. 12. We use C1–C22 to represent
these categories in the following figures and tables. For the
HongHu dataset, 50 pixels were randomly selected from the
labeled samples for model training, accounting for 0.2% of the
total number of pixels, and the remaining pixels were used to
test model performance, as given in Table III.

Houston 2013 dataset [62] was collected near the Univer-
sity of Houston in the United States, captured for the 2013
IEEE GRSS Data Fusion Competition by the National Cen-
ter for Airborne Laser Mapping. The dataset dimensions are
349 × 1905 pixels, with a spatial resolution of 2.5 m and
coverage across 144 bands spanning from 380 to 1050 nm.
The image includes 15 029 labeled pixels classified into 15
categories. Fig. 13 illustrates the image, ground-truth maps, and
legend. For the Houston 2013 dataset, 20 pixels were randomly

Fig. 12. WHU-Hi-HongHu dataset. (a) H2 imagery. (b) Ground-truth map.
(c) Legend.

TABLE III
PIXELS USED FOR TRAINING AND TESTING FROM THE HONGHU DATASET

Fig. 13. Houston 2013 dataset. (a) H2 imagery. (b) Ground-truth map.
(c) Legend.

selected from the labeled samples for model training, accounting
for 2% of the total number of pixels, and the remaining pixels
were used to test model performance, as given in Table IV.

Large-scale Houston 2018 dataset was collected for the 2018
IEEE GRSS Data Fusion Contest (Saux et al. [63]), with spatial
dimensions of 601× 3058 pixels. It covers a spectral range from
380 to 1050 nm across 50 bands. The dataset includes 504 856
labeled pixels categorized into 20 classes. Fig. 14 illustrates
the distribution of the dataset. For the Houston 2013 dataset,
50 pixels were randomly selected from the labeled samples
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TABLE IV
PIXELS USED FOR TRAINING AND TESTING FROM THE HOUSTON 2013

DATASET

Fig. 14. Large-scale Houston 2018 dataset. (a) H2 imagery. (b) Ground-truth
map. (c) Legend.

for model training, accounting for 0.2% of the total number
of pixels, and the remaining pixels were used to test model
performance, as given in Table V.

2) Experimental Settings: To validate the superiority of the
proposed method, it was compared with several state-of-the-
art models, including SVMs with a radial basis function ker-
nel [34], FDSSN [40], SSRN [41], DBMA [43], DBDA [44],
A2S2KNet [46], SSFTT [51], BS2T [52], FreeNet [55],
SSDGL [56], and CLSJE [57]. All patch-free methods were
trained for 1000 iterations on the three datasets. We selected

TABLE V
PIXELS USED FOR TRAINING AND TESTING FROM THE LARGE-SCALE

HOUSTON 2018 DATASET

Fig. 15. Classification results for the LongKou dataset. We have enlarged the
red boxed areas for a clearer comparison of the effects of different methods.
(a) H2 imagery, (b) SVM, (c) FDSSC, (d) SSRN, (e) A2S2KNet, (f) DBMA,
(g) DBDA, (h) FreeNet, (i) SSDGL, (j) CLSJE, (k) SSFTT, (l) BS2T, (m) S2PNet,
and (n) Gt.

SGD with a momentum of 0.9 and a weight decay rate of 0.001
as the optimizer. The base learning rate was set to 0.001 and mul-
tiplied by, with power = 0.9. For the patch-based methods, each
model was trained for 100 epochs with a batch size of ten sam-
ples. The window size for A2S2KNet, RSSAN, and DBDA was
9× 9 and for all others it was 7× 7. Finally, the overall accuracy
(OA), average accuracy (AA), kappa coefficient (Kappa), and
accuracy of each class were adapted to evaluate the performance
of each method. All experiments described in this section were
conducted using an RTX3090.

B. Experiment Results

1) Experiment on WHU-Hi-LongKou Dataset: Classifica-
tion results from various methods are depicted in Fig. 15. The
spatial–spectral heterogeneity of H2 imagery pose challenges for
classification. For instance, SVM relies on spectral information
for classification, misclassifying similar spectral crops, such
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TABLE VI
CLASSIFICATION ACCURACY FOR THE WHU-HI-LONGKOU DATASET

Fig. 16. Classification results for the HanChuan dataset. The first row shows the classification results, and the second is an enlargement of the white box in
the first row. (a) H2 imagery, (b) SVM, (c) FDSSC, (d) SSRN, (e) A2S2KNet, (f) DBMA, (g) DBDA, (h) FreeNet, (i) SSDGL, (j) CLSJE, (k) SSFTT, (l) BS2T,
(m) S2PNet, and (n) Gt.

as cotton and broadleaf soybean. SSRN and A2S2KNet also
exhibited poor performance with numerous pixels misclassi-
fied. DBMA and DBDA, which extract spatial–spectral infor-
mation using two branches, achieved good results. However,
there is confusion when classifying the sparsely distributed
areas within broadleaf soybean regions, limited by patch size
constraints. Patch-free methods reduces isolated misclassifica-
tions, but struggled to maintain effective boundary classification.
FreeNet and SSDGL were affected by spectral heterogeneity,
leading to noise in the classification results in areas containing
sesame and broadleaf soybeans. CLSJE exhibits undesirable ef-
fects at the boundary between rice and broad-leaf soybean. In ad-
dition, in BS2T, some broadleaf soybean pixels were incorrectly
classified as cotton. In contrast, S2PNet demonstrated superior
performance with the best visual results and minimal isolated
misclassifications. Quantitative results are given in Table VI,
with the best accuracy highlighted in bold. S2PNet accurately
identified the pixels indicating sesame, cotton, and narrow-leaf
soybeans, which are prone to spectral confusion. OA, AA, and
kappa exceeded those of the other methods. In summary, S2PNet
better addresses spectral and spatial heterogeneity than the other
tested models in the LongKou dataset.

2) Experiment on WHU-Hi-HanChuan Dataset: The classi-
fication performance of the different methods for the HanChuan
dataset is shown in Fig. 16(b)–(m). Similar to Experiment 1,
the SVM performed the worst with a considerable amount of
noise in the classification map. There were many misclassified
regions with FDSSC and SSRN. For example, most strawberry
pixels were erroneously categorized as bare soil, whereas the
bare soil was misclassified as cowpea. For DBMA, cowpea
was identified as soybean, and watermelon was misclassified
as greens and water spinach. These misclassifications in small
areas result from complex planting structures and high spatial
heterogeneity, which create challenges when determining the
optimal patch size. FreeNet, SSDGL, and CLSJE produced
smoother classification maps but still contained some misclas-
sified pixels. For example, the red roof was misclassified as a
gray roof, and the gray roof was misclassified as water. This
is because pixels in shadowed areas generally have low and
similar grayscale values, thereby exacerbating the spectral het-
erogeneity and increasing the difficulty of classification. SSFTT
and BS2T showed promising performance, but still exhibited
some flaws between strawberries and watermelons. However,
S2PNet could still effectively identify various land cover types
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TABLE VII
CLASSIFICATION ACCURACIES FOR THE WHU-HI-HANCHUAN DATASET

Fig. 17. Classification results for the HongHu dataset. We have enlarged the
red boxed areas for a clearer comparison of the effects of different methods.
(a) H2 imagery, (b) SVM, (c) FDSSC, (d) SSRN, (e) A2S2KNet, (f) DBMA,
(g) DBDA, (h) FreeNet, (i) SSDGL, (j) CLSJE, (k) SSFTT, (l) BS2T, (m) S2PNet,
and (n) Gt.

in shadow areas despite the enhanced spectral variability. The
classification accuracies of all the methods are presented in
Table VII. S2PNet significantly improved the classification ac-
curacy of categories, such as gray roofs, red roofs, grass, and
the complex planting structure of bare soil in shadow-covered
areas. The accuracy of each class demonstrates a certain level of
competitiveness.

3) Experiment on WHU-Hi-HongHu Dataset: The qualita-
tive and quantitative results of the different methods on the Hong
Hu dataset are shown in Fig. 17 and Table VIII, respectively.
Because of the diversity of crops and varieties in the Hong Hu
region, there is significant intraclass spectral variability. The
SVM classification map contained considerable noise and se-
vere misclassifications. Deep-learning-based methods generally
outperform SVM, with the poorly performing SSRN improving
the results by 16.06%, 19.79%, and 18.69% compared with the
SVM in the OA, AA, and Kappa, respectively. However, the

spectral heterogeneity of H2 imagery remains challenging. For
example, cotton pixels are misclassified as cotton firewood, and
rape pixels are identified as Brassica parachinensis. In addition,
there are many isolated misclassification areas on the map, which
indicates that patch size can significantly affect the classification
results. FreeNet and SSDGL showed competitive performance
with smoother classification graphs, and OA and AA were im-
proved by 25.82% and 39.83% relative to the SVM, respectively.
However, misclassification of rape with small Brassica chinensis
and white radish with Brassica parachinensis still occurred. In
comparison, S2PNet achieved better results in classes with high
spectral complexity, demonstrating the highest classification
accuracy and the best visual performance.

4) Experiment on Houston 2013 Dataset: Table IX and
Fig. 18 display the classification results for the Houston 2013
dataset. This dataset includes many similar land cover categories
with strong spectral heterogeneity and a fragmented, highly
discontinuous distribution of test samples. These characteristics
result in poor performance for most models that rely on window
sizes. For example, SVM, SSDGL, and CLSJE exhibit numer-
ous misclassifications when distinguishing between road and
highway. DBMA and DBDA struggle to effectively differentiate
between Parking-lot-1 and Parking-lot-2. In contrast, our S2PNet
effectively handles this spectral confusion in secondary classifi-
cation, flexibly capturing contextual changes around pixels, and
achieving optimal and most stable classification results across
all metrics.

5) Experiment on Large-Scale Houston 2018 Dataset: Ta-
ble X and Fig. 19 present the classification results for the
large-scale Houston 2018 dataset. As the dataset size increases,
all methods exhibit significant performance declines. The three
metrics for SVM are only 60.92, 49.47, and 53.94. Among
CNN- and attention-based methods, the most stable performer,
FreeNet, achieves an OA of only 74.58 and a Kappa of 68.83.
Transformer-based methods demonstrate their superiority. The
classification accuracy of SSFTT reaches 75.96, which is a
1.38% improvement over FreeNet, with Kappa increasing by
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Fig. 18. Classification results for the Houston 2013 dataset. (a) H2 imagery, (b) SVM, (c) FDSSC, (d) SSRN, (e) A2S2KNet, (f) DBMA, (g) DBDA, (h) FreeNet,
(i) SSDGL, (j) CLSJE, (k) SSFTT, (l) BS2T, (m) S2PNet, and (n) Gt.

Fig. 19. Classification results for the large-scale Houston 2018 dataset. We have enlarged the red boxed areas for a clearer comparison of the effects of different
methods. (a) H2 imagery, (b) SVM, (c) FDSSC, (d) SSRN, (e) A2S2KNet, (f) DBMA, (g) DBDA, (h) FreeNet, (i) SSDGL, (j) CLSJE, (k) SSFTT, (l) BS2T,
(m) S2PNet, and (n) Gt.

Fig. 20. Comparison of the purification factor and groups numbers. (a)–(e) Impact of different combinations of purification factors and group numbers on
classification accuracy across the LongKou, HanChuan, HongHu, Houston 2013, and Houston 2018 datasets. In these plots, the x-axis represents the PF, the y-axis
represents the group numbers, and the z-axis represents the OA.
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Fig. 21. Impact of learning rate on the model accuracy.

Fig. 22. Visualization of T-SNE features of S2PNet on five datasets, where each sample of different categories is represented by color dots. (a)–(e) Distribution
of the original datasets. (f)–(j) Distribution of features extracted by S2PNet.

TABLE VIII
CLASSIFICATION ACCURACIES FOR THE WHU-HI-HONGHU DATASET

1.23%. We speculate that the increased spatial heterogeneity due
to the larger spatial scope favors Transformer-based methods,
which excel at handling long-range dependencies, thus achiev-
ing higher accuracy over a large area. In comparison, our method
still achieves the best results despite the more severe spatial

heterogeneity in the large-scale dataset, with OA, AA, and
Kappa improving by 1.53%, 3.72%, and 2.15%, respectively,
over the second-best method. Our classification result map also
more accurately reflects the real land cover situation and retains
more edge details.
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TABLE IX
CLASSIFICATION ACCURACIES FOR THE HOUSTON 2013 DATASET

TABLE X
CLASSIFICATION ACCURACIES FOR THE LARGE-SCALE HOUSTON 2018 DATASET

TABLE XI
CLASSIFICATION ACCURACIES OF S2PNET WITH DIFFERENT STRUCTURE ON FIVE DATASETS

V. DISCUSSION

A. Ablation Study for the Structure of S2PNet

We conducted ablation experiments on five datasets to vali-
date the effectiveness of MSSP, GLMG, and DSSP in H2 imagery
classification. Table XI presents the classification accuracies

for different network structures. The GLMG module enhances
features by incorporating both global and local information,
making them more discriminative. This effect is particularly
evident in the HanChuan dataset. The MSSP module performs
exceptionally well in the Hong Hu dataset, which has high
spectral heterogeneity, significantly improving Kappa and AA
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values. This demonstrates its strong ability to mitigate spectral
mixing issues. The DSSP module further enhances the model’s
flexibility and classification performance by addressing the
semantic gap. Overall, the inclusion of MSSP, GLMG, and DSSP
modules allows S2PNet to significantly outperform the baseline
model across all tested datasets. The specific advantages of each
module in different datasets demonstrate their adaptability and
effectiveness in various scenarios. The synergistic effect of these
modules not only improves the classification accuracy but also
enhances the robustness and generalization ability of the model,
making it more capable of handling H2 imagery classification
tasks in highly heterogeneous spectral environments.

B. Discussion on the Purification Factor and Groups Numbers

We conducted a detailed comparison of the impact of different
combinations of purification factors and grouping numbers on
classification accuracy across five datasets, as shown in Fig. 20.
The results exhibit a “hump-shaped” trend where classification
accuracy initially increases and then decreases as the purification
factor increases. Specifically, when the purification factor is
set to 4, the classification accuracy reaches its peak. This in-
dicates that the model effectively removes noise while retaining
sufficient critical information, achieving optimal classification
performance. When the purification factor is less than 4, the
model retains some noisy bands, which interferes with the
classification process and reduces accuracy. On the other hand,
when the purification factor exceeds 4, the model begins to
obscure too much band information. While this reduces noise, it
also leads to the loss of significant information, preventing the
model from accurately distinguishing between different classes.
This suggests that an overly high purification factor can also
negatively impact the classification performance. In addition, as
the number of groups increases, the flexibility in band combi-
nations improves, leading to a significant boost in classification
accuracy. Specifically, increasing the number of groups reduces
the number of bands within each group, allowing the model to
select and combine bands with greater granularity. This enables
the model to better capture subtle differences between bands,
thus enhancing classification accuracy. The grouping mecha-
nism also reduces noise interference during training, further
improving the model’s robustness.

C. Sensitivity in Relation to the Learning Rate

We discussed the learning rate, and Fig. 21 illustrates the
classification accuracy under different learning rates across the
three datasets. As the learning rate increased, accuracy tended to
decrease. This may be related to the Hughes phenomenon, which
is caused by too few training pixels and too many bands. In par-
ticular, when dealing with high-dimensional data, excessively
high learning rates may cause the model to adapt too quickly
to the training data, even exhibiting signs of overfitting in the
training set.

D. Feature Visualization

To more intuitively demonstrate the feature representation
capability of our method, we utilized T-SNE [64] to map the

original high-dimensional data features and the learned spectral
spatial features to a 2-D space. As shown in Fig. 22(a)–(e), due
to the high spectral heterogeneity of the H2 imagery, there is a
significant overlap between samples from different classes in the
datasets. However, our method effectively removes noise bands
and extracts spatial information, resulting in more discriminative
features. As illustrated in Fig. 22(f)–(j), overlapping classes are
better distinguished. Specifically, in the red box of the WHU-
Hi-HongHu and Houston 2018 datasets, the original data show
severe mixing of all classes. After feature extraction by S2PNet,
the distribution of samples within and between classes becomes
clearer and more uniform. Similar samples cluster together,
reducing intraclass distances, while interclass distances in-
crease. This indicates that S2PNet significantly improves feature
representation, leading to more accurate and reliable classifica-
tion results.

VI. CONCLUSION

In this study, an interactive learning framework is proposed
to address the spatial–spectral heterogeneity challenges posed
by H2 imagery. Specifically, the MSSP was introduced to
filter out noisy bands, enabling the search for specific spectral
combinations for each class to effectively address the spectral
confusion caused by crop subclasses, shadows, and other factors.
In addition, the GLMG module is devised to handle spatial het-
erogeneity by mutually guiding and complementing image and
pixel-level features. Finally, the introduction of the DSSP mod-
ule significantly reduces the semantic gap between features at
different stages of the network, facilitating harmonious informa-
tion flow. Experimental results on five different datasets demon-
strate that S2PNet significantly outperforms other state-of-the-
art methods in terms of classification performance, particularly
in areas with similar crop spectra and complex planting struc-
tures, where its classification accuracy is significantly enhanced.
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