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D4SC: Deep Supervised Semantic Segmentation for
Seabed Characterization and Uncertainty Estimation
for Large Scale Mapping

Yoann Arhant
and Aleksandra Pizurica

Abstract—Seabed characterization consists in the study of the
physical and biological properties of the of ocean floors. Sonar is
commonly employed to capture the acoustic backscatter reflected
from the seabed. It has been extensively used for automatic target
recognition (ATR) within mine countermeasures (MCM) opera-
tions in shallow waters. However, conventional machine learning
(ML) and deep learning approaches face challenges in automat-
ically mapping the seabed due to noise and limited labels. Thus,
this article introduces the Deep Supervised Semantic Segmentation
model for Seabed Characterization (D4SC), tailored for addressing
challenges associated with sonar data. D4SC employs convolutional
neural networks, specific high-resolution (HR) synthetic aperture
sonar (SAS) data preprocessing and data augmentation methods,
including the novel boundary pixel label rejection, and moves from
the low-label regime. Performance comparisons against standard
methods in the literature are conducted, demonstrating D4SC’s
superiority on challenging HR SAS survey datasets from real-world
MCM exercises at sea. In addition, this work thoroughly explores
the effect of the quality of the datasets, the robustness of training
models on Out-of-Distribution data, and the estimation of epistemic
uncertainty to refine predictions at large scale.

Index Terms—Deep learning (DL), image segmentation,
synthetic aperture sonar (SAS), uncertainty.

I. INTRODUCTION

amination of the physical and biological attributes of sub-
merged terrains. This encompasses various methodologies rang-
ing from direct observation by divers and remotely operated ve-
hicles, to more indirect approaches like seabed sampling. Sonar
technology, capable of capturing acoustic backscatter over wide
areas, has emerged as a particularly valuable tool in delineating
boundaries within relatively homogeneous seabeds [1], [2], [3],

S EABED characterization involves the comprehensive ex-

Received 1 May 2024; revised 31 August 2024; accepted 6 September 2024.
Date of publication 19 September 2024; date of current version 11 October 2024.
This work was supported by the Belgian Royal Higher Institute for Defence
under Grant DAP/21-11. (Corresponding author: Yoann Arhant.)

Yoann Arhant is with the Department of Communications, Information,
Systems and Sensors, Royal Military Academy, 1000 Brussels, Belgium, and
also with the Department of Telecommunications and Information Process-
ing, Ghent University, B-9000 Gent, Belgium (e-mail: yoann.arhant@mil.be,
yoann.arhant@ugent.be).

Olga Lopera Tellez and Xavier Neyt are with the Department of Commu-
nications, Information, Systems and Sensors, Royal Military Academy, 1000
Brussels, Belgium (e-mail: olga.loperatellez@mil.be; xavier.neyt@mil.be).

Aleksandra PiZurica is with the Department of Telecommunications and
Information Processing, Ghent University, B-9000 Gent, Belgium (e-mail:
aleksandra.pizurica@ugent.be).

Digital Object Identifier 10.1109/JSTARS.2024.3465231

, Graduate Student Member, IEEE, Olga Lopera Tellez

, Xavier Neyt"™,
, Senior Member, IEEE

[4], [5] and automatic target recognition (ATR) within mine
countermeasures (MCM) contexts. ATR methods for MCM have
achieved remarkable detection accuracies on behalf of by recent
developments in autonomous underwater vehicles (AUVs) and
high-resolution (HR) synthetic aperture sonar (SAS) sensors [6],
[71, [8]. Despite exceeding 95% in benign environment [9], [10],
these works have also reported severe performance drops in
challenging environments including sandwaves, rocky terrains
or fields of seagrass. In these scenarios, increasing the sensor’s
ground resolution, to enhance target detection and recognition
via low-altitude surveying, increases the amount of acoustic
shadows possibly concealing targets. Consequently, accurate
seafloor characterization is paramount for MCM operations, not
only to qualify ATR confidence in specific areas but also to guide
mission planning and enhance the autonomy of AUVs.
Additionally, the interpretation of the single look com-
plex (SLC) SAS data obtained with the interferometric sen-
sor presents significant challenges owing to the complicated
propagation of sound underwater and the presence of various
sources of noise, most notably aperture synthesis errors origi-
nating from imperfect motion compensation and speckle noise
arising from coherent imaging. Other sources of uncertainty
originate from distribution shifts such as different acquisition
parameters employed on the sensor at survey time or seasonality.
Moreover, the seabed characterization task is hardly discrete
and seabed are in fact a mixed composition of sediments of
different grain size [11], potentially mixed with organic derived
matter. Furthermore, the intricate responses from objects smaller
than the sensor’s ground resolution such as pebbles or shells
exacerbate the difficulty of seabed characterization with single
frequency sonar. In light of these challenges, this work aligns
with prior research efforts [12], [13], [14], [15], [16], decoupling
the seabed characterization task over smaller Regions of Interest
(Rol) on which perform semantic segmentation. This consists
in feeding the acoustic backscattered intensities, into models
producing segmentation maps by assigning a label to each pixel.
However, none of the aforementioned conventional artificial
intelligence (AI) approaches, either machine learning (ML)
or deep learning (DL), have addressed the automatic seabed
characterization at large scale. Therefore, this work introduces
the Deep Supervised Semantic Segmentation model for Seabed
Characterization (D4SC). Its contributions are as follows.
1) Itleveragesthe work of [17] within the low-label regime by
extending the DL end-to-end pipeline, with novel bound-
ary label rejection, specific data augmentation methods
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and tayloring existing Bayesian uncertainty prediction
refinement for SAS data.

2) It focuses on real-world HR SAS MCM operational
datasets, characterized by significant variability in survey
acquisition parameters, extensive survey areas in shallow
waters worldwide and most detailed annotations. D4SC
achieves state-of-the-art results on those datasets, with
one left unseen at training for Out-of-Distribution (OoD)
discussions. Finally, this work also thoroughly analyses
the biases induced by the annotation process of SAS
training data over the proposed end-to-end pipeline.

3) It follows [18], [19], and [20] on Bayesian uncertainty
estimation over synthetic aperture radar (SAR) and SAS
datasets, respectively, and it proposes an in-depth evalu-
ation of those uncertainty estimation methods over SAS
datasets.

The rest of this article is organized as follows. The related
work is introduced in Section II, followed by a description
of the SAS dataset and associated challenges in Section III.
Details of the D4SC model and its end-to-end pipeline are
provided in Section I'V. The results of D4SC over the dataset are
presented in Section V, further validated through an extensive
ablation experiment. Section VI explores multiple experiments
such as the effect of pretraining and the effectiveness of the
epistemic uncertainty estimation method based on Monte Carlo
Dropout (MCD), Deep Ensemble (DE) and both of them, to
refine prediction mappings. Finally, Section VII concludes this
article.

II. RELATED WORK

A. ML Tailored to Sonar Data

Despite SAS being inspired from SAR, the complete end-to-
end processing has to be tailored from the sensors to the final
post-processing steps due to the intrinsic differences of the prop-
agation, namely the nature of waves, mediums, absorptions, etc.
For example, the popular phase gradient autofocus (PGA) was
adapted for SAS in [21]. Hence to harness SAS data, prior stud-
ies [14], [16], [22], [23] have employed the multiple-instance
learning via embedded instance selection, which involves com-
puting features at the superpixel level and subsequently applying
possibilistic clustering or possibilistic classification for acoustic
segmentation. However, these methodologies assumes that both
the distribution and the model are well suited to describe all
relevant clusters, a condition unlikely to hold in real-world
scenarios. Alternatively, [12] has directly grouped pixels into
target label maps, leveraging lacunarity and a simple maximum
likelihood estimator. In addition, [20], [24], and [25] have first
concurrently addressed the challenges of large-scale automatic
mapping of the seabed by crafting standard Computer Vision
(CV) features to feed to a Gaussian process classification and an
adaptive hierarchical Dirichlet process clustering, respectively.
However, despite these efforts, these methods have led to unsat-
isfactory results since the resulting unprocessed classification
have reached 80% pixel-accuracy and 90% Rol accuracy, re-
spectively, over simple real-world SAS datasets.

B. Standard DL Approaches

Conversely, DL culminates with the application of Trans-
former models [26], [27], [28], [29], reaching billions of parame-
ters and capable of handling the training on datasets comprised of
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billions of images [30], [31]. This paradigm is the high-data and
high-label regime leading to models being highly robust to noise
and outliers. However, when confronted with smaller datasets
comprising few annotated images, falling within the low-label
regime, alternative learning strategies become necessary such
as unsupervised, semisupervised, and self-supervised learning
(SSL) with convolutional neural networks (CNN). Standard
CV SSL approaches often rely on Contrastive Clustering [32]
or more generalized contrastive learning (CL). Those methods
consist in learning similar feature representations from different
augmented views of a same image. Some examples of SSL
with CL can be found in [26], [27], [32], [33], and [34] for
image classification, or even [35] for semantic segmentation.
While standard CL methods depend on many negative examples
to repel the feature representations of different images, [34]
train instead an online model trying to predict, with an extra
convolutional layer, the same feature representations as the one
of a different augmented view of the same image but inferred
by the target network. This network is defined as an exponential
moving average of the online model weights. This approach
has shown remarkable performance while reducing the self-
supervised training time. It was extended to semantic segmen-
tation in [35] by aligning the different feature representations
at the deepest layer of the feature extractor, which in a CNN
is a low-resolution grid of features, and applying a similarity
loss between the part of the grid in common. This method has
outperformed the existing image classification SSL pretraining
for object detection and semantic segmentation downstream
tasks. In contrast, other approaches exploiting the high-data
regime can adopt active learning (AL). They encompass iterative
human-in-the-loop methods to optimize annotation resources
such as in [36], [37], [38], and [39].

C. DL Tailored to RS

The remote sensing (RS) community gathers different types
of sensors such as Optical, SAR, Multispectral, or Hyperspec-
tral acquired either airborne or by satellites. For instance, [40]
and [41] merged multiple of those Satellite-based imagery into
classification datasets. The authors in [40] also proposed a mul-
timodal and multiresolution approach with domain adaptation
to address the semantic segmentation of the different geographic
zones. This variety in data and tasks leads to a overwhelming
diversity of methods addressing them. For example, [42], [43],
[44], [45], [46], and [47] focused on unsupervised tasks. The
authors in [42], [44], and [46] employ low rank matrix rep-
resentation methods for multispectral data based on the deep
unrolling of the Alternating Direction Method of Multipliers
algorithm. In addition, [45], [47], and [48] adapted successful
DL methods from CV to RS. Specifically, [47] extended the
work of [29], to multitemporal and multispectral data to train a
Vision Transformer. The authors in [48] harnessed [49], which
was primarily designed for explaining the interest in knowledge
distillation [50], to assess the quality of retrained models on
SAR data for classification. Despite its efficiency, this methods
necessitates the instance segmentation labels of the object in
order to count the number of informational points projected on
the image.

The existing literature on seabed characterization from SAS
data has also explored several of the aforementioned DL method-
ologies derived from CV, with studies such as [51] and [52], re-
spectively, investigating semisupervised learning and a CL term
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based on geographic distance. In scenarios characterized by both
low-label and low-data regimes, successful DL approaches often
incorporate domain adaptation with transfer learning strategies
including [51] and [53]. These methods also leverage deep
AutoEncoder architectures to exploit the inherent regularization
effect of dimensionality reduction in the embedded space, which
also serves as an unsupervised pretraining method with a recon-
struction loss in [54]. Specifically, [13] and [55] and [51] and [53]
have trained a plain AutoEncoder, a ladder network, and U-Net
based models, respectively. Furthermore, [51] have explored
unsupervised pixel-wise segmentation using superpixels and
transfer learning, aiming to leverage knowledge learned from
natural images.

In [53], MLSP-Net proposed as a differentiable angle of
arrival decomposition method employing fast Fourier transform
and a filter-bank learned by a CNN model. This methodology
incorporates multiple azimuth pass-band filters in k-space, ef-
fectively simulating a time decomposition as the AUV pro-
gresses forward during data acquisition. This approach aids
in the recovery of information from the movement of fishes
within the sensor’s line of sight and addresses some shadow
effects arising at long ranges. Inspired by the principles of SAR
azimuth multilook processing, the work of [53] tailored the
conventional CNN architecture to accommodate SLC SAS data.
Unlike conventional methods that mitigate noise by averaging
the looks, this method fed the CNN output features maps from
each look into a convolutional long short-term memory network.
This represents the third attempt to characterize the seabed with
SLC data, rather than discarding them in favor of intensities, as
in [56], [57].

D. Uncertainty Estimation in DL

While DL models achieve high performance for a wide variety
of tasks, they often exhibit high confidence in misclassified
predictions or OoD patterns, then requiring recalibration for
critical tasks [58]. The confidence of DL models is defined
as the maximum of their output, particularly in classification
tasks where it is represented by softmaxed logits corresponding
to probability vectors. Hence, numerous approaches have been
developed to address uncertainty estimation of DL models, for
which a comprehensive survey can be found in [59].

For uncertainty estimation, [60] have introduced the MCD,
which involves keeping dropout activated during inference to
produce nondeterministic prediction vectors. This approach
provides a Bayesian Interpretation as Variational Inference by
enabling the estimation of the posterior distribution of the
model’s weights given the input data distribution. By averaging a
sufficiently high number of nondeterministic predictions, MCD
allows for the quantification of epistemic uncertainty inherent
in the end-to-end learning pipeline and the limited coverage of
the input data distribution over the distribution of the real-world
task. In [61], this method has been extended to semantic seg-
mentation and aleatoric uncertainty estimation, which accounts
for uncertainty arising from the data acquisition process in
regression tasks. The latter has been investigated for RS in [18]
and [62].

Alternatively, other approaches rely on DE [63], [64], [65]
to estimate the posterior distribution of the model’s weights.
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Conversely in [66] and [67], the CNN models are trained with
specific optimizers to learn a Laplace approximation of the
posterior. Moreover in [68], the CNN derived Dirichlet Prior
Network learns the conjugate prior on the softmaxed distribution
by considering it as a Dirichlet distribution. To achieve this, this
method employs a dual loss and train over both in-distribution
and OoD datasets to learn the boundary between them, effec-
tively distinguishing between in-domain uncertainty and OoD
uncertainty. [37] compares aforementioned Bayesian derived
methods with the CV AL task, while [69] and [70] extended such
a benchmark for RS, respectively for change detection and se-
mantic segmentation. In addition, [19] also performed Bayesian
uncertainty estimation for SAR-based road segmentation and
OoD.

In contrast, other uncertainty explanation methods often rely
on Grad-CAM [71] which analyzes the gradients of the final
convolutional layer for each class, creating a heatmap that
highlights the contribution of each pixel to the final classifi-
cation. In addition, [72] extended it for semantic segmentation.
Conversely, Grad-CAM [71] being unable to address missed
object detections, [73] extended [74] for uncertainty explanation
in terms both of regression of the localization and classification.

III. DESCRIPTION OF THE DATASETS

Over the past decade, the Centre for Maritime Research and
Experimentation has conducted numerous sea surveys using
the MUSCLE AUYV, which is equipped with a high-frequency
side-looking interferometric stripmap SAS sensor operating at
a central frequency of 300 kHz. Given the low altitude of the
AUYV, about 10 m, it gathered a large amount of data at a high
ground resolution up to of 1.5 cm acrosstrack, i.e., in ground
range. The surveys employed in this study, comprehensively
described in [12], are decomposed into to 18 627 SAS images,
hence falling under the high-data regime. They are characterized
below as follows with emphasis placed on patterns not addressed
in the final classification, highlighted in italics.

1) Arise 1 (ARII): Conducted in the Mediterranean Sea,
Italy, the survey is comprised of Megaripples, Sandwaves, Sand
Ripples, Fine Sand, Medium Sand, Sand with Shells and Shell
Debris, Mud, Alive Posidonia and its Dead Matte. In addition,
the survey showcases human activity traces including trawl-
ing marks, small underwater objects like trash metal oxygen
cylinders or fishing gear, shipwrecks, underwater cables, and
pipelines.

2) Colossus 2 (COL2): Conducted in the North Sea, Latvia, the
survey is comprised of Megaripples, Sandwaves, Sand Ripples,
Fine Sand, Medium Sand, Coarser Sand with Granule, Pebbles,
Medium sized Rocks, Boulder, and Rock Outcrops. In addition,
the survey presents trawling marks.

3) Minex 18 (MNX18): Conducted in the Mediterranean Sea,
Spain, the survey is comprised of Megaripples, Sandwaves, Fine
Sand, Medium Sand, Mud, Alive Posidonia, and its Dead Matte.
With different acquisition parameters and settings as distribution
shift, the Minex 18 survey displays different aperture synthesis
errors and low-constrast noise.

In the absence of in-field analyses and due to the inherent
challenges to SAS data, reliably characterizing the seabed, espe-
cially solely based on SAS images, is highly challenging. Thus,
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Examples of pure class patch of size 512 x 512, where all pixels get assigned the same class, sampled from the COL2 and ARI1 datasets sorted by

increasing subjective operator’s difficulty to annotate. While (a) and (b) are well defined, (c), (d), and (e), respectively, show the effects of time and seasonality
with the growing Posidonia, human activity with Trawling Marks engraved in Flat Sediments, and finally long range shadows and motion estimation errors on
Sand Ripples. (a) Sandwaves (SW). (b) Rocks (RK). (c) Posidonia (PS). (d) Flat Sediments (FS). (e) Sand Ripples (SR).

aforementioned characterizations are simplified into five oper-
ational semantic classes for MCM applications [12]: Locally
Flat Sediments (FS), Posidonia (PS), Rocks (RK), Small Sand
Ripples (SR), and Sandwaves (SW). Examples of pure class
patch samples can be found in Fig. 2. In addition, an extra
Unknown (U.K.) class was introduced to accommodate any
pattern impossible to fathom without more global context, either
resulting from loss of contrast at long range or shadows cast by
tall formations, as illustrated in Fig. 4(a) and (b). Similarly to
the background class in Semantic Segmentation in CV, errors

on such pixels are disregarded both during backpropagation at
training and in the computation of evaluation metrics during
testing. All the aforementioned difficulties contribute to low
quality annotations accounting for a data distribution with a lot
of label noise.

The degenerate input data distribution refers to cases where
identical data points are assigned different labels. In machine
learning (ML), this can arise from annotation errors or hash
collisions within the feature extractor. While this concept is
straightforward, it becomes more complex in the context of deep
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(a)

(b)

Fig. 3.
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(d)

Diagram illustrating the random data augmentation pipeline consisting of Flips, Rotation, Scaling, Translation, Intensity and Contrast Jittering applied

to (a) following classical data augmentation schemes from CV for classification and the proposed one (c). The resulting cropped patch represented by the size of
the image in (a) only retains existing pixel information producing the zero-padded 256 x 256 pixels patch in (b), whereas the presented method fills the cropped
patch with natural input information (d), represented by the lighter square also in (c).

TABLE I
DATASETS DESCRIPTION AND DISTRIBUTION OF THE TRAIN AND TEST DATASET OVER COL2 AND ARI1
Full-size 2000 x 4400 images 256-size patches 512-size patches
Dataset Total Labeled Total Labeled Total Labeled Labeled Pixels
COL2 | ARIT | COL2 | ARIT | COL2 | ARIT | COL2 | ARIT | COL2 | ARIl | COL2 | ARII
IGARSS 2023 [17] 16 0 2736 0 800 0 141 M
Train 8219 7613 70 84 14M | 1.3M | 11965 | 14086 | 411k | 381k 3500 4129 1232 M
Test 13 14 2379 | 2078 698 609 237 M
learning, where the feature extractor is integrated in the model, TABLE II
and tasks like semantic segmentation are more sophisticated. In PIXEL CLASS LABEL DISTRIBUTION IN THE DIFFERENT SURVEYS:
these scenarios, it’s more apprpprlate tq focus on the qual}ty of Survey UK SR RK SW = S
the decision boundaries in relation to their support at the ultimate COL2 12% | 24.7% | 148% | 52% | 54.1% -
layer, which separates classes, as the result of the optimization ARII 1.7% - - 20.1% | 71.3% | 6.9%
process over the model. Moreover, with deep feature extractors Train Set | 15% | 11.3% | 6.8% | 13.3% | 63.4% | 3.1%
like those in [75], where the receptive field often surpasses the Test Set | 6.2% | 13.7% | 6.5% | 189% | 49.6% | 5.0%
’ p P MNXIS | 1.7% | - — [ 472% | 190% | 32.1%

size of the output image, defining a degenerate input distribution
is impractical; the issue is more accurately described as label
noise.

Table I summarizes the repartitions of the different train and
test sets across COL2 and ARI1. Particularly, the Train Set is
obtained by annotating manually 154 randomly selected images
from ARII and COL2. This Train Set is an extension of the
low-label regime dataset from [17]. To constitute the Test Set,
one of each pattern sample not addressed in the final charac-
terization altogether with images encompassing a high number
of boundary pixels are manually labeled from ARI1 and COL2.
Such an ambitious Test Set measures the performances of models
across an extensive variety of seabed configurations for reliable
large-scale mapping. Given that locally Flat Sediments are pre-
dominant in shallow waters, this class is the most represented in
the Train Set, accounting for up to 63.4% of total pixel labels,
thereby exacerbating the class imbalance issue, as depicted in
Table II. Moreover, the distribution of the pixel class labels in
MNX18 differs significantly from that of the Train Set, enabling
further validation of the model’s robustness to imbalanced data
through evaluation on this dataset.

In summary, this study focuses on real-world HR SAS MCM
operational datasets, characterized by significant variability in
survey acquisition parameters and extensive survey areas in
shallow waters worldwide. The annotations associated with
these challenging datasets are the most detailed in the seabed

characterization literature with SAS data, as shown in Fig. 4(b),
Appendix B, and Fig. 13(c) and (d), compared to [20], [51], and
[76]. These details include instance segmentation of semantic
patterns smaller than a patch, such as individual rocks, spot
of posidonia, dunes composing sandwaves, as well as finely
localized boundaries between classes.

IV. METHOD

In this section, the complete end-to-end pipeline encompass-
ing the training and inference of the CNN is introduced. It
consists in data preprocessing and augmentation, CNN model
architecture and initialization, CNN model training schemes,
and some postprocessing methods for inference. It is summa-
rized in the Fig. 1. While the training updates the weights by
backpropagating the gradient of the loss function, which is
computed from the forward pass, during the backward step, the
inference corresponds the forward evaluation of the model.

A. Data Preprocessing

To preprocess the SLC data acquired by the SAS sensor, this
article converts the backscatter coefficients to intensities, apply
the normalization a), compress the dynamic range of the SAS
data b), interpolate the intensity maps c), optionally reject the
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(a) (b)

(€9 ()

* * c gd c 1“" * " B Unknown B Sandwaves
onhidence Lolormap Flat Sediments M Posidonia

Fig. 4. Example of normalized SAS Backscatter Intensities (a) from a difficult SAS image from the Test set. It displays a boundary between Soft Mud, locally
considered flat, with Medium Sand arranged in Sandwaves, where growing Alive Posidonia also arranges in ripples pattern. Its associated ground truth is depicted
in (b). At annotation time, the long-range loss of contrast, due to motion compensation issues in the aperture synthesis, resulted in patterns impossible to fathom,
hence the annotator labeled such pixels as Unknown. In addition, the Unknown pixels at the boundaries between two classes corresponds to the Boundary Label
Rejection (BLR) step. Comparison between deterministic inference standard confidence (c), associated predictions (d), and the DE average probability vector
confidence derived from entropy (e), and associated predictions (f) are also presented. The DE average probability vector OACC is 90.8%. This corresponds to
summing out the error map (g). The refined predictions (h) from thresholding the associated confidence map (e) raise even more this OACC up to 91.8% for
74.6% PPC by rejecting sandwaves being predicted as Posidonia, recovering from misclassifications as shown in the error map (g). (a) Normalized Backscatter
Intensities. (b) Ground truth map. (c) Deterministic inference standard CNN confidence. (d) Deterministic inference predictions. (e) DE confidence from Entropy.
(f) DE average predictions. (g) DE average error map. (h) DE refined predictions.
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boundary labels of the ground truth d) and extract patches for
minibatch training f).

a) Median Normalization: This work follow the procedure
described in [77] to take into account the absorption of sound in
range, the grazing angle and the ensonification pattern, by nor-
malizing acrosstrack vectors by their median before normalizing
alongtrack vectors by their normalized median values.

b) Logarithmic Compression: Typical SAS intensities in a
single image can span across nine orders of magnitude which can
be cumbersome to disentangle for residual CNNs models that
learn slight differences from identity [78], therefore images are
compressed in logarithm scale as shown in Fig. 4(a). In addition,
the log-scale scattering average strength of the seabed response
is close to linearly correlated with the sediment grain size at
fixed grazing angle as reported in [79].

¢) Square Grid Interpolation: As in [77], images at resolution
1.5 cm in ground range and 2.5 cm in azimuth are interpolated
to a square grid of 2.5 cm. This enables us to avoid introducing
elastic deformations with the rotational part of the data augmen-
tation.

d) Boundary Label Rejection (BLR): Although polygons were
drawn to preserve boundaries between classes, as stated by [12],
the annotation task is hard and sometimes the resulting borders
are rather arbitrary. Therefore, a morphological Erosion opera-
tion is applied with circular kernel of 15 pixels to all class label
maps, effectively rejecting boundaries into the Unknown class,
as the weak labels of [53]. The effect of this preprocessing step
can be observed in Fig. 4(b). This approach differs from [80],
which enhances semantic segmentation results in CV by pre-
dicting a boundary map. Subsequently and within the model,
postprocessing operations are conducted to refine the class label
maps with this boundary map.

e) Patch Extraction: At the end, the large sonar images of
size 4400 x 2000 and their corresponding ground truth maps
are split into squared patches of size either 256 x 256 or 512 x
512. This method, using a sliding window, divides large images
into smaller patches, potentially overlapping depending on the
stride. This simplifies data augmentation and DL training with
minibatches, which both help regularize the convergence of the
model.

B. Data Augmentation (DA)

As neural networks grow deeper, they often require more
data to achieve satisfactory performance. Augmenting datasets
extensively can be one way to address this need. While tradi-
tional computer vision approaches to data augmentation typi-
cally involve affine and color-space transformations, they are
extended with a specific emphasis on the physical characteristics
of sonar data, as illustrated in Fig. 3. However, directly applying
these augmentations the same way as in CV tasks can lead to
undesirable outcomes in seabed semantic segmentation. This
is because such augmentations may introduce nonreal looking
textures, create nonnoisy seabed representations, or generate
unrealistic shadows in the input distribution. To address this
concern, on-the-fly augmentations are performed over larger
input patches, ensuring that the final crop only contains natural
input information [see Fig. 3(d)]. However, this approach comes
with a tradeoff as patches closer to the edges than one patch
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size cannot be augmented in this manner. In addition, since
shadows are only cast in range, the proposed method limits the
application of rotations to small random angles, under 15°, to
keep the physical meaning of sonar images.

C. Architecture Design

In contrast to [17], the labeled Train Set was significantly
expanded by annotating ten times more images, as depicted in
Table I. Consequently, this dataset no longer falls within the low-
label regime, enabling the use of deeper and more reliable CNNGs.
Thus, D4SC’s CNN architecture builds upon the foundation of
Deeplab [81], with areplaceable feature extractor as the encoder.
Feature extractors such as those proposed by Tan et al. [75]
replaces the U-Net based feature extractor.

The decoder, which includes bilinear upsampling operations
and skip-connections, is automatically generated based on the
number of decimations introduced in the encoder. Moreover,
convolution layers, excluding the initial one, are substituted
with the residual blocks of EfficientNet [75]. These blocks have
been demonstrated to be state-of-the-art on embedded systems
with limited cache memory, as evidenced by the work of [75]
which demonstrated their effectiveness across various sizes and
applications. The resulting D4SC model is another Fully Con-
volutional Network (FCN) [82], virtually capable of processing
images of any size and aspect ratio.

D. Model Initialization and Training

When initializing the weights of CNN models, this article fol-
lows the procedure outlined in [83]. This initialization method,
originally developed for residual networks, has demonstrated
faster convergence and improved performance for a wide range
of applications and has consequently been adopted.

According to [84], under the assumption of infinite time
and a nondegenerate input data distribution, over-parameterized
models always converge to the global minimum, thereby yield-
ing the same predictions regardless of different initialization.
However, this ideal scenario is hardly encountered in the seabed
characterization datasets due to their arbitrary boundaries and
loss of contrast at long range, this is the reason why the proposed
method trains multiple D4SC models randomly initialized and
then selects the best converged one, achieving peak performance,
for large scale mapping.

In addition, the Train Set is partitioned into training and
validation sets, with a split of 90% and 10%, respectively. To
prevent the apparition of outlier results due to insufficient train-
ing of the CNN, an early stopping strategy with patience is em-
ployed. This strategy continues backpropagating the balanced
cross-entropy loss until no improvement over the validation set
can be observed, ensuring greater replicability of the complete
training pipeline. Furthermore, as standard approach to address
class imbalance in the input data distribution, the contribution
of pixels in the loss are weighted by the inverse of class label
frequency in the ground truth. The initial learning rate is set
at 0.0015 and is employed within an Adam Optimizer strategy,
eliminating the need for manual adjustment. In addition, small
dropout rate of 0.05 and weight decay of 10~ are introduced as
regularizers. To insert dropout layers in the residual models, this
work adapts the findings of [85] to different feature extractors.
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The training phase, which typically ranges from one to a
few hours, is sufficiently fast to conduct ablation experiments
testing different metaarchitecture parameters, resulting in D4SC
architecture, and to evaluate the consistency of model conver-
gence. This is validated by the standard deviation of the mean
Accuracy (mACC) across the 256-size patch Test Set of models
randomly initialized repeatedly trained, as statistical dispersion
metric accounting for the reliability of a model convergence.
This can also be visualized using box-and-whisker plots, as
shown in Figs. 8 and 9.

Otherwise, pretrained models are also retrained, as a kind of
diverging initialization in the domain adaptation paradigm. This
article either keeps the pretrained weights of the feature extrac-
tor models from ImageNet [86], or pretrains the model over
the complete, labeled and unlabeled, datasets with BYOL [34]
and [35]. Then, pretrained models are finetuned with tailored and
different initial learning rates given the depth of the layers. While
the layers computing the high-level features, which corresponds
to the second part of the model after the second decimation
operation, get assigned 0.05, the low-level features get assigned
0.0025. Indeed in transfer learning, their weights are considered
representative enough of the downstream task. The rest of the
training remains unchanged for pretrained feature extractors.

E. Postprocessing

To evaluate D4SC and facilitate the automatic mapping of the
seabed, several postprocessing steps are employed that differ
from both the training process and standard inference methods
used in DL CV.

1) Full-size image inference: Since the patch extraction
method is used for training, which involves dividing large images
into smaller patches using sliding windows, the aggregation of
classification outputs from the model to the size of the SAS
image necessitates a reconstruction strategy. To tackle this is-
sue, one approach could involve selecting a stride of half the
patch size during patch extraction. However, this would entail
four times the initial computations and would require deciding
whether to discard the predictions at the edges of each patch or to
implement another fusion strategy. In addition, discrepancies are
inevitable, particularly in extreme cases where pixel predictions
at the corners of a patch, drawn from a nonoverlapping set, may
result in receptive fields filled with padded features, thus missing
atleast three-quarters of the information from the full-size image
prediction. Instead of delving into such complex procedures that
would be difficult to compare and validate, this work leverages
Fully Convolutional Networks (FCN5s) yielding semantic results
for images of any size and aspect ratio [82]. Therefore, inference
is performed over full-size images, avoiding the need for patch
aggregation.

2) Estimating Epistemic Uncertainty: The presented method
introduce a prediction consistency step in the end-to-end
pipeline which uses MCD [60]. Specifically, it keeps dropout
activated during inference to yield N nondeterministic predic-
tions vectors Y, , = [Yn.p.0s - - Y p.c—1]T, for each pixel p,
n < N and class ¢ < C. Alternatively, this work also compares
it to DE and a combination of MCD and DE, making good
use of repeated training, as another way of yielding differing
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prediction vectors specific to a model. Those methods allow us
to compute the Epistemic Uncertainty (£U) as the entropy (H)
of the predictive distribution. Contrary to aleatoric uncertainty
present in the single inferences, the £U is computed from their
average probability vectors

Yy
Lik ~ kP aP 1
N (D

While [60] employed it as a measure of EU for classification,
this metric can effortlessly be extended to each pixel p of the
semantic segmentation task to generate maps of EU

EUp = H(Y N p) @

EUp = — Z YN,p,c ' lOg(YN,p,c)- (3)

Yy, = 2

The average of the relative entropy of the probability vector to the
single nondeterministic distributions is also considered in this
work as another disagreement divergence derived from entropy-
based uncertainty sampling. This divergence is widely used in
the literature on AL methods such as query-by-committee [87],
where it is employed to select the most uncertain samples for
annotation. It has also been applied to deep ensemble active
learning in [88]. In this case, the different nondeterministic
inferences can be considered CNN weights sampling, effectively
creating a correlated ensemble of smaller models. In the end,
the disagreement score is computed with the Kullback—Leibler
divergence, which penalizes harder the variance in probability
vectors and denoted K L, as follows:

%ZKL(Y
fZZY,p, log<y””) )
N.p,c

As itis not inherently a true metric of uncertainty, and therefore
challenging to calibrate for model confidence derived from
uncertainty estimation, its absolute and symmetrized version
is employed instead. The Absolute Symmetric Disagreement
(ASD) is

ASDp—NZZ e — YNpe) - log (}):p ) .

N,p,c

Disagreement,, =

ol YN p) )

(6)

3) Uncertainty or Disagreement Refined Mappings: Although
those pixel-level disagreements can be summed out for com-
parison to hard thresholds, they can reject predictions from
uncertain pixels in the mappings such as in Fig. 1 and 4(h).
An optional label map refinement step is added, where each
individual class label map rejected from the uncertainty got
reduced by morphological filters. Specifically, individual class
label map undergoes Closing, Opening, and Erosion operations
to filter out impossible predictions of too small seabed textures.
In addition, the final prediction map is also reduced by Erosion
using the same circular kernel of size 15 pixels, similarly to
the BLR operation introduced in Section IV-A-d). This work
believe it is preferable to err on the side of caution by rejecting
slightly more of automatic predictions, especially at boundaries.
Therefore, the Pixel Prediction Coverage (PPC) can be defined as
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TABLE III
COMPARISON WITH THE STATE OF THE ART ON THE TEST SET OF EACH BEST PERFORMING MODEL, CALLED PEAK, SELECTED AFTER TEN REPEATED TRAININGS
CORRESPONDING TO DIFFERENT RANDOM INITIALIZATION, IN TERMS OF DETERMINISTIC INFERENCE ACROSS THE 256-SI1ZE PATCH MEAN ACCURACY (MACC)
AND PIXEL-WISE OVERALL ACCURACY (OACC) OVER THE FULL-SIZE IMAGE

Model Trainable Full size image Best model evaluated over the Test Set 256-size patch Test
parameters | inference GFLOPs | 256-size patch mACC | fullsize image OACC | Standard Deviation over mACC

IGARSS 2023 [17] 958k 1035 82.4% 85.0% 2.5%

MLSP-Net [53] 52.3M 16800 80.0% - -

D4SC (ours) 11.4M 1080 87.6% 88.5% 1.6%

Resnet50-UNet 25.8M 1120 87.4% 87.2% 1.0%

The number of trainable parameters and Giga Floating-point Operations (GFLOPs) accounts for the model’s efficiency.

Bold values indicate the best results for the different performance metrics.

the percentage of pixels which get assigned a label in the refined
prediction mapping to compare between different uncertainty
rejections approaches.

V. RESULTS AND ABLATIONS

A. Comparison With SotA

For DL-based segmentation, prior arts applied domain adap-
tation with transfer learning or retrained models from scratch,
without tailoring the architecture neither to the data nor to the
seabed characterization task. To compare the proposed model the
MLSP-Net model from [53] is implemented with its two U-Net
backbones [89], implemented with a ResNet50 feature extrac-
tor trained on ImageNet, following standard transfer learning
schemes. For a fair comparison, augmented 512 x 512 patches,
which are extracted from SLC normalized images with the nor-
malization used in [53], are fed to MLSP-Net but the median nor-
malization is added to avoid fooling the model from the higher
dynamic inherent to the full-size images datasets. In contrast
to the Keras implementation, a ResNet50-Unet segmentation
model from PyTorch pretrained on ImageNet, features larger
dimensions in the embedded space, consequently expanding the
number of trainable parameters. This is no issue for this model as
itis implemented with ten times more labels and data augmenta-
tion. However, the seabed characterization scheme with darker
sand and shadows is not reproduced, the weak labels employed
for the training of MLSP-Net are simulated by increasing BLR
up to 50 pixels. In the end, this method is training for two days,
preventing this article to train it repeatedly and report its average
Overall Accuracy (OACC) standard deviation over the full-size
Test Set.

The deterministic D4SC outperforms MLSP-Net, as reported
by Table IIT with 87.6% best model mACC across the full-size
images of the Test Set against 80.0%. This suggests that MLSP-
Net is more subject to the effect label noise and to the choice
of semantic classes, instead of more acoustic classes, than other
more conventional CNNs. Despite the higher performance of the
deterministic D4SC on the full size image Test Set compared to
Resnet50-UNet pretrained on ImageNet, Table III also report
less FCN convergence consistency over the mean Accuracy
(mACC). This suggests that the pretrained weights or higher
size of the models in term of training parameters limit the
apparition of models stuck in an underperforming local min-
imum. The ResNet50-UNet pretrained on ImageNet serves as
the backbone for MLSP-Net, and its lower OACC on the Test Set
indicates that the reduced performance is attributable the other
modifications.

B. Early Performance Boosting by Averaging Predictions

Additionally, the OACC improves significantly with the av-
erage probability vector of 30 MCD, 10 DE, and 10 DE 30
MCD, respectively, reaching up to 92.0%, 91.4%, and 89.9%,
respectively, to 30, 10, and 300 times the computation cost. To
align with the confidence of the CNN models, this work opts to
display uncertainty maps as confidences. A visual comparison
of confidence maps Fig. 4(c) and (e), respectively, associated
with the predictions shown in Fig. 4(d) and (f).

As anticipated, D4SC exhibits high confidence over misclas-
sified pixels and boundaries with the deterministic CNN confi-
dence map. While confidence maps derived from averaging and
entropy also exhibit relative confidence in misclassifications,
they penalize them more effectively, particularly at boundaries.
However, the prediction and confidence maps appear uncor-
related, especially at the boundaries, as if the predictions are
occasionally overwhelmed locally by the most prevalent class.
This suggests another form of overfitting driven by the seman-
tically homogeneous nature of the training SAS images of the
seabed. Thus, this heavily influences the learning process and
was further discussed in [90]. Furthermore, despite the perfor-
mance improvements observed with all predictions derived from
averaged probability vectors, the increased complexity leads to
lower confidence, indicating negative interactions from averag-
ing. This effect will be examined further in the next section.

C. Identifying Outliers in the Test Set

By analyzing the OACC across individual images in the Test
Set for all repeatedly trained models, two images are identified as
outliers, one from COL2 and the other from ARI1. These images
exhibit significantly fluctuating OACC values, frequently drop-
ping below 50% for several models, a phenomenon not observed
with the other images of the Test Set. This variability is also
evident in the sampling rates ablations shown in Fig. 6(a) and
(b). For instance, in the last repeatedly trained model from DE,
the deterministic inference yields OACC values of 27.8% for
COL2 and 7.6% for ARI1, while a single inference with dropout
activated at inference time improves performance to 89.3% and
95.8% OACC, respectively.

The two outliers from the Test Set illustrate instances of
model overfitting caused by label noise, as shown in Appendix B
Fig. 13. Due to the bias towards Rocks (RK) of COL2 manual an-
notations at training but less on this image, the worst performing
model from the repeated training succumbs to the bias, while the
best model better recover the correct proportion of Sand Ripples
(SR). In contrast, the outlier from ARI1, which features the only
boundary between Sand Ripples (SR) and Sandwaves (SW) in
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ARI1 Calibration curves as OACC function of the Confidence
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Calibration curves for the different uncertainty estimation methods compared to the Deterministic CNN and ideal calibrations. The calibration curves

from (a), (b) and (c) consider MCD, DE and MCD DE over the images of the Test Set, respectively, from the complete set, ARI1 and COL2. Different mathematical
Operators are applied on MCD and analyzed in (d) on COL2. For each calibration curve, the Expected Calibration Error (ECE) Maximum Calibration Error (MCE)
and overall Error (oE) are reported as measures of goodness of fit. The calibration curve can be understood with respect to the Ideal Calibration; the closer to the
Ideal Calibration, the better, and when the curve is higher and lower, the predictions are respectively underconfident and overconfident. (a) Complete Test Set.

(b) ARIL. (c) COL2. (d) COL2.

the entire set of annotated images of ARI1, as detailed in Table II,
illustrates what this article terms “survey overfitting.” This is
the result of the suboptimal operational parameters and survey
configuration in ARII, leading to poorly focused images. It
prevents the annotator to accurately identify Sand Ripples (SR),
resulting in all training samples being labeled as Flat Sediments.
This is a case of distributional shift and enables the model to
differentiate the two surveys based on the residual patterns of
the image formation process with the acquisition parameters.
Furthermore, given that the two surveys have distinct sets of
classes, the best model generalized well across the Test Set,
correctly predicting Sand Ripples (SR), whereas the worst model
overfitted the survey, predicting only Flat Sediments (FS). This
is a minor issue for MCM as the Flat Sediments (FS) and Sand
Ripples (SR) have the same operational value.

After removing the outliers from the test set, the OACC of
averaged predictions improves significantly with the average

probability vector of 30 MCD, 10 DE, and 10 DE 30 MCD
reaching up to 92.9%, 93.4%, and 93.6% OACC, respectively,
compared to the previous 92.0%, 91.4%, and 89.9%. In addi-
tion, removing the outliers recovers the expected behavior of
boosting predictions with MCD or DE, so that as the number
of predictions averaged increases, the overall performance also
improves.

D. Calibration Curves for Uncertainty Estimation

To assess the effectiveness of the recalibration and uncertainty
estimation methods, previous works like [58] often compare
calibration curves across different techniques, such as in Fig. 5.
This is a representation of the accuracy of the model over the
confidence estimated by the different methods. Following [58],
this study also evaluates the Expected Calibration Error (ECE)
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and Maximum Calibration Error (MCE) to measure the good-
ness of fit of the calibration curve against the ideal one. The
calibration curves and these errors are calculated by binning the
confidence scores and determining the corresponding OACC per
bin of 1% on the test set. In addition, this work introduces the
overall binned confidence Error (oE), representing the overall
error rate of the uncertainty estimation process in predicting
the correct confidence score relative to the Ideal Calibration
per bin, i.e., below 0.5% error. Similarly, ECE and MCE can
be interpreted as the mean and maximum error rates per bin,
respectively.

The calibration curves for the complete Test Set, depicted in
Fig. 5(a), tend to show that all uncertainty estimation meth-
ods perform similarly poorly in terms of ECE. In addition,
they exhibit even poorer performance in terms of MCE. This
paradoxical result can be attributed to this relatively simple
seabed characterization task and the often homogeneous nature
of local seabed regions. Specifically, the calibration pairs of pixel
confidence scores and OACC tend to be skewed towards 100%,
as the model frequently makes high-confidence predictions of
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the correct class. This is where the calibration curves of the
different methods are closer to the ideal calibration and is further
illustrated in Appendix A in Fig. 12. Therefore, the calibration
curves, ECE and MCE fail to effectively assess the quality of
uncertainty estimation on our SAS Test Set, as they rely mostly
on bin-level information and do not capture the overall distribu-
tion. Moreover, since most of the correctness of the calibration
occurs at high confidence score, the calibration curves represent
the edge effects of the different methods. In contrast, the oE
in Fig. 5(a) is lower for DE and MCD DE, i.e., 2% compared
to 6% for the deterministic CNN confidence, indicating a more
accurate estimation of the confidence with those methods.

Decoupling the analysis over COL2 and ARII, increases
the oE of DE-based methods in both surveys indicating that
averaging surveys obscures calibration errors, as reported by
Fig. 5(b) and (c). Specifically, Fig. 5(b) further stresses the
inadequacy of the calibration curves to correctly reflect the
quality of uncertainty estimation methods for images from the
ARII Test Set. Remarkably, the underconfidence exhibited by
DE related methods suggests the presence of some underlying
effect with ARI1 annotated images, most probably the lower
quality of the image formation process.

Conversely, the different uncertainty estimation methods pro-
duce much more stable calibration curves, ECE and MCE over
the COL2 images of the Test Set, as shown by Fig. 5(c) and
(d). Thus, further analysis can be performed to compare the
correctness of uncertainty estimation approaches without much
edge effects. In fact, Fig. 5(c) shows superior performance of
DE-based methods over the others, by being less overconfi-
dent, also showcased in terms of ECE and MCE. Similarly, the
differences in calibration of DE and MCD DE are marginal,
suggesting that they similarly correctly assess their own confi-
dence, despite the slightly higher OACC observed with MCD
DE. Finally, Fig. 5(d) compares mathematical operators for
uncertainty estimation over MCD only. Unsurprisingly, the KL
divergence derived methods, which are not normalized, exhibit
incorrect calibration at low confidence. In contrast, the entropy
and the off-the-shelf CNN confidence obtained from MCD both
outperform the Deterministic CNN confidence.

In summary, this calibration curve analysis stresses the diffi-
culty of applying existing approches for uncertainty estimation
from the literature to SAS data and the importance of distin-
guishing between the different surveys in SAS imagery to avoid
concealing biases by averaging surveys.

E. Sampling and Dropout Rates Ablation for Uncertainty
Estimation

In this section, the different sampling and dropout rates are
discussed in a thorough ablation experiment. The default pa-
rameters in the other experiments are taken from [60] with the
MCD rate of 0.05 and the number of MCD inferences of 30.
They are sufficient in addressing uncertainty estimation on their
regression task. In contrast, while [37], [63], and [69] were
considering 5 to 15 models for DE, this work reuses the ten
models generated by the repeated training.

Performing the ablation both on the number of inferences
for MCD and models in DE, the OACC from a single model
with only a single MCD inference surprisingly outperforms the
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TABLE IV
COMPARISON BETWEEN DIFFERENT DROPOUT RATES IN TERMS OF OACC OVER THE FULLSIZE IMAGE PREDICTIONS AND STANDARD DEVIATION (STD) OF THE
REPEATED TRAINING OVER MACC OVER THE 256 x 256 PATCHES

Dropout rate | Deterministic | Single MCD Inference | 30 MCD | 10 Deterministic DE 10 DE 10 DE 30 MCD | STD over mACC
0.05 88.5 % 90.5 % 92.9 % - 93.4 % 93.6 % 1.6 %
0.01 90.6 % 90.4 % 91.6 % 93.4 % 92.7 % — 0.4 %

Deterministic CNN, for which the dropout is not activated at test
time, as reported in Fig 6(a) and (b). Notably, the ablation exper-
iments are adversely affected by the highly varying predictions
associated with the two outliers.

Varying the number of inferences for MCD has only a
marginal impact on the average prediction OACC of the Test
Set, as demonstrated in Fig 6(a). Similarly, Fig 6(b) suggests that
averaging models for DE related methods, with the exception of
two and four where some positive interactions can be observed,
also minimally affects the resulting prediction OACC. Thus, this
article could have reported DE results with fewer models con-
sidered rather than opting for the maximum number to err on the
side of caution. Additionally and when excluding outliers, while
employing 30 MCD in conjunction with DE further enhances the
OACC, italsoreveals a perfect correlation with DE, highlighting
that MCD is incapable of reducing the prediction errors left
from DE on the Test Set. In contrast, MCD alone or combined
with DE effectively mitigate the impact of the two outliers in
the experiments starting from 50 inferences, demonstrating the
complementary benefits of using MCD and DE for uncertainty
estimation with models overfitting over their training datasets.

Starting from a dropout rate of 0.1, the models trained on SAS
datasets consistently failed to converge. Notably, as reported in
Table IV, the models trained with a 0.01 dropout rate outper-
formed those trained with a 0.05 dropout rate when evaluated
using deterministic inference—where dropout is not activated
during inference. This suggests that higher dropout rates may
negatively impact training by causing the models to overfit
the dataset, leading to poorer performance. Conversely, when
considering average predictions, the models trained with a 0.05
dropout rate exhibited superior performance, suggesting that the
variability introduced by a higher dropout rate is beneficial for
uncertainty estimation.

FE. Interest in Monte Carlo Dropout Probability Vector

To prove the performance increase of the MCD probability
vector, where some weights are randomly discarded, instead
of the deterministic one, where the model is intact, the distri-
bution of 1500 different nondeterministic inferences over the
best performing model is studied in term of OACC over the
test set, considering both single inference and their average
probability vectors over 30 samples. The results in Fig. 7(a)
illustrate the improvement of OACC when performing MCD
inference compared to the deterministic counterpart, even in
the case of averaging a single inference. Notably, averaging
30 single probability vectors further enhances the reliability of
predictions on the Test Set as its distribution has a standard
deviation of 0.05% while the one of single inference is 0.32%.

The analysis is further extended by examining the effect
of using the MCD probability vector on segmentation results

across two surveys, COL2 and ARII, respectively, compiled in
Fig. 7(b) and (c). As the probability distribution of nondeter-
ministic predictions with MCD always significantly increases
the OACC over the deterministic ones, about 3% on average
as shown in Fig. 7(b), MCD acts as a strong inference time
regularization over COL2, similarly to test-time data augmen-
tation. This suggests that the model is strongly overfitting.
Specifically the predictions the deterministic model exhibits
significant overfitting towards Sand Ripples where the model
is not confident, a pattern observed not only in COL2, but also
in ARI1. Conversely, the distributions obtained over the ARI1
survey exhibits less overfitting in Fig. 7(c), which aligns more
closely with the expected effect of MCD over the OACC over
a nondegenerate dataset. However, averaging predictions over
30 inferences of MCD decreases OACC over the images of
the Test Set of ARI1 compared to the single inference MCD,
indicating that averaging reinforces the detrimental effect from
Section V-D. Indeed, where MCD fails to recovers for the
Sand Ripples overfitting in ARII, averaging exacerbates the
“survey overfitting” as discussed in Section V-C. To conclude,
MCD probability vector can assist in identifying and mitigating
overfitting over the SAS datasets.

G. Importance of Refined Mappings

Consequently, the uncertainty of the predictions can be esti-
mated reliably enough to compute the uncertainty or disagree-
ment refined mappings similarly to [20] and [24]. This consists
in only keeping the predictions of the pixels which value in the
confidence map is higher than the percentile value corresponding
to a PPC of 8%. Effectively, the PPC diminished all the more
so as the extra morphological operations from Section I'V-E-b)
are applied to stronger penalize boundaries and predictions
corresponding to areas smaller than a MCM target.

The results of different approaches to estimate uncertainty,
namely MCD, DE and the combination of MCD and DE, and
scores, namely Entropy and ASD, to refine mappings are re-
ported in Table V on the Test Set without the outliers. This
work also compares them in terms of OACC improvements to
the baselines MCD, DE, and MCD DE probability vectors, the
deterministic D4SC and its refined predictions based on standard
CNN confidence. Notably, models tend to show higher mACC
than OACC compared to standard CV applications due to the
limited number of classes and the fact that the models are likely
to misclassify Flat Sediments, which is the most represented
class.

Remarkably, the Entropy and ASD scores yield similar ac-
curacies. As expected by results in the literature such as [91]
and the calibration curves of Section V-D, the DE average
probability vector of ten models outperforms the 30 repeated
inferences of MCD average probability vector for uncertainty
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Probability Distribution of predictions in terms of OACC
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Fig. 7. Comparison of approximate probability density function, in terms of
OACC, of both single MCD inference and the average of 30 MCD inferences
corresponding to the approximate probability vector respectively evaluated on
the complete Test Set, the images from COL2 in the Test Set and the images
from ARI1 in the Test Set in (a), (b), and (c). As a reference the OACC of
the Deterministic inference is provided for comparison where dropout is not
activated at test time. (a) Complete Test Set. (b) COL2. (c) ARII.
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TABLE V
COMPARISON OF DIFFERENT COMBINATIONS OF UNCERTAINTY APPROACHES
AND SCORES IN TERM OF OACC AND MACC PERFORMANCE BOOST WHEN
REFINING THE PREDICTIONS OF D4SC

Full-size image Test Set

Method OACC | mACC | PPC

Baseline MCD 929 % | 939 % 100 %
Baseline DE 93.4% 95.2 % 100 %
Baseline MCD DE 93.6 % | 954 % 100 %
Deterministic CNN refined | 92.7 % | 96.1 % | 76.9 %
MCD Entropy refined 943 % | 96.7% | 759 %
MCD ASD refined 94.6 % 97.2 % 72.2 %
DE Entropy refined 957 % | 98.0% | 755 %
MCD DE Entropy refined 96.2 % | 983 % | 75.8 %

Bold values indicate the best results for the different performance metrics.
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Fig.8. Box-and-Whisker plot for the ablation experiment over the components

of the end-to-end pipeline for 10 repeated trainings in term of mACC over
256-size patch Test Set.

estimation as shown by the refined predictions proxy. For ex-
ample, the DE confidence map of Fig. 4(e) correctly identifies
the Sandwaves where Posidonia starts to grow. In addition, it
also underlines the rest of the growing Posidonia pattern which
is under represented compared to the grown Posidonia one in
the input data distribution. Ultimately, MCD DE outperfoms the
DE couterpart at the cost of additional computational time and
the necessity of handling larger tensors, similarly to the findings
of Sections V-D and V-E. In conclusion, uncertainty estimation
effectively improves performances and interpretability of CNN
outputs over SAS datasets.

H. Other Ablation Experiments

To ensure the added value of other proposed components of
the end-to-end pipeline, ablation experiments are performed and
reported in Fig. 8 as Box-and-Whisker plots over the ten repeat-
edly trained models. Specifically, the performances of D4SC is
evaluated with and without Data Augmentation (DA) (a), but
also against the common data augmentation pipeline derived
from CV for classification (b). Then, BLR is not applied in (c)
and compared against label smoothing regularization [92], [93]
(d), as another method addressing degenerate labels. Finally, the
importance of ASPP is aslo investigated in (e).

Remarkably, removing ASPP in (e) demonstrates its critical
role for the reliable convergence of well performing models.
Despite the proposed end-to-end pipeline performs best in term
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Pretraining Method

Fig.9. Box-and-Whisker plot of different pretraining strategies for 10 repeated
trainings in term of mACC over 256-size patch Test Set.

of peak mACC according to in Fig. 8, the standard DA derived
from CV (b) and label smoothing (c) showcase superior conver-
gence consistency. The improved consistency of the standard
DA derived from CV (b) possibly originates from the extra
augmentation of patches on the edges of the full-size image.

VI. DISCUSSION
A. Effect of Pretraining

The results presented in Section V underlines a high variabil-
ity in the mACC across runs of the complete training pipeline,
which is a consequence of the unreliability of model conver-
gence. As, this variability is primarily attributed to the degen-
erate input data distribution, the effect of pretrained feature ex-
tractors is investigated in mitigating this variability. Pretraining
from ImageNet fixing the weight initialization and dataset splits,
leaves only the variability of convergence to random shuffling
and dropout. As shown by Fig. 9(a) and the convergence spread
of models pretrained with ImageNet weights, their effect is
nearly as significant as the complete D4SC model with random
initialization. This indicates that the other sources of random-
ness, such as random dataset splits and weight initialization,
have minimal impact.

Then this work explores various pretraining methods, for
which results are reported in Fig. 9, including retraining the
ImageNet pretrained model (b), and 5 epochs of self-supervised
pretraining such as BYOL [34] (¢) and [35] noted PXCL (d). In
addition, the pretraining of D4SC feature extractor is evaluated
with 15 epochs of training using either a classification model
(e) or the D4SC model itself (f), both selected out of ten ran-
dom initializations, and the complete classification training (g).
Specifically, the classification pretraining is performed with the
standard model from [75], which consists of the feature extractor
and a classification head.

Remarkably, this study observes lower performance of the
complete classification training from pretrained weights on
ImageNet for the seabed patch classification task, where the
patch label get assigned the most represented pixel class label.
Specifically, a pretrained model on ImageNet achieves up to
90.6% mACC compared to 96.5% mACC for the randomly
initialized model retrained from scratch. This is analogous to the
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findings of [48] which report similar performance gaps in SAR
scene classification tasks when comparing ImageNet pretrained
models to those trained from scratch. Despite this hindering
initialization for classification, the semantic segmentation down-
stream task over SAS data benefits from the random initialization
of the newly created decoder on top of the pretrained feature
extractor. This setup provides ample opportunity for the weights
to be fine-tuned and hence for the model to be retrained without
showcasing significant performance drop in Fig. 9(b).

Moreover, the high variance observed in the convergence
of CNN models is mitigated by the improved initialization
of the pretrained feature extractor, allowing models to more
consistently converge towards a global optimum, as depicted in
Fig. 9 sith the other pretraining methods (c), (d), (e), (f), and (g).
While (b), (c), and (g) hinders the peak performance compared
to the model trained from scratch, alternatively (d), (e), and
(f) showcase similar peak performance. Despite their improved
reliability of model’s convergence, this works refrains from
incorporating pretraining methods into uncertainty estimation
due to the unknown effect surrounding their impact on model
weight sampling.

Additionally and despite applying data-driven pretraining
methods, that have been proven successful in different tasks
such as in [94], resulting in highly differing CNN initial weight
distributions, the different model architectures of Table III and
methods of Figs. 8 and 9 still converge to similar mACC values
while exhibiting different types of misclassifications. This is
another indication that the bottleneck of the end-to-end pipeline
lies in the quality of the imperfect data and annotations in
the input data distribution, further stressing the importance of
uncertainty estimation and refined mappings.

B. Zero-Shot Experiment on MNX18

To further emphasize the utility of the end-to-end pipeline,
especially in generating uncertainty refined predictions for OoD
data, D4SC is evaluated on the MNX18 survey without retrain-
ing. Uncertainty estimation derived from ASD is employed with
a hard threshold set to 1 to ensure a PPC superior to 80%, as
done in [20]. On average over the MNX18 annotated images,
the initial OACC increased from 89.9% to 94.9% with a PPC
of 83.5%. The effects of uncertainty estimation with the metrics
presented in this work on an OoD survey and derived refined
prediction mappings can be observed over Fig 10. It depicts one
of the most challenging images of MNX18 with different survey
related operational parameters accounting for the normalization
issue at short range, which is an OoD pattern. However, despite
promising results to account for OoD patterns within individual
images, these scores also depend on other intrinsic characteris-
tics such as the amount of boundary pixels and the quality of
the SAS imagery. This prevents this work from comparing them
between different images and reliably detecting OoD samples
as is.

Interestingly, the calibration curves of Fig. 11, associated
with the uncertainty estimation of the zero-shot experiment on
MNX18, reveal an inverse trend compared to the analysis on
the Test Set. Specifically, the quality of uncertainty estimation
improves when employing the DE CNN confidence exhibitig
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Fig. 10.  Challenging OoD SAS image (a) from MNX18 and the prediction
mappings obtained with the average MCD probability vector of D4SC (b)
associated confidence map derived from the Kullback—Leibler divergence (c)
and uncertainty refined predictions (d). The ground range increases from 40
to 150 m within the SAS image from left to right. It depicts mud packs in
between fields of sandwaves probably built upon the dead matte of previously
alive posidonia. (a) Challenging OoD SAS image from MNX18 (b) Associated
MCD averaged predictions (c) Associated MCD ASD confidence (d) Associated
MCD ASD refined predictions.
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MNX18 Calibration curves as OACC function of the Confidence
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Fig. 11.  Calibration curves for models trained on COL2 and ARII but eval-
uated on MNX18. The calibration curve can be understood with respect to the
Ideal Calibration; the closer to the Ideal Calibration, the better, and when the
curve is higher and lower, the predictions are respectively underconfident and
overconfident. Notably, the quality of uncertainty estimation on the Unseen
dataset is inversely increased using the DE CNN confidence instead of the
entropy, compared to the one from the images from COL2 Test dataset.

almost a perfect fit with a 1% oE compared to the 4% of entropy.
This finding suggests that the off-the-shelf CNN confidence, par-
ticularly when paired with DE and MCD DE predictions should
be favored over entropy for uncertainty estimation on OoD SAS
datasets. Despite this, both methods effectively counteract the
overconfidence of the trained CNN models, particularly at high
confidence and accuracy levels.

VII. CONCLUSION

The careful design of the end-to-end learning pipeline of
DA4SC, including innovative features like boundary label re-
jection, advanced data augmentation and Bayesian uncertainty
prediction refinement methods, are beneficial in enhancing the
semantic segmentation of the seabed. By incorporating these
elements, D4SC is capable of learning generic seabed patterns
robust to noise, thus significantly improving the accuracy and
reliability of seabed characterization. Performance evaluations
against established methods in the literature underscore D4SC’s
superiority across multiple HR SAS survey datasets obtained
from real-world MCM exercises at sea. Furthermore, this study
delves into the exploration of epistemic uncertainty within CNNs
trained on SAS data, altogether with an in depth analysis of SAS
data biases and their impact over the end-to-end pipeline. The
robustness of D4SC and its uncertainty estimation are further
validated by their excellent performance over unseen data and
different operational parameters specific to the survey, both
in terms of calibration and refined mappings, demonstrating
its ability to generalize effectively across diverse underwater
environments at large scale. But as also underlined by this work,
automatic seabed characterization is a complicated task consid-
ering the quality of the data and the difficulty of annotation.
Future work might also want to design specific methods to assess
or improve the quality of the data and annotation. In conclusion,
the more reliable seabed characterization mappings produced by
D4SC offer promising implications not only for MCM, but also
for various research fields such as environmental monitoring.
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APPENDIX A
EXPLAINING THE PERFORMANCE BOOST OF THE DE RELATED UNCERTAINTY ESTIMATION METHODS

Distribution of pixel prediction Accuracies of the Deter. CNN
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Fig. 12. Distribution of OACC (a) and Confidence Score (b) for the computation of the calibration curve of the Deterministic CNN over the Test Set. The
distributions are roughly the same for all other calibration curves. Notably, almost all the points fall into the highest accuracies and confidence score bins for the
visualization of the calibrations. Thus, instead of just looking at ECE and MCE scores to understand the performance boost of the different uncertainty estimation
methods, the upper-right part of the calibration curve should be taken into account. This is where the DE related Uncertainty Estimation methods are a better fit
than others. This is why this article introduces oE to take into account the distribution of the confidence and accuracy pairs. In addition, the drastically low number
of samples at the low confidence and accuracy pairs accounts for its high distance from the Ideal Calibration. (a) Overall Accuracy. (b) Confidence Score.
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APPENDIX B
THE TWO OUTLIERS SAS IMAGES IN THE TEST SET

(a) (b)
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Fig. 13.  This figure illustrates the two outlier SAS backscatter Intensity Images from the Test Set, (a) and (b), respectively, from COL2 and ARII, for which the
performances across the family of repeatedly trained models are highly inconsistent. They represent two cases of model overfitting due to noise in the Ground Truth
annotations, respectively (c) and (d) for COL2 and ARII. As (a) depicts a mixed composition of Flat Sediments (FS), Rocks (RK) and Sand Ripples (SR) while
COL2 annotations being biased towards Rocks (RK), the best model mostly predicts Sand Ripples (SR) in (e) while the worst one fall into the bias and predicts
mostly Rocks (RK) in (g). In contrast, (b) and (d) displaying the only boundary between Sand Ripples (SR) and Sandwaves (SW) in the entire set of annotated
images of ARII1, embodies a case of survey overfitting. Indeed, the survey configuration and its suboptimal operational parameters leading to not well autofocus
images in ARI1, made it almost impossible for the annotator to recognize Sand Ripples in ARII, then leading to annotating all training samples as Flat Sediments,
which is a distributional shift, but also making it possible for the model to distinguish between the two surveys. In addition, the two surveys having distinct sets
of output classes at training, respectively {Rocks (RK), Flat Sediments (FS), Sand Ripples (SR), Sandwaves (SW)} and {Flat Sediments (FS), Posidonia (PS),
Sandwaves (SW)} for COL2 and ARI1, the best model generalized well on the dataset in (f) while the worst overfitted the surveys (h) by predicting Flat Sediments
(FS). (a) Normalized Backscatter Intensities, COL2 (b) Normalized Backscatter Intensities, ARI1 (c) Ground truth map, COL2 (d) Ground truth map, ARI1 (e)
Highest OACC, COL2 (f) Highest OACC, ARII (g) Least OACC, COL2 (h) Least OACC, ARII.
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