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A Joint Framework for Underwater Hyperspectral
Image Restoration and Target Detection With
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Abstract—Underwater hyperspectral imaging is crucial for var-
ious marine applications, with underwater hyperspectral target
detection (HTD) holding significant importance. However, existing
research on underwater HTD is limited, as most methods fail
to adequately consider the impact of underwater target spectral
variability and image quality degradation. To address these critical
issues, we propose a novel joint framework for underwater hyper-
spectral image restoration and target detection, which is based on
a conditional diffusion model. Our proposed framework consists of
two main modules: the variable spectral group extraction module,
and the joint underwater hyperspectral image restoration and
target detection (JURTD) module. The variable spectral group
extraction module leverages the conditional diffusion model to ex-
tract variable spectral image groups, thereby simulating the diverse
range of underwater target spectra. Subsequently, the JURTD
module extracts deep features from intrinsic images and the group
of variable spectral images. Operating under the dual constraints
of image restoration and target detection, this module achieves
high-quality restored images and superior detection performance
concurrently. Experimental evaluations conducted on both real-
world and synthetic datasets demonstrate the effectiveness of our
proposed framework in enhancing image quality and improving
target detection performance. Moreover, the results indicate that
our framework outperforms state-of-the-art methods, underscor-
ing its practical utility and superiority in underwater hyperspectral
imaging applications.

Index Terms—Deep learning, diffusion model, hyperspectral
imagery (HSI), underwater image restoration, underwater target
detection.

I. INTRODUCTION

S IGNIFICANT advancements in underwater target detection
technology have been witnessed, playing a pivotal role

across diverse domains including national defense security, ma-
rine resource development, scientific research, and environmen-
tal monitoring [1], [2]. Hyperspectral data exhibit characteristics
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such as multichannel capacity, high accuracy, and extensive
information content. Through the utilization of hyperspectral
imaging technology, it is possible not only to observe the
morphology of targets, but also to identify and analyze them
across spectral dimensions, presenting a distinct advantage over
methods reliant on single-wavelength bands [3], [4], [5]. This
technology has demonstrated superior performance across vari-
ous domains, including military management [6], [7], scientific
agriculture [8], [9], environmental stewardship [10], geographic
surveying [11], urban planning [12], and oceanic remote sens-
ing [13], [14]. However, underwater hyperspectral imageries
(HSIs) typically suffer from diminished image quality due to
the absorption and radiation properties of water bodies, as
well as particle interference, thereby impacting the accuracy of
underwater target detection. Addressing this critical challenge
will significantly enhance the accuracy and reliability of the
underwater target detection method. Therefore, it is necessary
to develop the joint problem of underwater HSI restoration and
target detection.

Current research primarily focuses on restoring HSIs on
land or RGB underwater images, leaving a notable gap in the
restoration of underwater HSIs. Çelebi and Ertürk [15] combined
wavelet noise reduction with empirical model decomposition to
develop an underwater degrading image denoising algorithm. He
et al. [16] introduced the concept of the dark channel prior for ad-
dressing foggy weather acquisition image defogging problems.
Chang et al. [17] further enhanced this approach by combining
the dark-channel prior theory with wavelength compensation,
considering the nonuniform illumination in underwater images.
In addition, Land et al. [18] proposed the Retinex theory, serv-
ing as the foundation for achieving color uniformity. Jobsan
et al. [19] extended this theory by presenting a multiscale Retinex
image enhancement method with color recovery. Yuan et al. [20]
involved learning a nonlinear end-to-end mapping between noise
and clean HSIs through a combined spatial–spectral deep con-
volutional neural network. Mao et al. [21] and Zhang et al. [22]
employed convolutional neural networks to extract intrinsic
and disparity image features, aiming to circumvent complex
a priori constraints. Their approach demonstrated advanced
performance on natural images. Furthermore, Yu et al. [23]
proposed a novel dual-stream transformer for HSI restoration.
The dual-stream feed-forward network operates to extract global
signals and local details in parallel branches. In conclusion,
both physical and deep learning methods have demonstrated
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remarkable efficacy in HSI restoration. However, research
dedicated specifically to underwater HSI restoration remains
absent.

Significant advancements have been made in deep genera-
tive models, encompassing autoregressive models, variational
autoencoders, generative adversarial networks, and diffusion
models. Notably, diffusion models have emerged as prominent
tools in image generation [24] and have found utility in various
image restoration tasks [25], including superresolution [26],
painting [27], and denoising [28]. A notable contribution by
Wu et al. [29] involves the proposal of an HSI superreso-
lution method utilizing a conditional diffusion model. This
method integrates high-resolution multispectral images with
corresponding low-resolution HSIs, generating high-resolution
HSIs through iterative refinement initiated with pure Gaussian
noise. Similarly, Miao et al. [25] introduced a self-supervised
diffusion model for HSI restoration. Furthermore, several studies
have leveraged the diffusion model for HSI classification. Chen
et al. [30] proposed SpectralDiff, a generative framework for
HSI classification utilizing the diffusion model. The diffusion
model demonstrates significant potential holds promise in the
realm of HSI processing.

Hyperspectral target detection (HTD) methods have reached
a high level of maturity [31], [32], [33], [34], [35], a novel
weighted Cauchy distance graph and local adaptive collaborative
representation detection method has been proposed, which adap-
tively utilizes spatial–spectral information to adjust the detection
probability [36]. A hyperspectral time-series target detection
method based on spectral perception and spatial–temporal tensor
(SPSTT) decomposition has been introduced, effectively uti-
lizing prior spectral information and spatial-temporal overall
structural information [37]. However, their application in un-
derwater target detection often yields unsatisfactory results. In
reality, the spectral profile of a target can undergo significant
changes as its depth increases due to the water column, thereby
impacting detector performance. Garaba et al. [38] conducted
laboratory-based reflectance measurements on submerged large
plastics across various water clarity conditions and submergence
depths. Papakonstantinou et al. [39] performed experiments to
generate hyperspectral datasets for eight submerged plastics.
Jay et al. [40] incorporated a bathymetric model to correct the
spectral aberrations induced by water, subsequently employing
traditional land-based algorithms for underwater target detec-
tion. Gillis [41] utilized both physical and nonlinear mathemat-
ical models to estimate the underwater target space within a
given scene. Several studies have also employed deep learning
methodologies to facilitate underwater HTD. Qi et al. [42]
introduced depth information into their methodology by devel-
oping an underwater target detection network that integrates a
bathymetric model with an autoencoder. Qi et al. [43] proposed
the self-improving underwater target detection framework. Li
et al. [44] introduced the transfer-based underwater target detec-
tion framework. Then, Li et al. [45] proposed the TDSS-UTD
framework, where the spectral and spatial features are extracted,
and the spatial–spectral features are harnessed for target de-
tection. These methods have achieved good performance in
underwater HTD.

Despite the favorable outcomes achieved with the aforemen-
tioned methods in underwater HTD, they still face some limi-
tations and drawbacks. First, during the process of underwater
hyperspectral imaging, factors such as water turbidity and noise
interference from water particles contribute to the presence
of noise interference, fogging, blurring, and low contrast in
the acquired underwater HSIs. Regrettably, existing methods
predominantly overlook the processing of low-quality under-
water HSIs. Second, the existing underwater HTD techniques
fail to account for the influence of underwater HSI quality.
Research focusing on terrestrial imagery has demonstrated that
image enhancement techniques can effectively enhance image
quality, thereby enhancing the performance of target detection.
Therefore, the lack of consideration for underwater HSI quality
represents a notable gap in current research efforts.

In this article, we aim to overcome the aforementioned lim-
itations by proposing a joint framework for underwater HSI
restoration and target detection based on the conditional dif-
fusion model. This framework primarily comprises a variable
spectral group extraction module and a joint underwater hy-
perspectral image restoration and target detection (JURTD)
module. In the variable spectral group extraction module, we
leverage the conditional diffusion model to learn the structural
features of underwater HSIs. During the sampling process, a
priori variable spectral image groups are extracted to emu-
late the diverse spectral changes of underwater targets in real
underwater environments. Furthermore, the JURTD module is
designed as a two-stream network. This module outputs restored
underwater HSIs and target detection results simultaneously. By
jointly optimizing image restoration and target detection, our
network can produce images suitable for both visual inspection
and computer perception, thereby achieving detection-oriented
restoration. The main contributions of this article are as follows.

1) We introduce the variable spectral group extraction mod-
ule to mitigate the variability of underwater target spectra.
To the best of our knowledge, this is the first time that con-
ditional diffusion models have been applied to underwater
HTD.

2) To achieve high-quality HSIs and superior detection per-
formance simultaneously, we propose the JURTD module.
We devise a hybrid loss function based on the dual con-
straints of target detection and image restoration. To the
best of our knowledge, this is the first time that the issue
of underwater HSI restoration is jointly optimized with
underwater HTD.

3) Numerous experiments conducted on two real-world
datasets and one synthetic dataset demonstrate the superi-
ority of the proposed method. Moreover, we also validate
the excellent performance by ablation experiments and
robustness analysis.

The rest of this article is organized as follows. In Section II,
a brief overview of background and related work is provided.
Section III presents the detailed framework proposed in this
article, with its key components and methodologies. Section IV
discuss the experimental results and related analysis. In addition,
we take the ablation experiments and robustness analysis of the
framework. Finally, Section V concludes this article.
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II. RELATED WORK

A. Underwater HSI

There are two primary distinctions between underwater HSI
and land HSI in the imaging process. First, in land HSI, it is
typically assumed that the observed spectral signals of the target
and those of the background are independent of each other.
However, this assumption does not hold true for underwater
targets. Second, in underwater HSI, any light reflected by the
underwater target and captured by the sensor must traverse
through the surrounding water column. Consequently, the mea-
sured underwater target spectra are significantly influenced by
the optical properties of the water column and the depth of the
target. The radiative transfer equation for an underwater target
can be expressed as follows:

r(λ) = rdp(λ)
[
1− e−K(λ)H

]
+

1

π
ρ(λ)e−K(λ)H (1)

where rdp(λ) represents the optical deep-water remote sensing
reflectance ratio, while K(λ) denotes the effective attenuation
coefficient of the water body. The variable H signifies the depth
at which the target is situated, and ρ(λ) indicates the reflectance
of the land target unaffected by water interference. It can be seen
that the actual collection of underwater target spectra is jointly
determined by the two parts: the water body and the target. The
main influencing factors are the effective attenuation coefficient
of the water body, the depth of the target, the reflectance ratio
of the optical deep-water remote sensing, and the reflectance of
the land target.

The mechanism underlying the influence of the absorption
and scattering characteristics of the water body on collected
underwater target spectra directly impacts the accuracy of un-
derwater target detection and the recovery effect of underwater
HSIs. The absorption and scattering effects of the water body
lead to significant distortion of the target spectral curve, resulting
in a substantial deviation from the spectral curve of the same
target on land. In addition, underwater targets composed of
different materials exhibit varying spectral curves depending on
their depth within the water environment. This discrepancy often
results in different spectra for the same object in an HSI com-
pared to those observed in a marine environment. To mitigate
the variability of underwater target spectra, which is heavily
dependent on depth and water optical properties, this article
adopts the conditional diffusion model. This model facilitates
the acquisition of spectral variation groups, aiming to suppress
the influence of water body particle interference and unknown
spectral variations, thereby enhancing the quality of underwater
HSIs.

B. Denoising Diffusion Probability Model

The denoising diffusion probabilistic model belongs to a
class of generative models that primarily learn a Markov chain,
gradually transitioning the Gaussian noise distribution to the
training data distribution. The diffusion process comprises both
a forward process and a reverse process. Following a variational
schedule β1, . . . , βT , Gaussian noise is initially added to the

HSI, and then, in the backward process, the added noise is gradu-
ally eliminated using a noise estimation network. In this context,
H and W represent the height and width of the hyperspectral
image HSI ∈ R

H×W×C , respectively, whileC denotes the num-
ber of spectral channels. Multiple image patches, denoted as
X ∈ R

k×k×C , are extracted from the entire HSI.
1) Forward Diffusion Process: The forward diffusion pro-

cess operates as a stationary Markov chain. Over the total T
steps, in accordance with the variational schedule β1, . . . , βT , it
progressively corrupts X ∼ p(X) by adding Gaussian noise

p(Xt|Xt−1) = N(Xt;
√

1− βtXt−1, βtI) (2)

p(X1:T |X0) =

T∏
t=1

p(Xt|Xt−1) (3)

where Xt−1 and Xt denote the states at step t− 1 and step
t, and I is the standard normal distribution.

√
1− βtXt−1 and

βtI are the mean and variance of the conditional distribution
p(Xt|Xt−1), respectively.

The Gaussian diffusion process can be marginalized by di-
rectly sampling the intermediate term Xt from the original data
X0 via the following:

p(Xt|X0) = N(Xt;
√
αtX0, (1− αt)I) (4)

which can also be expressed in closed form

Xt =
√
αtX0 +

√
1− αtzt (5)

where αt = 1− βt, αt =
∏t

i=1 αi, and zt ∼ N(0, I) has the
same data dimension as the original dataX0 and the intermediate
state Xt.

2) Reverse Process: The reverse process concentrates on the
joint distribution qθ(X0:T ), which also operates as a Markov
chain aimed at learning Gaussian noise removal. It starts with a
priori standard normal distribution q(XT ) = N(XT ; 0, I)

qθ(X0:T ) = q(XT )

T∏
t=1

qθ(Xt−1|Xt) (6)

qθ(Xt−1|Xt) = N(Xt−1;μθ(Xt, t), β̃tI) (7)

where μθ(Xt, t) represents the mean of the conditional distri-
bution qθ(Xt−1|Xt), while β̃t denotes the variance term. The
parametric distribution can be expressed as follows:

μθ(Xt, t) =
1√
αt

(
Xt − βt√

1− αt
εθ(Xt, t)

)
(8)

β̃t =
1− αt−1

1− αt
βt (9)

where εθ(Xt, t) is a noise estimation network with inputs of
time step t and intermediate state Xt. The reverse process can
be specifically represented as

Xt−1 =
1√
αt

(
Xt − βt√

1− αt
εθ(Xt, t)

)
+ β̃tz (10)

where z ∼ N(0, I). To accurately estimate the noise added in
the forward diffusion process, the noise estimation network
εθ(Xt, t) needs to be well-trained.
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Fig. 1. Overall architecture of the joint framework for underwater hyperspectral image restoration and target detection with the conditional diffusion model. The
framework comprises the variable spectral group extraction module and the JURTD module. First, the principle component image of the underwater HSI is fed into
the conditional diffusion model to obtain the variable spectral group. After that, the variable spectral group is input to the JURTD module. Finally, we can obtain
the detection map and restored HSI from the JURTD module.

III. METHODOLOGY

In this section, we will provide a detailed description of our
proposed joint framework for underwater HSI restoration and
target detection with the conditional diffusion model, as shown
in Fig. 1. In the variable spectral group extraction module, the full
potential of the conditional diffusion model to discern structural
features of the image is harnessed. Its guiding condition is
the principal component HSI (PHSI) derived from the original
underwater HSI collected during the experiment. The PHSI
encapsulates the primary information of the original HSI while
preliminarily filtering out noise interference. Utilizing this com-
ponent, the module guides image denoising, generates diverse
sample data, and acquires the a priori variable spectral group,
simulating the variations in underwater target spectral curves.
The JURTD module adopts a two-stream network design, lever-
aging the shared features of intrinsic images and variable spectral
images within the deep feature. The input to the JURTD module
comprises the variable spectral image group, while the output
includes both the detection probability map and the restored
HSI. Furthermore, a hybrid loss function is devised based on
the dual constraints of target detection and image restoration.
This function is instrumental in guiding the training of JURTD,
facilitating the attainment of high-quality images and superior
detection performance concurrently. The detailed descriptions
of these two modules are provided separately in the subsequent
sections.

A. Variable Spectral Group Extraction Module

Within the conditional diffusion model, the PHSI of the
experimentally acquired underwater HSI serves as the guiding

condition. This component aids in guiding image denoising
and generating diverse sample data. The fundamental concept
revolves around learning the inference process of the original
underwater HSI under the PHSI condition, along with acquiring
a series of state transitions to transform noise. This process is
primarily divided into the forward diffusion process, involving
noise addition, and the reverse process, focused on noise re-
moval. In the subsequent part, we will delve into the intricacies
of the forward diffusion process, the reverse process, the loss
function of the noise estimation network, and the training pro-
cedure in meticulous detail.

1) Forward Diffusion Process: Under the variance schedule
β1, . . . , βT , the forward diffusion process operates as a station-
ary Markov chain, progressively adding Gaussian noise to X0.
Mathematically, this process can be expressed as

Xt =
√
αtX0 +

√
1− αtzt (11)

where X0 represents the original HSI, and Xt denotes the state
at time step t forward.

2) Reverse Process: To initiate the reverse process, we ex-
tract matched pairs of data distributions (X, X̃) from the original
underwater HSI along with its PHSI. These instances are then
utilized as inputs to the reverse process

qθ(X0:T |X̃) = q(XT )

T∏
t=1

qθ(Xt−1|Xt, X̃) (12)

qθ(Xt−1|Xt, X̃) = N(Xt−1;μθ(Xt, X̃, t), β̃tI). (13)
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The mean and variance of the conditional distribution
qθ(Xt−1|Xt, X̃) are determined as follows:

μθ(Xt, X̃, t) =
1√
αt

(
Xt − βt√

1− αt
εθ(Xt, X̃, t)

)
(14)

β̃t =
1− αt−1

1− αt
βt. (15)

Integrating the aforementioned formulas, one obtains the sam-
pling process

Xt−1 =
1√
αt

(
Xt − βt√

1− αt
εθ(Xt, X̃, t)

)
+ β̃tz (16)

where Xt represents the state at t steps in reverse, εθ(Xt, X̃, t)

is the noise estimation network, and X̃ denotes the PHSI of the
original HSI. It is noteworthy that both the inputs Xt and X̃
of the noise estimation network are combined via convolutional
blocks. Moreover, the input t is utilized to generate high-level
features via positional coding, which guides the feature ex-
traction of the model. The architecture of the noise estimation
network is referred from the literature [28].

3) Hybrid Loss Function: The performance of the noise es-
timation network directly impacts the reverse process of the
diffusion model, determining whether the appropriateX0 can be
inferred. Hence, it is crucial to train an effective noise estimation
network. To achieve this, we devise a hybrid loss function to
quantify the disparity between the actual added noise in the
forward diffusion process and the predicted noise outputted by
the noise estimation network. This hybrid loss function can be
expressed as follows:

Ldiff = L1 + L2 + LS (17)

where L1 represents a magnitude loss term aimed at minimizing
the magnitude difference between the ith actual additive noise
ε(i) from the forward diffusion process and the predicted noise
εθ(X

(i)
t , X̃, t) generated by the noise estimation network. The

term L1 is defined as

L1 =
N∑
i

||ε(i) − εθ(X
(i)
t , X̃, t)||1. (18)

The term L2 denotes the mean square error between the actual
added noise and the predicted noise. This component serves to
expedite the training process and mitigate the risk of vanishing
gradients

L2 =
1

2

N∑
i

||ε(i) − εθ(X
(i)
t , X̃, t)||2. (19)

The termLS represents the spectral angular distance between the
actual added noise and the predicted noise. This metric captures
the distinction in trend between the two curves

LS =

N∑
i

SAM(ε(i), εθ(X
(i)
t , X̃, t)) (20)

where

SAM(a, b) = arccos

(
< a, b >

||a||, ||b||
)
. (21)

Algorithm 1: Conditional Diffusion Model Training.

The training algorithm for the conditional diffusion model is
outlined in Algorithm 1. Upon achieving a well-trained noise es-
timation network, optimization of the underwater HSI proceeds
by reverse sampling under the guidance of the PHSI condition
X̃ . When the sampling steps t in the conditional diffusion model
are set as 10, 5, and 0, we consider these feature images to
contain information resistant to interference. These states exhibit
a certain degree of change compared to the original under-
water HSI, retaining the original information while enhancing
resistance to noise. Consequently, we aggregate them into the
group of variable spectral images, utilizing them as input for the
JURTD module. This approach simulates the spectral variation
phenomenon of target spectra in the underwater environment,
thereby mitigating the influence of spectral variance on under-
water target acquisition during the actual acquisition process.

B. JURTD Module

The block diagram of the JURTD module is depicted in
Fig. 2. The JURTD module comprises dual-branch networks,
upper and lower, encompassing the encoder module, feature
fusion module, and decoder module. The input to the JURTD
module is the group of variable spectral images, representing
the variable images. Through a convolution operation, the two
images X10, X5 ∈ R

H×W×C are fused, and then, fed into the
lower branch of the JURTD module to comprehensively ex-
plore high-level features of the changing spectra. Meanwhile,
the intrinsic image X0 is directly input to the upper branch.
This JURTD module maximizes the complementary information
between the intrinsic image and the variable spectral images
to identify common features and distinguish characteristics be-
tween the two types of images. To extract critical features while
minimizing computation, a dimensionality reduction module is
initially incorporated into the dual-branch network, comprising

I1 = f(X0) (22)

I2 = f(Conv(X5, X10)) (23)

where f(·) represents the dimensionality reduction module,
which comprises a convolutional layer, a batch normalization
layer, and a LeakyReLU layer. Conv(X5, X10) denotes the con-
volution operation after concatenating X5 and X10. I1 and I2
are the feature maps obtained after dimensionality reduction.

1) Dual-Branch Encoder: The features extracted in the en-
coder module primarily serve to enhance both spectral and
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Fig. 2. Block diagram of the JURTD module. The JURTD module takes the variable spectral group as input and generates the restored HSI and detection map
as its outputs.

spatial correlations, allowing neurons to flexibly capture texture,
spatial structure, and spectral features in the input data. To
extract multiscale information, the encoder is designed with
three residual blocks, each comprising convolutional layers,
batch normalization layers, LeakyReLU layers, and an attention
mechanism

O′
j = f0(f(Ii)) + f0(Ii) (24)

Oj = O′
j + ATT(O′

j) (25)

where f0(·) represents the dimensionality reduction module
without the LeakyReLU layer, while ATT(·) denotes the atten-
tion mechanism. Sequentially, the attention mechanism includes
the spatial attention mechanism, spectral attention mechanism,
and spatial–spectral joint attention mechanism within the three
residual blocks. To facilitate representation and computation in
the feature fusion module, the output Oj of residual block j in
the upper branch network is denoted as aj , and the output Oj

of the residual block j in the lower branch network is denoted
as bj .

2) Feature Fusion: Small-scale feature maps are adept at
capturing detailed information, whereas large-scale feature
maps excel at capturing macroscopic structural and semantic
information. Therefore, the multiscale features extracted by the
dual-branch encoder are fused to enhance the robustness and
generalization of the subsequent dual-branch decoder in data
processing. To achieve optimal fusion of the extracted multi-
scale information, concatenation and differencing operations are
employed to create a richer and integrated feature representa-
tion. The concatenation operation merges the multiscale feature
images aj and bj from the upper and lower branches of the
network in the encoder, thereby concatenating the features of
the variable spectral image and the intrinsic image. Conversely,
the differencing operation discerns the multiscale feature images

aj and bj to highlight the feature disparities between the variable
spectral image and the intrinsic image.

The feature fusion approach preserves the integrity of the
information within individual features while acknowledging the
interrelationships and interactions between the intrinsic features
and the variable spectral features. The fused features of the vari-
able spectral features and the intrinsic features can be expressed
as follows:

cj = Cat(aj , bj), j = 1, 2, 3. (26)

The multiscale feature image differencing operation extracts
the information of the difference between the intrinsic feature
and the variable spectral feature. This operation accentuates
the substantial differences between them, leading to a more
comprehensive representation of the features

sj = aj − bj , j = 1, 2, 3. (27)

The characteristic assists the dual-branch decoder in capturing
both detailed information and global context. In addition, the
concatenation and differencing strategy helps compensate for
information loss to some extent and enhances feature represen-
tation capability.

3) Dual-Branch Decoder: The multilevel fusion features and
difference features obtained from the feature fusion module are
concatenated or summed using the up-sampling method. With
the concatenation method, the channel dimension of the fused
data triples compared to the original dimension

fc = Cat(Up(c1),Up(c2),Up(c3)) (28)

fa = Up(s1) + Up(s2) + Up(s3) (29)
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where fc denotes the concatenated feature after up-sampling the
multilevel fusion features to the same dimension, and fa repre-
sents the summation feature after up-sampling the multilevel
difference features to the same dimension.

Finally, a complete feature map is formed by summing the
concatenated feature fc with the summation feature fa via
the summation operation. This represents the advanced feature
map after learning the variation spectral features and intrinsic
features. The advanced feature image is then mapped into Xrec,
a reconstructed underwater HSI by three convolution operations
(this branch is called the image restoration branch subnetwork).
In addition, the advanced features are represented as target
detection probability values Y by three fully connected layers
(this branch is called the target detection branch subnetwork)

Xrec = MConv(fc + fa) (30)

Y = MFc(fc + fa) (31)

where MConv(·) denotes three consecutive convolution oper-
ations, and MFc(·) denotes three consecutive fully connected
layers.

C. Double Constraint Loss Function

In this article, we propose an optimization formulation for the
joint problem of underwater HSI restoration and target detection,
aiming to find the optimal model by training the network under
the double constraints of image restoration and target detection.
We formulate the model as a dual optimization problem

min
wd

Ld(ϕ(R∗;wd))

s.t. R∗ ∈ argminwr
Lr(φ(X0, X5, X10;wr)) (32)

whereLd is the training loss function specific to target detection,
ϕ represents the target detection branch network with learnable
parameters wd, Lr is the training loss function specific to image
restoration,φ denotes the image restoration branch network with
learnable parameters wr, and R∗ is the restored underwater HSI
in the optimal model.

To train the JURTD module, we design the hybrid loss func-
tion, which can be expressed as

L = α1L
d + α2L

r, α1 + α2 = 1 (33)

whereα1 andα2 are adaptive weight coefficients, and the design
Lr is consistent with the loss function Ldiff in the conditional
diffusion model.

The target detection loss function Ld adopts the classical
cross-entropy loss function, expressed as

Ld =
1

N

∑
i

−[yi · log (pi) + (1− yi) · log (1− pi)] (34)

where yi denotes the label of the sample i, and pi is the proba-
bility that sample i is predicted to be the target.

With this strategy, we can successfully tackle the joint prob-
lem of underwater HSI restoration and target detection. This
approach not only produces visually appealing underwater HSIs
but also yields accurate underwater target detection results given

Algorithm 2: JURTD Model Training.

Fig. 3. Experimental environment for indoor pool dataset acquisition.

the trained network parameters. The training process of the
JURTD module is outlined in Algorithm 2.

IV. EXPERIMENT

In this section, we will validate the effectiveness and as-
sociated analysis of the joint framework for underwater HSI
restoration and target detection based on the conditional dif-
fusion model proposed in this article. We begin by describ-
ing the experimental setup, including the experimental dataset,
evaluation metrics, and training details information. Then, we
analyze the effectiveness of the JURTD module through image
restoration analysis and detection analysis. Next, we conduct
ablation experiments to verify the impact of each module, and
finally, we analyze the performance of the conditional diffusion
model and discuss the robustness of the proposed framework
under different signal-to-noise ratio (SNR) noise interference.

A. Experimental Dataset

1) Indoor Pool Dataset: The experimental dataset was ac-
quired in an anechoic pool at the School of Navigation, North-
western Polytechnical University, Shaanxi Province, China. The
experimental environment, depicted in Fig. 3, features a pool
measuring 20 m in length, 8 m in width, and 7 m in depth.
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Fig. 4. Gray-scale image of the acquired indoor pool dataset and synthetic
HSI. (a) InPool1. (b) InPool2. (c) SynHSI.

Fig. 5. Experimental environment for outdoor pool dataset acquisition.
(a) UAV carrying the spectrometer above the pool. (b) Target placed at 0.89-m
depth.

Hyperspectral data were captured using a GaiaField Portable
spectral imager with a spectral resolution of 2.8 nm and a range
spanning from 400 to 1000 nm. Specifically, the GaiaField
hyperspectrometer operates within a spectral band range of
400–1000 nm with a spectral resolution of 2.8 nm. Data collec-
tion involved various depths and targeted three different materi-
als: iron, wood, and stone. To precisely control the depth of the
underwater targets, a lift table was employed, allowing for fine
adjustments of the target position underwater. The spectrometer
recorded digital number (DN) values, which was later corrected
by whiteboard calibration to enhance applicability. Since the
spectrometer was positioned only 4.2-m away from the water
surface during indoor experiments, atmospheric correction was
unnecessary. In this article, two HSIs sized 200 × 200 with 120
spectral bands were extracted from the experimental dataset,
captured at a depth of 1 m, and named InPool1 and InPool2, as
illustrated in Fig. 4.

2) Outdoor Pool Dataset: To explore the development of
underwater HTD models in real outdoor settings, we collected
underwater multitarget HSIs at the outdoor pool of Northwestern
Polytechnical University, as depicted in Fig. 5(a). Utilizing
a hyperspectral camera mounted on an UAV, the pool was
photographed, with each target positioned at a water depth of
0.89 m, as depicted in Fig. 5(b). The UAV was configured to
capture HSIs from varying flight altitudes 20, 50, and 100 m, to
obtain data from different viewpoints and altitudes, enhancing
the comprehensive analysis of underwater target spectral char-
acteristics. In this study, three pairs of HSIs were extracted from
the data captured at a flight altitude of 50 m. Each image is sized
200 × 200 and comprises 120 spectral bands. These images,
named OutPool1, OutPool2, and OutPool3, are illustrated in
Fig. 6.

3) Synthetic Hyperspectral Image: Prior to actual data col-
lection, it is customary to initially assess the performance of

Fig. 6. Gray-scale image of the acquired outdoor pool dataset. (a) OutPool1.
(b) OutPool2. (c) OutPool3.

the proposed model by synthesizing data. The synthetic HSI
generated has dimensions of 100 × 100 with 120 spectral bands,
spanning a band range of 400–740 nm, as depicted in Fig. 4(c).
The water region in the image is extracted from the pure water
region of the 1.9-m indoor pool dataset. Leveraging the un-
derwater target spectral radiative transfer equation introduced
in our previous work, we designated iron as the experimental
target. By inputting the assumed depth of the target, the effective
attenuation coefficient of the water body, and the land target
spectral curve of iron into this model, we obtained the theoretical
underwater target spectral curve. Varying the sizes of target
patches (13 × 13, 9 × 9, 7 × 7, 5 × 5, 3 × 3), and different
depths at which the target is positioned (0.1 m, 0.5 m, 1.0 m,
1.6 m), the HSI is denoted as SynHSI.

B. Evaluation Metrics

1) Restoration Evaluation Metrics: In this article, both sub-
jective and objective evaluations are employed to assess the
image restoration effectiveness. Subjective evaluation involves
observers rating the restoration quality based on predefined
criteria and their own expertise through visual inspection. Ob-
jective evaluation, on the other hand, relies on mathematical
calculations. The objective evaluation metrics utilized are peak
signal-to-noise ratio (PSNR), structure similarity (SSIM), and
spectral angle mapper (SAM).

2) Detection Evaluation Metrics: When evaluating the target
detection effect, we employ the classical receiver operating
characteristic (ROC) curve and calculate the area under the ROC
curve (AUC) as evaluation metrics. These metrics effectively
assess the accuracy of the target detection model. To construct
the ROC curve [46], we vary the classification threshold from
0 to 1 based on the output of the detection network. At each
threshold value, we compute the probability of detection (PD)
and the false alarm rate (PF)

PF =
Nf

Nb
PD =

Nc

Nt
(35)

where Nf is the number of false alarm pixels, Nb is the total
number of background pixels, Nc is the number of correct
detection target pixels, and Nt is the number of total true target
pixels.

C. Training Details

1) Experimental Equipment: Our experiments were con-
ducted on a system equipped with an Intel Core i9-12900KF
CPU, GeForce RTX 3080 Ti GPU, 64-GB RAM, and the
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Windows 11 operating system. The code was developed using
Python 3.9 and the deep learning framework PyTorch 1.12.1.

2) Training Setup: HSIs are preprocessed with normaliza-
tion before being fed into the model to expedite model conver-
gence. In training the conditional diffusion model, we set the
diffusion time step T to 400, the data patch size to 16 × 16
with 120 bands, the batch size to 32, and the total number of
training epochs to 10 000. The initial learning rate is 0.0001,
and it decreases by a factor of 0.8 after every 2000 epochs. The
network optimizer employed is the Adam algorithm.

For training the JURTD module, the data patch size remains
16 × 16 with 120 bands. The total dataset sizes used for the
experiments are 80 000 pixels from the indoor pool dataset,
120 000 pixels from the Outdoor Pool dataset, and 10 000 pixels
from the synthetic hyperspectral image. The number of training
datasets is 5% of all pixel points, with a batch size of 64. The
total training epoch is 100, with a learning rate set to 0.0002.
The optimizer used is also the Adam algorithm.

3) Detection Comparison Method: To further validate the
effectiveness of our proposed JURTD module, we compared
our method in this article with five detection methods, including
three classical methods (ACE [34], RX [31], and MF [32]), and
two improved novel methods (HSI-CNN [33] and MSAM [35]).

D. Performance Analysis

1) Image Restoration Analysis: In Section III, we introduce
the variable spectral image extraction module, which restores
the input underwater HSI based on the conditional diffusion
model. As the sampling step approaches 0, the sampled image
converges toward the original image during the reverse process.
Since the model is trained to diffuse under the guidance of the
PHSI of the original underwater HSI, image restoration can
occur to some extent during the reverse process, resulting in a
cleaner diffusion image. We define the state of the image when
t is 0 as the diffusion underwater HSI. One of the outputs of the
JURTD module is the restored underwater HSI, which further
refines the input diffused underwater HSI. Therefore, to assess
the effectiveness of our model image restoration, we compare the
original underwater HSI, the noisy underwater HSI, the diffusion
underwater HSI, and the JURTD restored underwater HSI.

We added mixed noise, combining Gaussian noise and strip
noise, into the experimentally acquired original underwater
HSIs. These images were then processed through the proposed
framework outlined in this article to produce the diffusion under-
water HSI output by the conditional diffusion model, followed
by the restored underwater HSI output by the JURTD module.
Figs. 7–9 illustrate the process of underwater HSI restoration
for the outdoor pool dataset, the indoor pool dataset, and the
synthetic HSI. Figs. 7(a), 8(a), and 9(a) show the original under-
water HSIs of the three datasets, characterized by some blurring
and weak noise attributed to electronic or environmental factors
during acquisition. Figs. 7(b), 8(b), and 9(b) depict the noisy
underwater HSIs of the three datasets, featuring Gaussian noise
and strip noise. From these images, we extract PHSIs, which
along with the noisy underwater HSIs, serve as inputs to the
conditional diffusion model. This model undergoes a forward

Fig. 7. Process of underwater HSI restoration for the outdoor pool dataset.
(a) Original HSI. (b) Noisy underwater HSI. (c) Diffusion underwater HSI.
(d) JURTD restored underwater HSI, the three rows from the top to the bottom
are OutPool1, OutPool2, and OutPool3 in order. Our proposed method eliminates
weak noise and enhances image clarity, resulting in a cleaner image. It exhibits
excellent capability in underwater HSI restoration.

Fig. 8. Process of underwater HSI restoration for the indoor pool dataset.
(a) Original underwater HSI. (b) Noisy underwater HSI. (c) Diffusion underwa-
ter HSI. (d) JURTD restored underwater HSI, the two rows from the top to the
bottom are InPool1 and InPool2 in order.

Fig. 9. Synthetic HSI restoration process. (a) Original underwater HSI.
(b) Noisy underwater HSI. (c) Diffusion underwater HSI. (d) JURTD restored
underwater HSI.

diffusion process with a time step of T initially, followed by
a reverse process utilizing a well-trained noise estimation net-
work. We define the state with a time step t of 0 as the diffusion
underwater HSI, achieving preliminary image restoration, as
depicted in Figs. 7(c), 8(c), and 9(c). Observing the figures,
we note that the diffusion underwater HSI outcomes are most
favorable for the indoor pool dataset, while outcomes for the
outdoor pool dataset and the synthetic HSI are comparatively
inferior. This discrepancy arises because the training dataset for
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TABLE I
UNDERWATER HSI RESTORATION RESULTS ON THREE DATASETS

Fig. 10. Spectral curves comparison for the outdoor pool dataset between the restored HSI and raw HSI. (a) OutPool1. (b) OutPool2. (c) OutPool3.

our conditional diffusion model primarily consists of the indoor
pool dataset. We did not train on the remaining two datasets due
to resource constraints, acknowledging the necessity to enhance
the model generalization performance.

The quantitative results of underwater HSI restoration on
the three datasets are illustrated in Table I, where “JURTD”
represents the underwater HSI restored by JURTD, and “Diff”
represents the diffusion underwater HSI. Intuitively, the JURTD
restored underwater HSI demonstrates a significant denoising
effect compared to the noisy underwater HSI and the original
underwater HSI. It not only eliminates weak electronic noise but
also enhances image clarity, resulting in a cleaner image overall,
as shown in Figs. 7(d), 8(d), and 9(d).

Fig. 10 displays the spectral curve comparison for the outdoor
pool dataset between the restored HSI and raw HSI, where the
solid line represents the raw HSI and the dashed line represents
the restored HSI. It can be observed that the restored spectral
curves are relatively smooth with significantly reduced noise,
indicating that the restoration method effectively suppresses
high-frequency noise. In addition, the restored spectral curves
retain the main trends and features of the original spectrum,
especially in the blue-green wavelength bands. The framework
proposed in this article exhibits excellent capability in under-
water HSI restoration, and the restored underwater HSIs will
facilitate subsequent visual analysis and target detection.

2) Detection Analysis: In this section, we show the results of
underwater HTD and analyze them. To further demonstrate the
superior performance of our method, JURTD is compared with
the previously mentioned classical methods ACE, RX, MF, and
the improved methods MSAM, and HSI-CNN. We evaluate the
performance of these models in terms of both qualitative and
quantitative analysis.

Figs. 11–13 show the detection maps of each compared
method on the indoor pool dataset, the outdoor pool dataset, and
the synthetic HSI. JURTD demonstrates excellent resistance to

Fig. 11. Underwater HTD maps for the outdoor pool dataset. (a) Original
underwater HSI. (b) RX. (c) ACE. (d) MF. (e) HSI-CNN. (f) MSAM. (g) JURTD.

Fig. 12. Underwater HTD maps for the indoor pool dataset. (a) Original
underwater HSI. (b) RX. (c) ACE. (d) MF. (e) HSI-CNN. (f) MSAM. (g) JURTD.

Fig. 13. Underwater HTD maps for the synthetic HSI. (a) Original underwater
HSI. (b) RX. (c) ACE. (d) MF. (e) HSI-CNN. (f) MSAM. (g) JURTD.

water body interference, and its results are very close to the real
label. The traditional methods RX, ACE, and MF perform poorly
on the three datasets and cannot effectively detect underwater
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Fig. 14. ROC curves for comparing methods on the outdoor pool dataset. (a) OutPool1. (b) OutPool2. (c) OutPool3, the ROC curve of our method is closest to
the upper left corner, indicating excellent target detection performance.

targets. In underwater environments, light scattering and absorp-
tion can blur the target spectral features and introduce additional
spectral noise, causing the covariance estimation of ACE to fail,
making it difficult to effectively separate the target from the
background. On the indoor pool dataset, the spectral curves of
the water body and the target on the captured images show a large
difference because the depth of the current target in the water is
1 m and the depth of the indoor anechoic pool is 7 m. Therefore,
the MF can roughly detect the underwater target. The HSI-CNN
model takes 5% of the data to train the model in the outdoor
pool dataset and the indoor pool dataset, and it performs better
on the two datasets, while it performs poorly on synthetic HSIs,
which indicates that its generalization ability is poor. MSAM
is a physical method that does not require training, though it
needs a priori target spectral information, and it performs better
on the indoor pool dataset. The JURTD method proposed in this
article shows excellent underwater target detection on all three
datasets, which can effectively distinguish underwater targets,
and on synthetic HSIs, even if the target size is 3 × 3, JURTD can
distinguish it from the surrounding water bodies. Our proposed
method is superior to these comparative methods.

To quantitatively demonstrate the superiority of the frame-
work proposed in this article, the ROC curves and AUC values
of each detection method are used as quantitative evaluation
metrics. Fig. 14 illustrates the ROC curves of the detection
results of our proposed method versus the other methods on
the outdoor pool dataset. In addition, Figs. 15 and 16 also show
the ROC curves for each detection method on the indoor pool
dataset and the synthetic HSI, respectively. For the ROC curves,
when the corresponding ROC curve of a model is closer to the
upper left corner, it means that the detection performance of this
model is better. As can be seen, the ROCs of our method are
all in the upper leftmost corner, which indicates that our method
demonstrates excellent underwater target detection performance
on all three datasets.

We also compare the AUC values of these methods on each
experimental dataset, as shown in Table II. We highlight the
largest value in the table in red, the second in blue, and the
third in underlined so that the comparative performance of each

Fig. 15. ROC curves for comparing methods on the indoor pool dataset.
(a) InPool1. (b) InPool2.

Fig. 16. ROC curves for comparing methods on the synthetic HSI.
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TABLE II
AUC VALUES FOR COMPARING METHODS ON THE THREE EXPERIMENTAL

DATASET

method can be clearly and intuitively analyzed. Table II reveals
that the AUC values of the methods in this article are the highest
on all three datasets, and the HSI-CNN method has the second
highest AUC value on the indoor pool dataset and the outdoor
pool dataset, but it has the third highest AUC value on the
synthetic HSI, which indicates that the generalization ability
of this method is poor and unsuitable for practical application.
MF performs the third best on the outdoor pool dataset, and
MSAM. The performance is also the third. For the various
types of comparison methods, we average the AUC on the three
datasets, and JURTD is ranked first, HSI-CNN is the second one,
and MF is ranked third. Based on the aforementioned analysis,
it is easy to find that our proposed method has great advantages
in hyperspectral underwater target detection.

E. Model Analysis

1) Ablation Experiment: To validate the key performance of
each module in our proposed framework, we conducted a series
of ablation experiments. These experiments aimed to analyze
the performance of the model under different configurations
and assess the extent to which each module contributes to the
overall framework performance. In this section, we will delve
into the roles and interactions of the three key modules: diffu-
sion, restoration, and detection, in the framework by comparing
the results of the ablation experiments, which are presented in
Table III. Since the final application scenario of this article is
underwater HTD, we have retained the detection module in the
ablation experiments. When the conditional diffusion model is
not employed, we take three same original underwater HSIs
as the input of the JURTD module. The output of the JURTD
module will be only the detection map if we omit the use of the
restore module.

By comparing and analyzing the four cases, we conclude that
both the conditional diffusion model and restoration techniques
play pivotal roles in underwater HSI restoration and target de-
tection tasks. The application of either the conditional diffusion
model or restoration model alone leads to improvements in
image quality or target detection performance. Furthermore,
our method achieves optimal results in both image restoration
and target detection by jointly applying these modules, as high-
lighted in bold in Table III.

2) Effectiveness of the Conditional Diffusion Model: In the
preceding section, we verified the significance of the conditional

diffusion model for JURTD in detecting underwater targets. To
further validate the effectiveness of the conditional diffusion
model, we applied the well-trained model to conduct forward
diffusion and reverse processes. Using OutPool2 from the out-
door pool dataset as a case study, Fig. 17 shows the 500-nm
grayscale image of the conditional diffusion model at different
sampling times during the reverse process. We propagated the
original underwater HSI forward by T steps, and then, reversed
from this state, showcasing the HSIs at sampling times t of 100,
60, 40, 10, 5, and 0, respectively. From a visual perspective,
it is evident that the conditional diffusion model effectively
reconstructs the original underwater HSI. Moreover, the restored
diffusion image exhibits improved clarity and visibility com-
pared to the original image under the conditional guidance of
the PHSI.

Fig. 18 depicts the spectral curves of the conditional diffusion
model at different sampling times during the reverse process. In
Fig. 18, the green curve represents the spectral curve of the noise
HSI at point (40, 40) after T steps of forward diffusion, the red
curve depicts the spectral curve of the sampled image at the
same point, and the blue curve signifies the spectral curve of
the PHSI of the original underwater HSI at the same point. It
is evident that as the sampling time t decreases, the sampled
spectral curve gradually aligns with the spectral curve of the
PHSI. When the sampling times are 10, 5, and 0, the spectral
curves closely resemble the spectral curve of the PHSI, although
slight differences persist in terms of amplitude and curve trend.
These variations simulate the interference of the absorption and
scattering properties of the water column on the underwater
HSIs. Therefore, we aggregate these three sampled images into
the group of variable spectral images and employ them as the
input of the subsequent JURTD module.

3) Robustness Analysis: To further assess the robustness of
our proposed framework, we examine the impact of different
SNRs on target detection accuracy and image restoration effec-
tiveness. SNR variations are common in real underwater scenar-
ios and can significantly influence underwater image processing
and target detection tasks.

We depict the relationship between target detection AUC
values and different SNRs in Fig. 19. The AUC value serves
as a quantitative metric to evaluate the performance of un-
derwater target detection. As SNR increases, we observe a
general improvement in the performance of underwater target
detection. This trend arises because low SNR environments
typically result in more severe interference and occlusion of
target information in underwater images, leading to decreased
clarity and contrast of target edges, thereby increasing detection
difficulty. It is noteworthy that target detection results align
closely with those observed in noiseless interference scenarios
when SNR exceeds 9 in the indoor pool dataset and when SNR
exceeds 18 in the outdoor pool dataset. This suggests that our
framework maintains consistent target detection performance
under varying SNR conditions, particularly in higher SNR
environments.

In addition, we conducted a study on the image restoration
effectiveness of the framework under varying SNR conditions,
using the quantitative metrics PSNR and SAM values to evaluate
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TABLE III
AUC VALUES OF DETECTION PERFORMANCE OF THE ABLATION EXPERIMENT ON EACH DATASET

Fig. 17. Grayscale image of 500 nm for the conditional diffusion model on OutPool2 in the outdoor pool dataset at different sampling times during the reverse
process. (a) Original underwater HSI. (b) Sampling t = 100. (c) t = 60. (d) t = 40. (e) t = 10. (f) t = 5. (g) t = 0. The conditional diffusion model effectively and
gradually reconstructs the underwater HSI.

Fig. 18. Spectral curves of the conditional diffusion model on OutPool2 in the outdoor pool dataset at different sampling times during the reverse process.
(a) Original underwater hyperspectral image. (b) Sampling t = 100. (c) t = 60. (d) t = 40. (e) t = 10. (f) t = 5. (g) t = 0. As the sampling time t decreases, the
sampled spectral curve gradually aligns with the spectral curve of the PHSI.

Fig. 19. Relationship between AUC values and SNR on four data scenarios.

performance. To present the experimental findings clearly, we
averaged the evaluations across four different data scenes to
establish the relationship between average PSNR and SAM with
SNR, as illustrated in Fig. 20. The results indicate that as SNR
increases, PSNR rises, while SAM values decrease, suggesting
a gradual improvement in image restoration quality. Specifi-
cally, higher SNR levels correspond to better preserved spec-
tral fidelity and reduced spectral distortions, leading to clearer
and more accurate restoration of the underwater hyperspectral
images. In summary, our experimental findings demonstrate
that our proposed framework exhibits exceptional robustness in
underwater HSI restoration and target detection across various
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Fig. 20. Relationship between average PSNR, SAM values, and SNR on four
data scenarios. (a) PSNR. (b) SAM.

SNR environments, consistently maintaining high performance
and reliability despite varying noise conditions.

V. CONCLUSION

In this article, we propose a novel joint framework for un-
derwater HSI restoration and target detection based on a con-
ditional diffusion model. The proposed framework effectively
overcomes the challenges of underwater hyperspectral imaging,
and the limitations of existing methods by considering under-
water target spectral variability and image quality degradation.

It comprises two key modules: the variable spectral group
extraction module and the JURTD module. The variable spec-
tral group extraction module utilizes the conditional diffusion
model to simulate spectral variance in underwater environ-
ments, generating variable spectral groups for a comprehensive
representation of underwater target spectra. Then, the JURTD
module leverages these variable spectral groups to optimize
image restoration and target detection tasks simultaneously. By
integrating these modules, our framework effectively tackles
the challenges in underwater HSI processing, providing a novel
solution for enhancing image quality and improving target detec-
tion accuracy in underwater environments. Experimental eval-
uations on both real-world and synthetic datasets demonstrate
the superior performance of our framework in enhancing image
quality and improving target detection accuracy.

In terms of future development, the trajectory of research will
focus on probing underwater HTD within real marine environ-
ments. Considerable attention will be directed toward assessing
the influence of sea surface fluctuations and water turbidity on
the spectral radiative transfer of submerged targets, along with
its consequential implications for underwater target detection.

Furthermore, attaining target detection at greater depths will
emerge as a pivotal area of investigation. We hold the belief that
the field of underwater HTD will mature and become more com-
prehensive as more researchers are involved in this area of study.
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