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GVANet: A Grouped Multiview Aggregation
Network for Remote Sensing Image Segmentation

Yunsong Yang *“, Jinjiang Li

Abstract—In remote sensing image segmentation tasks, various
challenges arise, including difficulties in recognizing objects due
to differences in perspective, difficulty in distinguishing objects
with similar colors, and challenges in segmentation caused by
occlusions. To address these issues, we propose a method called the
grouped multiview aggregation network (GVANet), which lever-
ages multiview information for image analysis. This approach
enables global multiview expansion and fine-grained cross-layer
information interaction within the network. Within this network
framework, to better utilize a wider range of multiview information
to tackle challenges in remote sensing segmentation, we introduce
the multiview feature aggregation block for extracting multiview
information. Furthermore, to overcome the limitations of same-
level shortcuts when dealing with multiview problems, we propose
the channel group fusion block for cross-layer feature information
interaction through a grouped fusion approach. Finally, to enhance
the utilization of global features during the feature reconstruction
phase, we introduce the aggregation-inhibition-activation block for
feature selection and focus, which captures the key features for
segmentation. Comprehensive experimental results on the Vaihin-
gen and Potsdam datasets demonstrate that GVANet outperforms
current state-of-the-art methods, achieving mIoU scores of 84.5%
and 87.6 %, respectively.

Index Terms—Attention mechanism, multiscale fusion, remote
sensing, semantic segmentation, transformer.

1. INTRODUCTION

DVANCEMENTS in aerospace and sensor technologies

have made it increasingly convenient to access high-
resolution remote sensing images. These images are character-
ized by abundant fine-grained details and a wealth of semantic
content. Semantic segmentation, which involves predicting the
semantic category or label of each pixel, serves as a fundamental
pillar in the analysis of remote sensing images. In recent years,
semantic segmentation has gained widespread popularity in
urban scene images, driving numerous urban-related applica-
tions such as land cover mapping [1], [2], change detection [3],
environmental conservation [4], road and building extraction [5],
[6], and a multitude of other practical uses [7], [8].
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Fig. 1. Examples of various challenges in remote sensing images. The first
row of images is from the Vaihingen dataset, and the second row is from the
Potsdam dataset. (a) Demonstrates how cars exhibit different appearances under
different viewpoints. For example, in (a), the car in the first row blends entirely
with the building’s shadow due to the viewpoint, making the car appear as
part of the building’s shadow, while the truck compartment in the second row
resembles a building due to the viewpoint. (b) Shows how buildings appear
similar to impervious surfaces due to lighting. In the first row, the annotated
area should actually be an impervious surface but appears as a building due to
lighting effects, while in the second row, the annotated building area appears like
impervious surfaces due to blending with shadows. (c) Displays cars obscured
by trees, making their category almost indistinguishable. These challenges can
impact segmentation accuracy.

Remote sensing images, characterized by high resolution and
complex scenes, present a series of challenges for segmentation,
rendering traditional methods often inadequate. These chal-
lenges primarily include variations in object appearance under
different lighting conditions and the difficulty in distinguishing
between objects with similar colors. Additionally, occlusions
where one object is partially obscured by another further com-
plicate the accurate identification and segmentation of the oc-
cluded objects. Examples of these challenges are illustrated in
Fig. 1. These factors significantly increase the complexity of the
segmentation task [9]. To address these issues, researchers are
continuously exploring new algorithms and techniques aimed at
enhancing the accuracy and robustness of remote sensing image
segmentation [10].

In recent years, significant progress has been made in re-
mote sensing image segmentation with deep learning tech-
niques. Compared to traditional machine learning algorithms
such as support vector machine (SVM) [11], random forest [12],
and conditional random field (CRF) [13], convolutional neural
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network (CNN) methods based on deep learning have shown
superior performance in extracting image features by learning
feature representations [14], [15]. CNNs can effectively capture
contextual and semantic information in images [16], [17].

For semantic segmentation, fully convolutional network
(FCN) [18] was the first effective end-to-end CNN structure,
but its results appeared coarse due to its simplistic design.
Subsequently, more refined encoder—decoder structures were
proposed [19], [20], including contracting and expanding paths,
to obtain more accurate segmentation results. U-Net combines
the encoder and decoder, preserving global information while
capturing local details. The encoder gradually captures contex-
tual information and abstract features from the image, while the
decoder reconstructs features through deconvolution operations,
gradually restoring the resolution of the feature maps to the
original input image size. It also maintains the original feature
information through skip connections between corresponding
layers in the encoder and decoder. This architecture enables U-
Net to precisely locate objects and retain details in segmentation
tasks. Due to the effectiveness of U-Net, many researchers still
use it as a foundational segmentation network to explore further
possibilities, such as AFF-Unet [21].

Although U-Net offers numerous advantages, there are still
some limitations in the context of remote sensing image seg-
mentation. On the one hand, U-Net captures image informa-
tion through a stacked convolutional approach. However, since
convolutions are designed for local feature extraction, this lo-
cal approach is insufficient to fully capture the diversity and
complexity of objects in remote sensing images, where the
appearance of objects may vary under different views. In the
semantic segmentation of remote sensing images, if only local
information is modeled, pixelwise classification tends to be
ambiguous. Therefore, introducing global information depen-
dencies is necessary.

To enable global modeling in remote sensing image
segmentation, many studies have introduced self-attention
mechanisms [22] into U-Net-based segmentation networks,
creating effective long-range dependencies. Examples include
Unetformer [23] and ST-Unet [24]. While self-attention mecha-
nisms can establish global dependencies, they often require sig-
nificant computation time and memory to capture global context.
Subsequently, more efficient attention mechanisms have been
proposed as alternatives to self-attention for extracting global
context, such as dual attention [25] and CBAM [26]. In attention-
based segmentation networks, although global dependencies can
be effectively established, these networks usually consider only
a single scale within the same layer. However, in remote sensing
image segmentation, even with global information, single-scale
networks struggle to adapt to the scale variations of objects,
thereby affecting segmentation accuracy. To address this issue,
researchers have proposed multiscale feature extraction meth-
ods, such as [27] and [28], which can extract information-rich
multiscale features. However, these methods typically focus
only on image resolution or scale information, neglecting the
impact of different views on the model.

In remote sensing segmentation, introducing information
from different views can enhance the robustness of the network.
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For instance, the degree of occlusion for objects varies under
different views, and so does the difficulty of segmentation.
Therefore, fully considering different view information can
significantly improve segmentation accuracy. Although some
studies have proposed methods that combine information from
different views to improve classification or segmentation ac-
curacy [29], [30], these methods usually require multiple view
images of the same object. However, in practical segmentation
tasks, only a single view image is usually available, creating an
urgent need for a scientific method that integrates multiview
information for segmentation from a single view image. To
this end, we propose a multiview feature aggregation block
(MVFAB). This structure first establishes dependencies between
objects of the same type under different views on the same plane
using the global modeling capability of the attention mechanism.
It then expands these dependencies to different height views.
Finally, it calculates and assigns fusion weights through postat-
tention computation to address challenges in remote sensing
segmentation.

On the other hand, the same-level skip connections in U-Net
also have limitations in addressing the remote sensing segmen-
tation challenges in remote sensing segmentation. First, same-
level connections may ignore global contextual information
due to the existence of local feature redundancy. In processing
remote sensing images, global contextual information is crucial
for understanding the relationships between objects and complex
scene structures, but same-level connections may not fully utilize
this information. Second, remote sensing images may contain
objects of multiple scales, and same-level connections may not
adapt well to this multiscale problem. Since same-level connec-
tions only connect feature maps of adjacent layers, they may
not capture the features and morphology of objects at different
scales accurately, leading to inaccurate segmentation results.
Finally, same-level connections only connect feature maps of the
same scale between the encoder and decoder, lacking cross-scale
information transmission. However, objects in remote sensing
images may undergo scale changes, and same-level connections
may not handle this cross-scale information well. To address
these limitations, we propose a channel group fusion block
(CGB), which facilitates cross-level information interaction
through group combination.

Based on the above considerations, we designed a grouped
multiview aggregation network (GVANet) that leverages multi-
view information from a single image to address various chal-
lenges in remote sensing segmentation. Within this network
architecture, the MVFAB enables multiview expansion of
single-view information. Additionally, the CGB facilitates
cross-level information interaction, allowing the model to in-
tegrate and exchange information across different scales. Fi-
nally, to enhance the efficiency of multiview information
utilization, we introduced an aggregation-inhibition-activation
block (AIAB) following cross-level interaction. Experimental
results validate the effectiveness of our proposed segmentation
method.

In summary, the contributions of this article are as follows.

1) Proposal of the MVFAB: This module introduces an at-
tention mechanism to establish dependencies between features
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of the same type of objects at the same height. It then expands
these dependencies across different height views, and finally, it
uses a postattention mechanism to calculate fusion weights and
assign them to the features. This approach effectively addresses
challenges in remote sensing segmentation.

2) Proposal of the CGB: This module facilitates cross-level
information interaction between different hierarchical features
through a grouped combination approach. The introduction of
the CGB addresses the limitations of same-level skip connec-
tions, such as local feature redundancy, insufficient utilization of
long-range dependencies, and challenges related to multiscale
information, thereby improving the accuracy and robustness of
the segmentation results.

3) Proposal of GVANet: We propose GVANet, a network de-
signed to address various challenges in remote sensing segmen-
tation and improve segmentation accuracy. GVANet combines
MVFAB and CGB, with MVFAB enabling multiview expansion
of single-view information, and CGB facilitating cross-level
information interaction, allowing the model to integrate and
exchange information across different scales. Additionally, to
further enhance the efficiency of multiview information uti-
lization, we designed an aggregation-inhibition-activation block
(AIAB) following cross-level interaction. As an integrated net-
work architecture, GVANet demonstrates excellent performance
in remote sensing image segmentation, effectively addressing
multiple remote sensing challenges and improving segmentation
accuracy and robustness.

II. RELATED WORK

Semantic segmentation of remote sensing images is a critical
task in remote sensing technology. It involves assigning each
pixel in a remote sensing image to its corresponding land cover
category, enabling fine-grained classification and segmentation
of the Earth’s surface. In recent years, the rapid advancement of
deep learning technology has brought about significant break-
throughs in remote sensing image semantic segmentation. In
this section, we will introduce some important work related to
semantic segmentation of remote sensing images and discuss
their contributions to this field.

A. Semantic Segmentation of Remote Sensing Images Based
on CNNs

The release of certain datasets [31], [32], along with the
organization of competitions such as the IEEE Geoscience and
Remote Sensing Society (IGARSS) data fusion competition,
SpaceNet challenge, DeepGlobe challenge, and International
Society for Photogrammetry and Remote Sensing (ISPRS)
benchmarks, has played a crucial role in advancing research
in semantic segmentation of remote sensing images based on
convolutional neural networks (CNN&s).

Fully convolutional networks (FCNs), first proposed by Long
et al. in 2015, were the first effective CNN architecture for
semantic segmentation. Since then, CNN-based methods have
dominated the field of semantic segmentation in remote sensing,
encompassing numerous research achievements [33], [34], [35].
However, FCNs suffer from low resolution segmentation results
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due to their simplistic decoder structure, limiting image fidelity
and accuracy.

To address this segmentation issue, researchers introduced
the UNet encoder—decoder network, tailored for finer semantic
segmentation tasks. The UNet architecture comprises a contract-
ing path and an expanding path, extracting and reconstructing
multilevel features by progressively reducing and then restoring
the spatial resolution of feature maps. This structure has become
the standard model for remote sensing image segmentation,
laying the foundation for subsequent research [36], [37]. Skip
connections play a crucial role in encoder—decoder structures,
partially bridging the semantic gap between high-level and low-
level features. Some researchers have explored different skip
connection strategies, such as UNet++ [38], Web-Net [39], and
ResUnet-a [40]. While these improvements to skip connections
have shown certain effectiveness, they still utilize same-level
skip connections, resulting in redundant local features, inade-
quate adaptation to multiscale issues, and a lack of cross-scale
information transmission, which remain limitations in address-
ing multiview problems in remote sensing images. In contrast,
we employ a channel group fusion block (CGB) to group and
combine features from different hierarchical levels, facilitating
cross-layer information transmission to overcome the limitations
of skip connections in addressing multiview problems.

B. Multiview Features

Multiview features represent the characteristics resulting from
the fusion of features from multiple views. Researchers have
noted that features extracted from images under a single view
often result in insufficient or even misleading information [41].
In remote sensing image processing, utilizing multiview fea-
tures can significantly improve model accuracy, as validated by
several studies. For instance, methods in [29], [30], [41], [42],
and [43].These methods have demonstrated that incorporating
multiview information effectively enhances image classification
and segmentation accuracy. However, these methods typically
rely on original images from different views or simulate pseu-
domultiviews through techniques such as rotation. In practical
applications, conditions for obtaining multiview images are lim-
ited, and usually, only single-view images are available. Further-
more, pseudomultiview methods may mislead deep networks,
resulting in reduced accuracy.

To address this issue, we propose a multiview feature ag-
gregation block (MVFAB). This approach first establishes
long-range dependencies between objects of the same class
from different views at the same sampling height. It then
models the objects from views at different heights. Finally,
it calculates weights and performs fusion to achieve effec-
tive aggregation of multiview features. This method simu-
lates multiview characteristics within a single-view image,
effectively improving the accuracy of remote sensing image
segmentation.

C. Artention Mechanism

Due to the limitations of the receptive field, segmentation
networks based solely on CNNs can only capture local semantic
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GVANet structure diagram. Features extracted from the third and fourth stages of the backbone are first subjected to multiview expansion through MVFAB,

followed by cross-level information interaction using CGB. Subsequently, features extracted from the first and second stages of the backbone and the output features
of CGB are re-input into CGB as different level features for cross-level information interaction. This process achieves cross-level interaction between the features
of the first stage and all other stages. Eventually, this process yields four different stage outputs, which serve as inputs to the feature reconstruction stage. Finally,
each stage’s enhanced features pass through AIAB for global information enhancement and are then processed by FRH to obtain the final segmentation result.

features, lacking the ability to model global information across
the entire image. However, in high-resolution remote sensing ur-
ban scene images, many occluded objects and complex patterns,
as well as frequent artificial structures, exist [44]. Relying solely
on local information makes it difficult to accurately identify and
interpret these complex targets.

The emergence of attention mechanisms has enabled the
capture of global information to some extent. For example,
DANet [45] utilizes spatial attention modules and channel
attention modules to effectively extract spatial and channel
dependence information. CCNet [46] designs a cross-shaped
attention mechanism based on nonlocal modules. By calculating
two cross-shaped dependence relationships, global dependence
relationships are obtained, and the calculation steps of self-
attention are optimized [47], thereby improving the algorithm’s
effectiveness. Zhang et al. [48] constructed a self-attention mod-
ule focusing on channels and spatial locations. By multiplying
the feature map by the query matrix and the key matrix, a
weight map of all spatial positions and channel relationships is
generated, thus obtaining global information, which is used for
remote sensing image segmentation. Jha et al. [49] proposed a
fusion network based on global attention (GAF-Net), providing
an innovative architecture to improve remote sensing image
analysis results. Wang et al. [50] designed a vector set attention
module to establish relationships between channels and spatial
locations for remote sensing image segmentation.

While previous researchers have effectively utilized attention
mechanisms to achieve global modeling in segmentation tasks,
these approaches establish dependencies between objects only
based on features from the same view at the same level, which
can lead to insufficient segmentation accuracy. To address this

issue, we propose the MVFAB, which leverages attention mech-
anisms and multiview features to enable global feature expan-
sion with multiple receptive fields. Additionally, to enhance the
efficient utilization of multiview features, we have designed an
AIAB based on BAM [51].

III. METHOD

In this section, we will commence by presenting the holistic
architecture of GVANet. Subsequently, we will explore three
pivotal components housed within GVANet, specifically the
MVFAB, CGB, and AIAB.

A. Network Structure

The structure of GVANet is shown in Fig. 2. Our GVANet
is constructed using a sampling process based on CNN and a
feature reconstruction process based on attention mechanisms.
Since ConvNext [50] has been proven effective and efficient in
feature extraction through extensive experiments, we chose the
pretrained ConvNext as the backbone, allowing us to extract
deep features at a lower computational cost. ConvNext con-
sists of four stages, with each stage downsampling the feature
maps.For a given RS image X € R®*"*% where w and h
are the width and height of the input RS image, initially with
three channels, X undergoes feature extraction via Convnext,
resulting in four different features extracted from four Con-
vnext stages: X, € REHHW X, ¢ R2Ox(H/2)x(W/2) X, ¢
R4C><(H/4)><(W/4)’ and X, € RSCX(H/S)X(W/S)’ where W and
H are the width and height after downsampling, and C' is the
expanded channel. The number of channels in the features ex-
tracted from the first stage is C' = 128, and for subsequent stages,
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the number of channels is twice that of the previous stage, while
the height and width are halved. The features extracted from the
final two stages, X3 and Xy, first pass through an MVFAB. This
stage primarily focuses on incorporating multiview features. It
is worth noting that deep features become more abstract and
global, so we only introduce MVFAB in the last two feature
extraction stages, namely

{X:/s = FI\??IVFAB(XS)

(D)
Xéll = F1\4/1\/FAB(X4)

where F}ypap denotes the features passing through the MV-
FAB. Subsequently, to enable fine-grained cross-layer infor-
mation interaction between different hierarchical features, the
extracted low-level global features and high-level global features
are input into a CGB for fusion, obtaining the input of the next
CGB. This process derives three features with cross-layer inter-
action through CGB: X7, X/, and X1, with the same dimensions
as X3, Xo, and X1, respectively

X4 = Feop(X), X5) (2)
Xy = Fean (X3, Xa) 3)
X| = Fegp(Xy, X1) “)

where Frgg(H, L) represents the operation of fusing high-level
feature H and low-level feature L via CGB. This process yields
features with fused cross-layer interaction: X7, X}, and XJ.
These features, along with the global feature X7}, are then aggre-
gated via weighted sum operation with the features suppressed
and activated by the AIAB in the feature reconstruction stage.
The weighted sum operation selectively weights the contribution
of the two features to segmentation accuracy, thereby learn-
ing more generalized fused features. The expression for the
weighted sum operation can be represented as

FF =« -CF+ (1 —«) - AIF (5)

where FF represents the fused features, CF represents the fea-
tures generated by ConvNext, and AIF represents the features
produced by the AIAB, o represents a weight coefficient, where
0<a<l.

In particular, the feature reconstruction consists of four
stages, each progressing incrementally, with output results be-
ing Y3, Y5, Y7, and Y, respectively. Taking the third stage as
an example, low-level features X are first processed through
AIAB, followed by bilinear interpolation, and then this feature is
weighted and summed with high-level features X7 . Specifically,
it can be expressed as follows:

Y3 =a- X3+ (1—-a) Bl (Fans (X})) ©)

where Fajap (-) represents features processed through the AIAB
block, and BI represents bilinear interpolation operations. It is
important to note that in the fourth stage, there are no lower
level features to input, so there is no step for weighted summation
with high-level features. Additionally, the final layer is dedicated
to pixel-level classification, and as such, it does not require
additional reconstruction work. Therefore, the final layer does
not use AIAB but instead utilizes an effective feature refinement
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head (FRH). The effectiveness of the feature refinement head is
validated based on the detailed structure from UnetFormer [23].
Finally, the resulting features are used for pixelwise classifica-
tion to obtain the segmented image.

Overall, GVANet introduces multiview information by using
MVFAB in the final two stages. Additionally, GVANet em-
ploys CGB for fine-grained cross-level information interaction
between different layers, addressing the issue of lack of in-
formation exchange between different levels due to same-level
shortcuts in traditional networks, and uses AIAB to further en-
hance the efficiency of global feature utilization. In the following
sections, we will provide a detailed description of these three
main components of GVANet.

B. Multiview Feature Aggregation Block

In the past, most methods for remote sensing image segmen-
tation have used single-view approaches. However, when facing
the challenges of remote sensing segmentation, incorporating
information from different views can enhance the network’s
robustness. For instance, regarding occlusion issues, a single-
view network provides limited information, but different views
have varying occlusion scenarios. Integrating information from
views with less occlusion can effectively improve segmentation
accuracy. To address this, we propose the MVFAB, which
incorporates a multiview expansion module as illustrated in
Fig. 3. This block first uses a preattention mechanism to establish
dependencies between objects of the same type at different views
but at the same sampling height [Fig. 4(a) shows instances
of objects of the same type at different views with the same
sampling height]. It then performs feature mapping for different
sampling height views through the multiview expansion mod-
ule [Fig. 4(b) shows instances of the same object at different
sampling heights]. Finally, a postattention mechanism computes
the fusion weights for multiview features and assigns the final
feature values. The MVFAB structure consists of three parts:
preattention for establishing dependencies between objects of
the same type at different views but the same sampling height,
multiview expansion for different sampling heights, and postat-
tention for calculating fusion weights.

Preattention: We first establish horizontal dependencies using
horizontal pooling and vertical dependencies using vertical pool-
ing. These dependencies are then concatenated and dimension-
ally reduced to encode spatial information, establishing global
dependencies among feature pixels. Finally, two parallel 1 x 1
convolutions are applied to learn channel correlations and inter-
actions, better capturing feature differences and commonalities
across different viewpoints. The expressions for this part can be
described as

Fyp(x) = Convy . (CatAPzx, APy(x)) @)
Fore(z) = - Conviyi(Fap(x)) - Conviyi(Fan(z)) (8)

where X € RC > H *xW_ AP, (.) represents establishing hor-
izontal dependencies, AP, (-) represents establishing vertical
dependencies. Cat denotes concatenation, Conv,,(-) denotes
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is used to establish long-range dependencies among different views at the same sampling height. Subsequently, in the multiview expansion stage, multiscale pooling
is used for resolution simulation from different viewpoints and an MLP is employed to compensate for geometric deformations, thereby enabling the extraction of
multiview information from different heights and perspectives. Finally, in the postattention stage, the model can selectively focus on relevant features and suppress
irrelevant information. The focus of this stage lies in fusing and assigning values through concentration on feature pixels and specific channels.
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Fig. 4. Tllustrates two different multiview scenarios. (a) depicts that objects of
the same type at different positions have varying geometric information at the
same sampling height. (b) shows that the same object has different geometric
information at different sampling heights.

convolution with a kernel size of x, Fyp(-) represents estab-
lishing global dependencies, and F.(-) represents preattention
operation.

1) Multiview Expansion: The objective of this module is to
extract information from different heights and views to enhance
the model’s robustness to multiview inputs. Based on the per-
spective projection principle in image imaging (i.e., objects
appear larger when closer and smaller when farther away), we
approximate the original features to different view resolutions
using spatial pyramid pooling (SPP) technology. Since changes
in view can cause geometric deformations of objects, we mitigate
these negative effects by mapping features at each resolution
level using a multilayer perceptron (MLP). Specifically, this

process involves two main branches: one is the view mapping
branch, which first applies three convolutions to the feature map,
followed by max pooling with kernels of sizes 5 x 5,9 x 9, and
13 x 13. Each pooling branch uses an MLP to suppress the
effects of geometric deformation. This method extends global
features to multiple different height views. Finally, after two
additional convolutions, the results are concatenated with the
feature map processed by a single convolution to produce the
output for this stage. The formulas for this stage can be described
as follows:

Fon(z)=

Cat(é(MP5X5(x)), §(MP9X9(x)), (S(MPldX 13(1’)), LU) (9)
FConvl (l’) = Conlel (COHV3X3 (COHV1X1<.’E))) (10)
Foonva () = Convy g (Convzya()) (11)

Fmve(x) = Cat(FCOHV2 (FSpp(FConvl(x)); COnVle(ZL’)) (12)

where F,,(-) denotes view mapping, 0(-) represents the
MLP, Feoni () and Feonyv2(-) denote two consecutive convo-
lution operations, MP, ., represents max pooling with a ker-
nel size of x, and Fi.(-) denotes the multiview expansion
operation.

2) Postattention: This part is intended to enhance the gener-
alization ability of the multiview fusion features by adjusting the
pixel and channel weights in the feature maps. Position attention
and channel attention are applied to respectively improve the
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CGB structure diagram. For the input high-level feature map, it is first upsampled to the size of low-level features, then divided into four groups along

with the low-level features by channel. Subsequently, the features after grouping are pairwise concatenated and passed through depthwise separable convolutions.
Finally, the features are mapped back to the size of low-level features for output. Grouping the features first helps better preserve and distinguish the semantic
information of different-level features. Then, pairwise fusion of the grouped features enables each feature group to interact with others, facilitating finer and more
comprehensive cross-level information exchange. Such interaction effectively compensates for the semantic gap between different-level features, enhancing feature

representation and segmentation performance.

spatial and channel information perception capabilities of the
multiscale global features. Spatial and channel attention ma-
trices are generated to weight the original features, enhancing
the perception of spatial and channel key information. Finally, to
prevent network degradation, skip connections are introduced to
aggregate the outputs of the two attention modules and the initial
input, resulting in better feature representation for pixel-level
predictions. The computational formula of MVFAB is described
as follows:

F]\Z-/[VFAB - Fpre (Xz) + Fpnst(Fmve (Fpre (Xz)) (13)

where X; represents the feature map of the ¢th downsampling
stage, @ € [3,4], Fpox(z) denotes the postattention operation
(refer to [25] for the specific formula), and Fyypsp is the output
feature map of the 7th downsampling stage after passing through
MVFAB.

C. Channel Group Fusion Block

In the past, networks often used intralayer skip connections
to preserve original feature information, but this approach has
some limitations when dealing with multiview problems. First,
intralayer skip connections can only transmit feature information
within the same layer, unable to effectively interact and fuse
information across different layers. This results in the model’s
inability to fully utilize features from different layers to address
multiview problems, especially those involving scenes with
different scales and semantic information. Second, intralayer
skip connections cannot effectively capture information about
distant, blurry, or occluded objects because they only transmit
features within the same layer, failing to obtain more global
and comprehensive information. Therefore, when dealing with
multiview problems, relying solely on intralayer skip connec-
tions may limit the model’s perception and utilization of global

features and multiscale information. To address these issues, we
propose CGB, amodule that can achieve fine-grained cross-layer
fusion of information from different layers.Its structure is shown
in Fig. 5, and it takes two inputs: low-level features and high-
level features. First, it adjusts the size of the high-level features
to match the size of the low-level features using depthwise sepa-
rable convolution (DW) and bilinear interpolation. Specifically,
for the two input features, high-level feature X} and low-level
feature X, the calculation formula is as follows:

fn=BI(DW (X})) (14)

where DW represents depthwise separable convolution, and
BI stands for bilinear interpolation. fj is the feature map of
high-level feature X}, after being adjusted to match the size of
X;. Next, we split the two feature maps into four groups along
the channel dimension and concatenate one group of low-level
features with one group of high-level features, resulting in four
sets of fused features. As shown in Fig. 4, this can be represented

as follows:
X%,Xﬁ,Xﬁ,Xﬁ:Group(fh) (15)
X} X2 X3P, X = Group (X))

Y, = X} + X} (16)

where Group represents the grouping operation, X} denotes
the grouped high-level features after grouping for the ith group
where 7 € [1,2,3,4], X l’ represents the grouped low-level fea-
tures for the ith group, and Y; is the feature obtained by com-
bining the ith low-level feature with the ith high-level feature.
Then, dilated convolutions with a kernel size of 3 x 3 are applied
using different dilation rates (1, 2, 5, 7) for the various groups to
extract information at different scales. Finally, these four groups
are concatenated along the channel dimension, followed by
applying aregular 1 x 1 convolution to enable feature interaction



16734

Layer Norm

2 4
/

Input

Fig. 6.

Multi-head
' |Self-attention

N

N

Va
\
y

Standard transformer structure.

Inhibition Activation

4 Batch /| Conv /| Conv
Norm |~ Ix1 |~ 3x3

0utput

Fig. 7. AIAB structure diagram. We replaced the Transformer’s multihead
self-attention (MS A) mechanism with the IAB. In the inhibition activation block,
we first employ a 1 x 1 convolution to emphasize interchannel relationships,
while a 3 x 3 convolution focuses more on spatial features. Subsequently, the
aggregated features are fed into the BAM, where important features are activated
and less relevant ones are suppressed. Compared to MSA, BAM enables the
model to simultaneously consider both spatial and channelwise characteristics
of the features. This comprehensive approach enhances the model’s capability
to select and weight global features accurately.

at different scales. For the grouped features Y; obtained from
(16), the subsequent computation formulas are as follows:

4
Fege = Convyyg ZCOHVgxs (Y7)

=1

a7

where Fgp represents the features fused by CGB.

D. Aggregation-Inhibition-Activation Block

To further enhance the utilization efficiency of features, we
were inspired by Transformer and designed a module called
AIAB, which is similar in structure to the standard Transformer
as shown in Fig. 7. The structure of the standard Transformer is
illustrated in Fig. 6. Compared to the standard Transformer, we
replaced layer normalization with batch normalization. Addi-
tionally, we introduced an inhibition-activation block (IAB) to
simplify operations, replacing the original self-attention mod-
ule. Specifically, for the input features, we first perform batch
normalization and then divide them into two branches: one
branch undergoes a 1 x 1 convolution, while the other branch
undergoes a 3 x 3 convolution. The 1 x 1 convolution helps
the model focus more on relationships between channels, while
the 3 x 3 convolution focuses more on spatial information in
the feature maps. Subsequently, we fuse the features from both
branches and further enhance the model’s attention to spatial
and channel information through a bottleneck attention module
(BAM). The structure and implementation details of BAM can
be found in reference [51]. Finally, we use an MLP for nonlinear
mapping, similar to the standard Transformer block.
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E. Loss Function

The loss function L we employ is a combination of a dice
loss (Lgice) and a cross-entropy loss function (L), which can
be expressed as

1 on v~ () (n)
Lce = - N Z Zykn IOg an

(18)
n=1k=1
9 N K A](Cn)yl(cn)
Laice =1 = Z Z () . (n) (19)
n=1k=1Yr T Y
L= Lce + Ldice (20)

where N is the number of samples, and K is the number of
classes. 4™ and (") represent the one-hot encoding of the
true semantic labels and their corresponding network softmax
outputs, with n € [1,..., N]. §*) is the confidence of class k
for sample n.

IV. EXPERIMENT

In this section, we will first introduce the dataset, experimental
setup, and relevant metrics. Then, we will present our ablation
experiments, and finally, we will discuss comparative experi-
ments with other methods.

A. Experimental Settings

1) Datasets: We have used two commonly employed
datasets in remote sensing image segmentation, namely, Vai-
hingen and Potsdam. The Vaihingen and Potsdam datasets are
widely recognized standard datasets in the field of remote sens-
ing image semantic segmentation, extensively used for eval-
uating algorithm performance to ensure the universality and
comparability of research results. They offer a rich variety of
land cover categories and diverse environmental conditions, in-
cluding buildings, roads, trees, etc., as well as different seasons,
weather, and lighting conditions, which contribute to assessing
the robustness and generalization ability of models. Moreover,
these datasets have been extensively utilized in research, facil-
itating easy comparison and benchmarking of our work with
existing studies. In the following, we will introduce these two
datasets.

Vaihingen dataset: The Vaihingen dataset comprises 33 high-
resolution TOP image blocks, each with an average size of
2494 x 2064 pixels. These TOP image blocks are equipped with
three multispectral bands (near-infrared, red, green), as well as
a digital surface model (DSM) and a normalized digital surface
model (NDSM), all with a ground sampling distance (GSD)
of 9 cm. This dataset contains five primary foreground classes
(impervious surfaces, buildings, low vegetation, trees, cars) and
a background class (clutter). In the experiments, we selected
training data according to the specific training IDs provided by
the ISPRS Challenge (IDs: 1, 3, 5, 7, 11, 13, 15, 17, 21, 23,
26, 28, 30, 32, 34, 37). The remaining 17 images were used for
testing. This selection ensures that our data are consistent with
that of other researchers, facilitating comparative analysis [23],
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Fig. 8. Proportion of each semantic label in the two datasets.

[24]. To simplify processing and analysis, we divided the image
blocks into patches measuring 1024 x 1024 pixels.

Potsdam dataset: The Potsdam dataset consists of 38 high-
resolution TOP image blocks, each measuring 6000 x 6000
pixels and offering a 5-cm GSD. These images contain the
same category information as the Vaihingen dataset. Moreover,
they include four multispectral bands (red, green, and blue, and
near-infrared), as well as DSM and NDSM. During the training
process, we used specific training IDs provided by the ISPRS
competition. These training IDs include images numbered 2_10,
2.11,2.12,3.10,3_11,3_12,4_10,4_11,4_12,5_10, 5_11,
5.12,6_7,6_8,6.9,6_10,6_11,6_12,7_7,7_8,7_9,7_11, and
7_12. The remaining 15 images were reserved as the test set.
Similar to our approach with the Vaihingen dataset, we limited
our analysis on the Potsdam dataset to use only three bands (red,
green, blue). Additionally, we divided the original image blocks
into 1024 x 1024 pixel patches for analysis. Notably, during
our quantitative evaluations on both datasets, we excluded the
“clutter/background” category.

2) Implementation Details: In our experiments, we utilized
an Ubuntu 18.04 system and implemented the models using
the PyTorch 1.11 framework on a single NVIDIA GeForce
RTX 2080 Ti 11GB GPU to ensure efficient performance. To
facilitate rapid convergence, we employed the AdamW opti-
mizer for training all models, with a base learning rate set
at 6e-4. We also incorporated a cosine learning rate schedul-
ing strategy. For the Vaihingen and Potsdam datasets (are
shown in Fig. 8), we adopted a training approach where im-
ages were randomly cropped into patches of 512 x 512 di-
mensions. Throughout the training process, we applied var-
ious data augmentation techniques, including random scal-
ing factors (0.5,0.75,1.0,1.25, 1.5), random vertical and hor-
izontal flipping, as well as random rotation to enhance the
robustness of the models. The training process was carried
out for a total of 105 epochs. During testing, we applied
augmentations including multi-scale variations and random
flipping.

3) Evaluation Metrics: We use common remote sensing seg-
mentation metrics such as overall accuracy (OA), F1 score, and
mean intersection over union (mloU) as our evaluation metrics.
Additionally, we use the “Parameters” metric to evaluate the
model’s parameter count. Before discussing these metrics, let
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is introduce some related metrics, such as precision and recall.
We also need to understand the meaning of certain symbols: tp
(true positives), fp (false positives), fn (false negatives), tn (true
negatives).

Precision: Precision measures the proportion of true positive
predictions among all the samples predicted as positive by the
model. In other words, precision tells us the probability that a
sample predicted as positive is indeed a true positive

tp

Precision =
tp+ p

2

Recall: Recall refers to the proportion of true positive pre-
dictions among all samples that are actually positive. Recall
measures the model’s ability to discover all positive instances

tp

Pcall =
tp + fn

(22)

Overall accuracy: OA is one of the commonly used perfor-
mance evaluation metrics in image classification tasks. It is the
proportion of correctly classified samples to the total number
of samples. However, OA may not handle class imbalance well
because when the number of samples in some classes is much
larger than in other classes, the model may tend to predict
the class with more samples. Number of correctly classified
samples: The sum of all true positives and true negatives (tp
+ tn). Total number of samples: The sum of all samples (tp + fp
+ fn + tn)

tp + tn

= 23
tp+fp+fn+tn 23)

F1 score: The F1 score is the harmonic mean of precision
and recall. It combines the model’s accuracy and its ability to
capture positive instances. For multiclass problems, F1 scores
are typically calculated for each class, and then the average of
these class F1 scores is computed. For each class

2 x (Precision x Recall)

F1
Precision + Recall

(24)

Average F1 score = Average of F1 Scores for all classes

Mean intersection over union: mloU is a commonly used
evaluation metric in semantic segmentation tasks to measure the
accuracy of a model at the pixel level. Intersection over union
(IoU) is used to assess the model’s segmentation results for each
class, while mloU computes the average IoU across all classes.
For each class

tp

U= — - 25
tp + fp + fn 25)

mloU is the sum of IoU values for all categories divided by the
number of categories.

B. Ablation Study

1) Components of GVANet: In order to separately assess
the performance of the individual components of the proposed
GVANet, we conducted a series of ablation experiments on
the Vaihingen and Potsdam datasets. For ease of discussion,
we primarily focused on mloU and meanFl. We set up a
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Fig. 10.  Baseline + MVFAB local zoom-in view.
TABLE I
ABLATION EXPERIMENTS OF GVANET COMPONENTS
Vaihingen Potsdam
Method

mloU(%) F1(%) mloU(%) F1(%)
GVANet 84.54 91.52 87.62 93.29
GVANet—MVFAB 83.77 91.05 86.51 92.65
GVANet—CGB 83.82 91.08 86.77 92.80
GVANet—AIAB 83.90 91.12 86.80 92.82

baseline using U-Net with the ConvNext backbone and em-
ployed the feature refinement head (FRH) in the final layer.We
conducted ablation experiments on the Vaihingen dataset by
removing one of these components, denoted in Table I with a
minus sign (—). We conducted joint ablation experiments on
the three modules we introduced, and the results are presented
in Table I. All experimental results are averaged from multiple
trials.

From Fig. 9, it can be observed that when any module of
our GVANet is removed, the performance deteriorates com-
pared to the GVANet with all components intact. Furthermore,
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TABLE II
ABLATION EXPERIMENTS OF INDIVIDUAL MODULES IN GVANET ON THE
'VAIHINGEN DATASET

Method mloU(%) F1(%)
Baseline 82.42 90.10
Baseline+MVFAB 83.20 90.69
Baseline+CGB 83.12 90.67
Baseline+AIAB 83.07 90.61

to demonstrate the roles and superiority of each module, we
conducted individual module ablations on the Vaihingen dataset.
The results are presented in Table II.

C. Comparison With Other Methods

1) Effect of MVFAB: From Table I, it can be observed that on
the Vaihingen dataset, our model without the MVFAB module
has a lower mIoU by 0.77% compared to the network with the
MVFAB module. For F1, using GVANet with MVFAB results
in a 0.47% increase. On the Potsdam dataset, the model without
MVFAB has a 1.11% lower mloU compared to the model with
MVFAB, and using GVANet with MVFAB results in a 0.64%
increase in F1. Furthermore, the network models with MVFAB
are closer to our final results compared to those without MVFAB.
The difference in the mloU metric between the two models
using MVFAB is not significant, as shown in Table II. On the
Vaihingen dataset, the baseline model sees a 0.78 % improvement
in mloU and a 0.59% improvement in F1 after adding MVFAB.
Overall, using MVFAB results in at least a 0.77% improvement
in mloU and at least a 0.47% improvement in F1. From Fig. 10,
it can be seen that the model with the MVFAB performs well
in segmenting small instances in the first row that were not
effectively addressed before, and in handling the issue of tree
shadows mapped onto low vegetation in the second row that led
to mixing and difficulty in segmentation. This also confirms the
effectiveness of our MVFAB.

To further demonstrate the advantages of MVFAB, we provide
the feature maps before and after using MVFAB in the fourth
stage. The results are shown in Fig. 11, where the first column
is the original image, the second column shows the feature
maps without MVFAB, and the third column displays the feature
maps with MVFAB. The figure reveals that after using MVFAB,
the contrast in various regions of the features is reduced, indi-
cating that the deep features are more consistent. This suggests
that the model’s feature changes across different regions are
more stable in the deeper layers. Even with some local noise
or variations in the deep features, the model is better able to
identify the overall features. Additionally, the relatively lower
contrast in deep features helps the model capture the overall
structure and semantic information in the image more effec-
tively. As shown in the second row of the figure, the occluded
car has higher weights in the features after using MVFAB,
indicating that the model has given focused attention to this
region.
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Fig. 11. Feature maps of the fourth stage of GVANet. The first column shows
the original image, the second column displays the features without using
MVFAB, and the third column shows the features with MVFAB. In the figure,
redder colors indicate higher weights, while bluer colors indicate lower weights.
The figure demonstrates that after using MVFAB, the contrast of features across
different regions is reduced, indicating that the deep-layer features after applying
MVFAB are more uniform and consistent. This suggests that the model pays
more attention to global features rather than local ones. Additionally, it can be
observed that for segmentation targets that benefit from multiview techniques,
such as the occluded car in the second row of the image, the corresponding
feature with MVFAB has a higher weight, indicating that the model focuses
more on this region.
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Baseline + CGB local amplification.
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Fig. 12.

To further investigate the advantages of MVFAB (are shown
in Fig. 12), we have also dissected the MVFAB into its inter-
nal components, splitting it into preattention (Prea), multiview
expansion (Mve), and postattention (Posta). We conducted ab-
lation experiments on the Vaihingen dataset by incrementally
adding individual components, as indicated by the plus sign (4)
in Table III. This was done to demonstrate the effectiveness
of each internal structure within our designed MVFAB. The
experimental results are presented in Table III.

From Table III, it can be observed that the removal of various
components leads to a reduction in performance compared to
the complete MVFAB. Specifically, the MVFAB without preat-
tention exhibits a decrease of 0.3% in mloU compared to the
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TABLE III
ABLATION OF INTERNAL COMPONENTS WITHIN MVFAB ON VAIHINGEN
DATASET

Method mloU(%) F1(%)
Baseline+ MVFAB 83.20 90.69
Baseline+ MVFAB-Prea 82.90 90.49
Baseline+MVFAB-Mve 82.93 90.51
Baseline+MVFAB-Posta 82.85 90.42
Baseline+ MVFAB-Prea-Mve 82.65 90.26
Baseline+MVFAB-Prea-Posta 82.64 90.24
Baseline+MVFAB-Mve-Posta 82.69 90.35

TABLE IV
PARAMETER QUANTITY OF DIFFERENT BACKBONES AND MIOU ON THE
VAIHINGEN DATASET

Method Backbone Parameters(M) mloU(%)
ResNet50 25.56 84.16
ResNext50 25.03 84.29
GVANet
ResNest50 27.48 84.33
ConvNext-Tiny 28.59 84.54

MVFAB with preattention. Similarly, the MVFAB without Mve
shows a 0.27% decrease in mloU compared to the MVFAB
with Mve. Moreover, the MVFAB without Posta demonstrates
a0.35% decrease in mloU compared to the MVFAB with Posta.
Furthermore, Table III indicates that the MVFAB module with
both components removed performs worse than the MVFAB
module with only one component removed. These experimental
results affirm the effectiveness of each component within the
MVFAB.

2) Effect of CGB: From Table I, it can be observed that on
the Vaihingen dataset, networks utilizing CGB achieve a 0.72%
higher mIoU and a 0.44% higher F1 score compared to networks
that do not use CGB. On the Potsdam dataset, networks without
CGB perform 0.85% lower in mloU and 0.49% lower in F1
score compared to networks with CGB. As seen in Table II,
on the Vaihingen dataset, the baseline model exhibits a 0.7%
improvement in mloU and a 0.57% improvement in F1 score
after the addition of CGB. With the use of CGB, mloU is
enhanced by at least 0.7%, and F1 is improved by at least
0.44%. From Fig. 14, it can be observed that after leveraging the
CGB to integrate information across different scales, the model
exhibits satisfactory results in dealing with the segmentation
challenges posed by occlusion or differences in viewpoint, as it
effectively incorporates semantic information from deep-layer
features, directing the model’s focus towards the instance itself
rather than individual pixels.

Furthermore, to evaluate the fusion outcomes of features
using CGB, we present the feature maps from the shallowest
layer, i.e., the first stage, as shown in Fig. 13. The second
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TABLE V
COMPARISON OF SEGMENTATION RESULTS ON THE VAIHINGEN DATASET

F1(%) Evaluation index
Method
Imp.Surf Building Lowveg Tree Car MeanF1(%) mloU(%) OA(%)
MANet[52] 84.95 88.41 78.16 88.37 70.47 82.07 70.16 84.80
ABCNet[53] 88.13 90.23 76.71 87.21 68.72 82.20 70.58 85.62
MACU-Net[54] 90.70 92.40 81.90 89.37 82.53 87.38 77.85 88.61
MAResU-Net[55] 92.91 95.26 84.95 89.94 88.33 90.28 83.30 90.86
A2-FPN[56] 92.99 95.53 84.67 90.34 87.62 90.23 82.42 91.04
DC-Swin[57] 93.46 96.00 85.32 90.03 84.88 89.94 82.01 91.29
Mask2Former[58] 92.86 96.03 84.15 90.50 89.30 90.57 82.99 91.10
MPCNet[59] 92.76 95.50 84.70 90.40 90.44 90.76 83.27 90.93
VMFormer[60] 93.23 95.81 85.64 91.08 88.65 90.88 83.48 91.54
GVANet(Ours) 93.66 95.99 86.07 90.79 91.10 91.52 84.54 91.72
The best results are indicated in bold black.
Baseline+

Fig. 13.  Feature maps of the first stage in GVANet. The first column represents
the original image, the second column represents the features without cross-level
information interaction using CGB, and the third column represents the features
after cross-level fusion using CGB. From the graph, it is evident that without
using CGB for cross-level information interaction, the feature distribution is
overly uniform, with low contrast. However, after employing CGB for cross-level
fusion, the features exhibit more distinct and vivid contrasts. In segmentation
networks, shallow layers require greater differences in feature positions to
facilitate pixel-level classification. This helps the model better capture texture
and boundary information in the image. Clearly, using CGB for cross-level
fusion results in better feature representation.

column represents features without cross-level information in-
teraction using CGB, while the third column represents fea-
tures after cross-level fusion with CGB. It is evident from the
figure that without leveraging CGB for cross-level interaction,
the feature distribution is excessively uniform with low con-
trast. Conversely, utilizing CGB for cross-level fusion results
in enhanced local details and texture information in the fea-
tures. Since the segmentation network’s shallow layers require
pixel-level classification, it is imperative for the differences in
positions within the shallow features to be more pronounced,
facilitating better capture of texture and boundary information
in the images. Therefore, the use of CGB for cross-level fusion

Baseline AIAB

Low vegetation

- Background Car

Local zoom-in of baseline+AIAB on Vaihingen.

Fig. 14.

yields improved feature representation, further validating its
effectiveness.

3) Effect of AIAB: From Table I, it can be observed that
the network using AIAB on the Vaihingen dataset achieves a
0.64% higher mloU and a 0.4% higher F1 score compared to the
network without AIAB. On the Potsdam dataset, the network
using AIAB outperforms the network without AIAB with a
0.82% higher mIoU and a 0.47% higher F1 score. Table IT shows
that on the Vaihingen dataset, the Baseline model experiences a
0.65% improvement in mloU and a 0.51% improvement in F1
when AIAB is incorporated. From Fig. 14, it can be observed
that the introduction of AIAB into the baseline model enhances
the efficiency of utilizing global features in the feature recon-
struction stage, allowing the model to perceive more semantic
information. The segmentation results in Fig. 14 demonstrate
that the model without AIAB in the feature reconstruction stage
tends to focus more on individual pixels. This leads to poorer
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Fig. 15.  Visualization results for Vaihingen Test Set ID 2 and ID 14. The first

column showcases the RGB image, while the second column provides the ground
truth (GT). The third column exhibits the segmentation outcomes generated by
our GVANet.
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Fig. 16.  Challenges in remote sensing segmentation are illustrated. The figure
shows the original images along with the corresponding GT segmentation labels,
as well as segmentation results from several mainstream methods and GVANet.
(a) MAResU-Net, (b) A2-FPN, (c) DC-Swin, (d) MPCNet, and (¢) GVANet.
The first row of images demonstrates how vehicles exhibit different appearance
features under varying viewpoints and lighting conditions, posing challenges
for segmentation in remote sensing scenarios. The second row highlights the
difficulty in distinguishing between nonpermeable surfaces and buildings with
similar colors in different scenes. The third row illustrates instances where ve-
hicles are occluded by trees, making it challenging for segmentation algorithms
to correctly identify and segment occluded objects. It is evident from the images
that GVANet outperforms mainstream networks in addressing common remote
sensing challenges.

segmentation performance for instances with similar colors
but different categories under different viewing angles. In the
segmentation image of the second row in Fig. 14, Buildings
with colors similar to low vegetation are erroneously segmented
as low vegetation. This further confirms the effectiveness of
AIAB.

From Table IV , it can be observed that even when using
a ResNet backbone network, satisfactory results can still be
achieved. Although the ConvNext-tiny model has a larger num-
ber of parameters, the slight increase in parameter count is
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entirely acceptable when compared to the improvement in final
results.

The comparative models we selected are as follows: a multi-
attention network with kernel attention (MANet) [52], a “Dual
Path” network named ABCNet with spatial and contextual
paths [53], MACU-Net based on multiscale skip connections
and asymmetric convolutions [54], multistage attention residual
UNet (MAResU-Net) with linear attention mechanisms [40],
attention aggregation feature pyramid Network (A2-FPN) [55],
DC-Swin, which incorporates a dense connection feature ag-
gregation module (DCFAM) into the Swin-Transformer net-
work [56], the masked Transformer network Mask2Former [57],
MPCNet, a network with a multiscale prototype transformer
decoder [58], and the Transformer network with variable win-
dow attention, VMFormer [59]. Our model ultimately achieves
higher accuracy on the ISPRS Vaihingen and ISPRS Pots-
dam datasets, which are commonly used for remote sens-
ing segmentation tasks, compared to the models mentioned
above.

4) Results on the Vaihingen Dataset: Table V presents nu-
merical results of various semantic segmentation methods com-
pared on the Vaihingen dataset. The results indicate that our
proposed GVANet achieves an average F1 of 91.52%, an mloU
of 84.54%, and an OA of 91.72%. Notably, MHLNet provides
the best F1, OA, and mloU, significantly outperforming other
networks. We not only surpass the excellent lightweight con-
volutional network ABCNet but also outperform the DC-Swin
network, which has strong global information representation
capabilities.

To demonstrate the advantages of GVANet in addressing
remote sensing segmentation challenges, we also provide a
visual comparison with other networks. The results are shown
in Fig. 16. The first row illustrates how cars exhibit differ-
ent appearance features under varying viewpoints and lighting
conditions in remote sensing segmentation challenges. Due
to building shadows obscuring the car, the car and shadows
merge, leading to segmentation errors by mainstream networks.
However, GVANet successfully segments the car. The second
row shows cases where impermeable surfaces and buildings
with similar colors are difficult to distinguish, with GVANet
correctly differentiating them. The third row depicts scenarios
where cars are obstructed by trees, making it challenging for
segmentation algorithms to accurately identify and segment
the occluded objects. These results demonstrate the effective-
ness of GVANet in addressing remote sensing segmentation
challenges.

Furthermore, the prediction results for IDs 2 and 14 are shown
in Fig. 15. Fig. 17 displays the prediction results of several
semantic segmentation methods mentioned in Table V. From
Fig. 17, it can be observed that our model outperforms current
methods in some segmentation areas where the foreground and
background colors are extremely similar. Most models tend to
classify colors similar to the background into the same class.
However, in actual images, factors such as shadows, lighting,
and the object’s inherent color can lead to misidentification by
models that focus on local features. After incorporating mul-
tiview and global information, our model pays more attention
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Fig. 17.
(f) DC-Swin. (g) Mask2Former. (h) MPCNet. (i) VMFormer. (j) GVANet.
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Fig. 18.  Visualization of results for Potsdam test set ID 3_14 and 2_13. The
first column showcases the RGB image, while the second column provides the
GT. The third column exhibits the segmentation outcomes generated by our
GVANet.

to the classification of the instances themselves, ignoring the
influence of similar colors. This allows our model to better
capture the semantic information in remote sensing images,
focusing on instance classification rather than just pixel classifi-
cation, resulting in improved boundary segmentation for Trees
and Buildings in Fig. 17.

5) Results on the Potsdam Dataset: To provide a compre-
hensive evaluation, we conducted further experiments on the
Potsdam dataset. As shown in Table VI, our GVANet achieved
an average F1 score of 93.29% and an mloU of 87.62% on
the Potsdam test set, along with an OA score of 91.98%, all
of which outperformed other methods. Due to differences in

Car Background

Segmentation results examples of different models on Vaihingen dataset. (a) MANet. (b) ABCNet. (c) MACU-Net. (d) MAResU-Net. (e) A2-FPN.

data size and data type, segmentation accuracy on the Potsdam
dataset is generally higher than that on the Vaihingen dataset.
From the experimental results, it is evident that the use of
multireceptive fields and hybrid attention mechanisms signif-
icantly outperforms other methods.

As shown in Fig. 18, we present the segmentation results
for ID 2_14 and 3_13. Additionally, we provide the prediction
results for several semantic segmentation methods mentioned in
Table VI. As illustrated in Fig. 19, our model performs better
when segmenting instances with similar colors, even when the
instance color closely resembles the background. From Fig. 19, it
can be observed that our model excels in segmenting Buildings,
Lowveg, and Trees.

6) Experimental Summary: The experiments demonstrate
that our model outperforms current models. Figs. 17 and 19
show that after incorporating the MVFAB module to inte-
grate multiview information, the model effectively addresses
issues such as difficulty in recognizing objects due to light-
ing conditions, distinguishing objects with similar colors, and
segmentation challenges caused by object occlusion. This
indicates that our MVFAB is effective in tackling these
problems. Additionally, subsequent experiments validate the
effectiveness of using CGB for cross-layer information inter-
action and the superiority of AIAB in enhancing global feature
utilization.

V. LIMITATIONS AND FUTURE WORK

Although our GVANet has exhibited advantages in terms of
data, it has limitations in accurately capturing object bound-
aries. This becomes particularly evident when segmentation
results do not align perfectly with object shapes, resulting in
less smooth boundaries. To address this challenge, we will
delve into encoding techniques for boundary features. Further-
more, we plan to explore model compression techniques to
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TABLE VI
COMPARISON OF SEGMENTATION RESULTS ON THE POTSDAM DATASET

Method F1(%) Evaluation index
Imp.Surf Building Lowveg Tree Car MeanF1(%) mloU(%) OA(%)
MANet[52] 87.46 90.66 81.96 82.81 92.76 87.13 77.45 85.05
ABCNet[53] 87.05 88.26 78.94 84.63 93.11 86.4 76.35 84.21
MACU-Net[54] 91.39 93.74 85.87 86.8 94.53 90.46 82.78 88.81
MAResU-Net[55] 92.38 95.83 86.65 88.44 96.13 91.89 85.22 90.28
A2-FPN[56] 92.85 95.84 87.17 88.76 96.13 92.15 85.66 90.68
DC-Swin[57] 93.26 96.86 87.74 88.68 95.50 92.41 86.10 91.16
Mask2Former[58] 92.48 96.41 87.53 89.37 96.08 92.37 86.03 90.83
MPCNet[59] 92.69 96.38 87.30 88.74 96.34 92.29 85.91 90.56
VMFormer[60] 93.23 95.81 85.64 91.08 88.65 90.88 83.48 91.54
GVANet(Ours) ‘ 93.89 97.38 88.65 90.01 96.51 ‘ 93.29 87.62 91.98

The best results are indicated in bold black.

’ZF’ M' ZF’ ZF' 5"

. p ".1“-\. 1'

‘.

Impervious

Low vegetation
surfaces

Building

Fig. 19.
(f) DC-Swin. (g) Mask2Former. (h) MPCNet. (i) VMFormer. (j) GVANet.

enhance segmentation efficiency in our future work. Moreover,
it is worth noting that our proposed method exclusively focuses
on semantic segmentation of urban remote sensing images and
has not yet delved into other remote sensing visual tasks such
as road segmentation or parcel segmentation. In our upcoming
research endeavors, we aim to develop enhanced architectures
that incorporate attention mechanisms and multiview features,
optimizing our network to accommodate a broader spectrum of
remote sensing visual tasks.

VI. CONCLUSION

This article focuses on addressing the challenges of re-
mote sensing segmentation by utilizing information from
different views and overcoming the limitations of traditional skip

ZF" 15.7
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Car

Tree

Background

Examples of segmentation results for different models on Potsdam dataset. (a) MANet. (b) ABCNet. (c) MACU-Net. (d) MAResU-Net. (e) A2-FPN.

connections that cannot facilitate cross-layer information inter-
action. We propose GVANet, a network that integrates multiview
information and cross-layer scale information fusion, featuring
multiview and multiinformation blending. Specifically, we first
design the MVFAB to address the issue of single-view fea-
ture extraction in traditional networks. This module leverages
view information at different sampling heights and expands
different heights with varying views to transform single-view
features into multiview features, which are then weighted and
fused spatially and channelwise. To overcome the limitation
of traditional same-level skip connections in handling remote
sensing segmentation, we introduce the CGB module, de-
signed for fine-grained cross-layer feature fusion to improve
information interaction across different levels. Finally, to en-
hance the efficiency of utilizing multiview global information,
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we propose the AIAB for further feature selection to extract
more useful features. We have demonstrated the superior-
ity of our network structure and the effectiveness of each
module through experiments. We hope to inspire more re-
searchers to explore the potential and applications of global
multiview information and cross-layer information interaction
in addressing various mainstream challenges in remote sensing
segmentation.
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