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Abstract—Hyperspectral image (HSI) has garnered increasing
attention due to its capacity for capturing extensive spectral infor-
mation. However, the acquisition of high spatial resolution HSIs
is often restricted by current imaging hardware limitations. A
cost-effective approach to enhance spatial resolution involves fusing
HSIs with high spatial resolution multispectral images collected
from the same scene. Traditional convolutional neural network-
based models, although gained prominence in HSI super-resolution
reconstruction, are typically limited by their small receptive field of
the convolutional kernel, primarily emphasizing local information
while neglecting nonlocal characteristics of the image. In light of
these limitations, this article proposes a novel spectral-enhanced
sparse transformer (SEST) network for HSI super-resolution re-
construction. Specifically, the proposed SEST employs a sparse
transformer to capture nonlocal spatial similarities efficiently,
along with a spectral enhancement module to learn and exploit
spectral low-rank characteristics. Integrated within a multiwindow
residual block, the abovementioned two components collabora-
tively extract and combine distinct fine-grained features through a
weighted linear fusion process, facilitating the integration of spatial
and spectral information to optimize the reconstruction result.
Experimental results validate the superior performance of the pro-
posed SEST model against current state-of-the-art methods in both
visual and quantitative metrics, thus confirming the effectiveness
of the proposed approach.

Index Terms—Hyperspectral image (HSI), multiwindow
residual block, nonlocal information, sparse transformer, spectral
enhancement, super-resolution.

I. INTRODUCTION

HYPERSPECTRAL imaging systems have the capability to
concurrently capture surface information across hundreds
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of continuous bands, yielding a set of spectral images depicting
the same scene [1], [2]. The primary advantage of hyperspectral
images (HSIs) over traditional natural or multispectral images
lies in their richer spectral information, which enables accu-
rate distinction and identification of objects within the image
scene, making them widely applicable in various fields such
as image classification [3], [4], target detection [5], [6], and
change detection [7]. However, due to inherent limitations in
incident energy and imaging hardware, HSIs often suffer from
low-spatial resolution (named as LR-HSI), which significantly
restricts their practical applications [8]. Unlike hardware up-
grades, hyperspectral super-resolution reconstruction (HSI-SR),
as an image postprocessing technique, obtains high spatial res-
olution hyperspectral images (HR-HSIs) from an algorithmic
perspective. Due to its low cost and high efficiency, HSI-SR has
become a necessary and promising research direction.

Generally, HSI-SR techniques can be divided into two cate-
gories based on whether auxiliary information is required: single
HSI super-resolution and fusion-based HSI super-resolution.
The former is highly independent and easy to implement, but
since HSI-SR is an ill-posed problem, relying solely on a single
LR-HSI can result in reconstructed images lacking detailed
information. The latter introduces HR-MSIs of the same scene
as auxiliary data, leveraging the advantages of different data
sources to achieve better reconstruction results [9].

Over the past few decades, the HSI-SR domain has rapidly
developed, with many fusion-based methods emerging. These
methods can be broadly categorized into model-based and deep
learning (DL)-based approaches. Model-based methods typi-
cally involve manually constructing various priors (e.g., self-
similarity [10], sparsity [11], [12], and low rank [13], [14])
as regularizers to achieve reconstruction. While these methods
show commendable performance, they suffer from issues such
as being time-consuming and having limited representational
capacity due to their reliance on manually crafted priors. With
the rapid development of DL techniques, especially convolu-
tional neural networks (CNNs), DL-based methods have demon-
strated impressive performance [15], [16], [17], [18], [19]. These
methods are inherently data-driven, allowing networks to au-
tonomously learn priors from the characteristics of the dataset
itself, thus offering greater flexibility [20]. However, the fixed
receptive field of CNNs due to convolution kernel size makes
them inefficient in modeling long-range dependencies, which
somewhat limits their fusion performance [21].
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To address these issues, the self-attention mechanism from the
natural language processing (NLP) field has garnered increasing
attention for its outstanding global feature extraction capabili-
ties. Especially, the vision transformer (ViT) [22] introduced
self-attention mechanisms into the computer vision (CV) field
for the first time by partitioning images into patches and adding
positional embeddings. Its excellent global context modeling
capability effectively addresses edge effects in HSI-SR tasks.
However, the global self-attention mechanism of ViT exhibits
quadratic computational complexity with respect to input image
size, leading to increased GPU memory demands. To mitigate
these limitations, the Swin Transformer [23] uses a hierarchical
structure and shifted window mechanism to reduce the length
of the input sequence, making the self-attention mechanism
a more versatile backbone network. Nonetheless, it still faces
challenges such as fixed window sizes and high computational
and memory demands when processing high-resolution images.
The Performer [24] approximates the softmax function using
orthogonal random feature mapping, thereby altering the order
of matrix computations in self-attention to achieve linear com-
plexity. The sparse transformer [25] restricts each element to
interact only with a subset of elements in the sequence, thus
sparsifying the attention score matrix.

Motivated by these developments, especially the sparse trans-
former and channel attention mechanism [26], this article con-
structs the spectral-enhanced sparse transformer (SEST), a novel
network architecture for HSI super-resolution reconstruction.
Specifically, in the spatial domain, sparse self-attention is used
to model long-range dependencies, complemented by a local
enhanced feed-forward network (LeFF) to retain complex local
details, thereby achieving more efficient local-global feature
learning. In the spectral domain, a spectral enhancement module
is designed to explore the correlations between adjacent bands
of HSIs and integrate them into the transformer structure, effec-
tively preserving the original spectral information while promot-
ing the interaction between spatial and spectral information, thus
enhancing the network’s ability to learn critical features. Incor-
porating these two designed elements, a multiwindow residual
block is employed to learn multiscale features from the input
image, while long and short skip connections are added to the
network, contributing to the flexibility of information flow and
the robustness of the network. The primary contributions of this
article are as follows.

1) A novel SEST-based super-resolution reconstruction net-
work is proposed, effectively leveraging nonlocal spatial
similarity and the spectral low-rankness inherent in HSIs.

2) A multiwindow residual block is specifically designed to
extract features at different levels of granularity. The incor-
poration of a weighted linear combination facilitates the
fusion of these features, contributing to an enhancement
in the quality of the reconstructed image.

3) The implementation of a spectral enhancement module in
the self-attention calculation stage to boost the network’s
capability of spectral information extraction, facilitating
the recalibration of the self-attention map to activate more
pixels. The incorporation of LeFF instead of the standard
FFN further enhances the network’s capacity to exploit
local contextual details.

The rest of this article is organized as follows. Section II
reviews related work in the domain of HSI-SR, Section III
clarifies the proposed SEST architecture along with the loss
function, Section IV presents the experimental validation of the
proposed method, and Section V concludes this article.

II. RELATED WORKS

This section reviews some of the most notable recent advance-
ments in HSI-SR techniques, categorizing them into three types:
model-based methods, CNN-based methods, and ViT-based
methods. Additionally, the limitations of existing ViT-based
methods are analyzed in detail.

A. Model-Based Methods

Model-based methods, a classical approach to HSI-SR, can
be divided into three primary categories. The first category
includes techniques based on panchromatic sharpening, such
as component substitution (CS) and multiresolution analysis. A
widely employed method within this category is the adaptive
Gram–Schmidt algorithm proposed by Aiazzi et al. [27], which
incorporates the spectral response function into CS. Another
notable method, proposed by Selva et al. [28], involves a super-
resolution framework utilizing linear regression to represent
each hyperspectral band as a linear combination of multispectral
bands. While computationally efficient, these methods often
yield unreliable quality of the reconstructed image. The second
category consists of methods relying on prior information analy-
sis of HSI, including sparse representation-based and Bayesian-
based methods. Specifically, Akhtar et al. [29] proposed a
Bayesian framework based on sparse representation, deriving
the probability distribution of the spectral bases and computing
sparse coding of the high-resolution image. Wei et al. [30]
integrated the explicit solution of the Sylvester equation into the
Bayesian-based method, named “fast fusion based on Sylvester
equation” (FUSE), significantly reducing the algorithm com-
plexity while ensuring the quality of the reconstructed image.
Simões et al. [31] introduced total variation regularization for
effective edge preservation in a convex optimization of subspace
coefficients. The third category involves decomposition-based
methods, with considerable attention of being explainable and
understandable, where the most representative methods are ma-
trix factorization-based methods. For instance, Yokoya et al. [32]
proposed a coupled nonnegative matrix factorization (CNMF)
method, employing CNMF to alternately estimate endmembers
and abundances. However, these methods cannot effectively
preserve the spectral structure of HSIs. Addressing that, tensor
decomposition-based methods have been explored, such as the
nonlocal sparse tensor decomposition-based method proposed
by Dian et al. [33], estimating the sparse kernel tensor and dic-
tionary for HSI-SR, showcasing potential in preserving spectral
information for high-quality reconstruction.

B. CNN-Based Methods

The burgeoning interest in DL has led to the rapid de-
velopment of CNN-based methods for HSI-SR. For example,
Li et al. [34] proposed an X-shaped interactive autoencoder
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network, integrating the concept of matrix factorization into
DL to facilitate cross-modal learning between hyperspectral and
multispectral data. To inject more texture details into HSI, the
IFMSR [35] integrates an RGB-induced detail enhancement and
a deep cross-modal feature modulation module. While demon-
strating efficacy in various scenarios, it is noteworthy that these
models are primarily data-driven, with a lack of interpretability.
In response, Xie et al. [16] proposed a model-based DL method
using a deep unfolding network inspired by the traditional alter-
nating iterative algorithm model, employing CNN to learn the
proximal operator and model parameters. The aforementioned
methods are all based on 2D convolution, failing to effectively
model the spectral structure of HSIs with 3D characteristics.
Mei et al. [36] introduced 3D fully convolutional networks
into HSI-SR tasks, allowing the network to better learn both
spatial and spectral information in HSI. However, due to the high
spectral resolution of HSI, methods based on 3D CNNs suffer
from challenges of large parameter size and high computational
complexity. In response to these issues, Li et al. [37] considered
the spectral similarity of HSI and utilized the similarity between
bands to achieve grouping, thereby reducing the computational
cost of the network. Li et al. [38], on the other hand, addressed
computational efficiency from a network structure perspective
by designing separable 3D convolutions, aiming to mitigate the
computational burden while preserving the spatial and spectral
separability. Furthermore, the ill-posed nature of the HSI-SR
task poses significant challenges for single-stage learning. To
address this, Li et al. [39] designed a coarse-to-fine dual-stage
learning framework. In the coarse stage, a symmetric feature
propagation model is utilized for broader feature extraction. In
the fine stage, a back-projection refinement network is intro-
duced to learn specific features of the image.

C. Visual Transformer-Based Methods

The transformer network, first proposed by Vaswani
et al. [40], quickly gained widespread attention due to its core
component, the self-attention mechanism, which has powerful
global context modeling capabilities. Dosovitskiy et al. [22] are
the first to introduce transformer into the CV field, dividing input
image into nonoverlapping patches to generate sequence ele-
ments, which are then fed into the transformer model for image
recognition. Following the success of this work, transformers
have been widely applied in various advanced visual tasks, such
as object detection [41], [42], image classification [43], and
image segmentation [44]. Among these, the Swin Transformer
proposed by Liu et al. [23] is particularly noteworthy. It re-
stricts attention computation to local windows and enhances
the network’s ability to capture contextual information effec-
tively through shift operations and a hierarchical architecture,
significantly reducing the computational cost of self-attention.
Inspired by this, numerous transformer-based image reconstruc-
tion methods have emerged. For instance, SwinIR [45] employs
Swin Transformer-based residual blocks to extract deep features
from images, showcasing the immense potential of transformers
in image reconstruction. In the HSI-SR domain, Fusformer [46]
made the first attempt to use ViT encoders as the main body of

the network to explore the spatial and spectral information of
HSIs, achieving promising results. However, utilizing a single
module to simultaneously model spatial and spectral features
increases the complexity of network learning. To address this
issue, Long et al. [47] employed Swin Transformer to design
spatial and spectral self-attention blocks, cascading them to
obtain global spatial features and spectral sequence informa-
tion, contributing to a more efficient and effective HSI super-
resolution reconstruction process. Although the design of the
shifted window can reduce computational costs, it also weakens
the interaction of image boundary information. To address this,
Deng et al. [48] proposed a Pyramid Shuffle-and-Reshuffle
Transformer (PSRT) method, which employs shuffle techniques
to achieve long-range interaction between patches. Despite the
remarkable results achieved by these methods, their approaches
to acquiring global information remain inefficient, particularly
when dealing with hyperspectral data with high redundancy.
Additionally, existing methods often overlook the interaction
between spatial and spectral information. Moreover, relying
solely on single-type feature modeling is not conducive to the
fine reconstruction of images.

III. PROPOSED METHOD

Drawing inspiration from sparse transformer and channel
attention mechanisms, this section proposed a novel SEST net-
work, specifically tailored for HSI-SR tasks. The overall network
architecture of the proposed SEST, along with its hierarchical
structure, is presented. Additionally, a comprehensive explana-
tion of the key component of SEST, the spectral-enhanced sparse
transformer residual layer (SSRL) is provided.

A. Network Architecture

In HSI-SR tasks, the attainment of a larger receptive field
is often crucial for achieving superior reconstruction results.
However, conventional CNN architectures, constrained by the
inherent limitations of convolutional operations, tend to exhibit
deficiencies in modeling long-range dependencies effectively.
Recognizing the potential of transformers in addressing this
limitation, a SEST network is proposed, specifically designed to
simultaneously explore nonlocal spatial similarities and spectral
low-rank characteristics inherent in HSIs. The network structure
of the proposed SEST method is depicted in Fig. 1.

The process begins with two images, the LR-HSI and the HR-
MSI of the same observed scene, represented by Y ∈ Rh×w×L

andZ ∈ RH×W×l, respectively, where W(w) and H(h) represent
the width and height of the spatial dimension, and L(l) denotes
the number of spectral bands in the image (w � W , h � H ,
and l � L). The objective of super-resolution reconstruction
is to estimate HR-HSI, represented by X ∈ RH×W×L, with
both high spatial and high spectral resolution from these two
images. Commonly, two strategies are employed for LR-HSI
and HR-MSI fusion: image-domain and feature-domain con-
catenation. To better preserve the spatial and spectral details in
the original image, this article adopts the image-domain concate-
nation framework. Initially, the LR-HSI data undergoes bicubic
interpolation during the input data preprocessing stage to obtain
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Fig. 1. Overall structure of the proposed SEST network.

the up-sampled imageY up ∈ RH×W×L, alleviating the learning
burden on the model [49]. Subsequently, the two images (Y up

and HR-MSI) are concatenated along the spectral dimension
to form the network input I ∈ RH×W×(L+l). Knowing the fact
that deep features contain more semantic information to enhance
the realistic texture of the reconstructed image, while shallow
features preserve more accurate details and textures, which is
crucial for peak signal-to-noise ratio (PSNR)-oriented models,
the proposed SEST begins to extract shallow features Fs ∈
RH×W×C by employing a 3 × 3 convolution layer, learning the
details and textures in the fused image. While for deep feature ex-
traction, to better leverage the transformer network’s exceptional
sequence data modeling capabilities [40], this article capitalizes
on the unique advantages of high spectral resolution of HSI by
designing a specialized feature embedding layer. This layer splits
the feature map Fs into individual pixel vectors, enabling the
serialization of HSI with an emphasis on spectral information.
These vectors are then fed in parallel into multiwindow residual
blocks to better capture the multiscale spectral-spatial features
of the image. The multiwindow residual blocks consist of SSRLs
with different window sizes. Subsequently, these multiscale
spectral-spatial features are fused together using a weighted
linear combination as the semantic information Fd ∈ RH×W×C

extracted by the network from the fused image. In the spatial
information exploration phase, pixel vectors serve as inputs
to effectively preserve the original spectral structure. On this
basis, a spectral-enhanced (SE) module is introduced to generate
weight coefficients for different channels in the window blocks,
facilitating the activation of more pixels in the self-attention
matrix calculation. Global skip connections are then employed
to combine Fs and Fd to obtain Ff ∈ RH×W×C

, thereby enhanc-
ing the robustness of the network, reducing training difficulty,
extracting finer high-frequency details, and reducing spectral
distortion during the spatial feature extraction process. Finally,
the image reconstruction block reduces the number of feature
channels in Ff to the number of spectral bands and adds it to
Y up to yield the final reconstructed result O ∈ RH×W×L.

B. SE Sparse Transformer Residual Layer

Applying transformers to HSI-SR tasks faces three primary
challenges. First, unlike RGB images where spatial process-
ing often suffices, HSI-SR tasks require careful handling of

Fig. 2. Structure of SSRL.

rich spectral information crucial for applications such as clas-
sification and object detection. Therefore, ensuring that the
reconstructed spectrum remains undistorted while promoting
effective interaction between spatial and spectral information
is quite challenging. This aspect is often overlooked by exist-
ing transformer networks, which predominantly focus on spa-
tial attributes. Second, the foundational mechanism of Vanilla
Transformer involves computing global self-attention across all
tokens, facilitating the modeling of long-distance dependencies,
but it also leads to a quadratic growth in complexity relative to
the number of tokens, making it impractical for super-resolution
reconstruction tasks involving high image resolution. Finally,
local contextual information is valuable for capturing image
details and textures, providing more semantic information for
a better understanding of objects and structures in the image.
While essential for image super-resolution tasks, previous work
has demonstrated limitations in transformer’s ability to capture
local dependencies.

To address these challenges, an SSRL is specifically designed,
as depicted in Fig. 2, which leverages the advantages of sparse
transformer to model long-distance dependencies with a lower
computational cost, while at the same time, depth-wise convolu-
tional operators and SE modules are integrated to capture useful
local contextual information and spectral features, respectively.

The process can be described as follows:

Fl = HSSBl
(Fl−1) , l = 1, 2, . . . , L (1)

Fout = HSSBL
(FL) + Fs (2)

where HSSBl
(·) denotes the lth SE sparse transformer block,

and Fl and Fl−1 represent its output and input, respectively.
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Fig. 3. Modules of the proposed SSB, with (a) SE module (SE), (b) SMSA module, and (c) LeFF.

For a single spectral-enhanced sparse transformer block
(SSB), as illustrated in Fig. 3, three core designs are adopted as
follows: SE module, sparse multihead self-attention (SMSA),
and LeFF.

The computation of a single SSB can be described as follows:

FN = LN (F ) (3)

FM = SMSA (FN ) + αSE (FN ) + F (4)

F ′ = LeFF (LN (FM )) + FM (5)

where FM and F ′ denote the outputs of the hybrid attention
module and the LeFF module, respectively, LN(·) denotes
layer normalization, and SE(·) represents the SE module. The
parameter α is an adaptive weight coefficient used to balance
the two attention modules.

1) Spectral Enhancement: Given that the spectra in HSI usu-
ally exhibit low-rank properties due to high correlation among
different spectral bands, which have been proven to be useful for
guidance in HSI tasks such as denoising, compressive sensing,
and unmixing [50], this module aims to leverage these prop-
erties for efficient spectral handling. Knowing that the biggest
bottleneck in the HSI super-resolution task lies in designing
an appropriate regularization method to map the low-resolution
HSI into the proper subspace, inspired by the channel attention
mechanism, a SE module is introduced into the self-attention
calculation module of the Vanilla Transformer to facilitate the
automatic learning of appropriate representations in the sub-
space.

Specifically, as depicted in Fig. 3(a), the input feature F ∈
RC×H×W is initially divided into nonoverlapping data cubes,
denoted as Fp∈ RC×P×P . Subsequently, average pooling is
applied to Fp to aggregate its channel features and obtain the
mapped spectral vector Fc∈ RC×1×1, improving the model ef-
ficiency and feature stability. Finally, a linear layer is used to
compress its channel dimension to obtain Fs∈ RK×1×1, aiming
to map the spectral vector into a suitable low-rank subspace.

This process can be described as follows:

Fc = Avgpool (Fp) (6)

Fs = WcFc (7)

where Wc is the weight of the linear layer and Avgpool(·)
denotes the average pooling layer.

It is noteworthy that these operations all act on the internal
information of each data cube, thereby primarily focusing on
learning spectral statistical information between adjacent pixels.
Given that Fs contains rich spectral statistical information, a
linear layer is utilized to scale the obtained low-rank vector to
match the dimensions of the input spectral vector. Subsequently,
these vectors are fed into the sigmoid function to convert into
weight coefficients Fz, which serve as guidance to recalibrate the
input data cube Fp, thus enhancing spatial-spectral correlation
and promoting the super-resolution process. This process can be
described as follows:

F̂p = Fp · Fz = Fp · Sigmoid (WzFs) (8)

where Wz is the weight of the linear layer and “·” denotes the
element-wise dot product.

2) Sparse Multihead Self-Attention: The inherent quadratic
computational complexity of the Vanilla Transformer poses
substantial challenges for practical applications. To address this
issue, innovations in the field of NLP have led to the development
of two improved self-attention structures: linear self-attention
and sparse self-attention. Leveraging the established princi-
ple that the attention matrix naturally exhibits mathematical
sparsity, sparse self-attention strategies can effectively reduce
computational cost and enhance model efficiency by pruning
or distilling the attention matrix. Inspired by this, as shown
in Fig. 3(b), the input HSI data is initially divided into in-
dividual pixel vectors by drawing upon the characteristics of
high spectral resolution of HSI. Subsequently, due to the local
spatial similarity of HSI, several nonoverlapping windows of
the same size are employed to partition these pixel vectors,
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obtaining F i
p ∈ RP 2×C by flattening and transposing the data

within each window. Finally, self-attention is computed on the
flattened features, and the outputs of all attention heads are
concatenated and linearly projected to obtain the final result.
The kth self-attention head can be described as follows:

F =
{
F 1
p , F

2
p , . . . , F

N
p

}
, N = HW/P 2 (9)

SAi
k = Attention

(
F i
pW

Q
k , F i

pW
K
k , F i

pW
V
k

)
, i = 1, 2, . . . , N

(10)

F̂k =
{
SA1

k, SA
2
k, . . . , SA

N
k

}
(11)

where WQ
k , WK

k , and WV
k in (10) denote the projection matrix

of the query, key, and value (Q, K, V), respectively. F̂k in
(11) represents the output of the kth self-attention head. It is
worth noting that the self-attention computation here is restricted
within each block.

Although this approach shares similarities with the nonover-
lapping window-based multihead self-attention mechanism em-
ployed in ViT, the purposes are significantly different. In this
work, the approach is primarily employed to encourage the
model to learn a sparser attention matrix. In contrast to global
self-attention, this strategy reduces the computational com-
plexity for a given input feature map F ∈ RC×H×W from
O(H2W 2C) to O(P 2HWC).

3) Local Enhanced Feed-Forward Network: The Vanilla
Transformer architecture comprises a multihead self-attention
(MSA) module and a feed-forward network (FFN). While
the MSA module calculates correlations between tokens and
performs linear fusion to achieve global modeling, the FFN,
consisting of a simple multilayer perceptron, performs nonlin-
ear transformations on features to enhance their representation
capability. However, the conventional FFN designed in most
transformer models often neglects crucial neighboring spatial
information for images [51]. To overcome this challenge, the
designed LeFF modifies the traditional FFN by incorporat-
ing a depth-wise convolution block. Specifically, as shown in
Fig. 3(c), a linear projection layer is first applied to each token
to increase its feature dimension. The projected tokens are then
spatially reshaped according to their original positions and a
3 × 3 depth-wise convolution is performed on each channel of
the reshaped features to better capture local spatial contextual
information. Finally, the features are restored to tokens, and the
channel dimension is matched with the input through another
linear projection, which serves as the final output.

C. Loss Function

In the reconstruction process, the most crucial aspect is restor-
ing the high-frequency details, which encapsulate critical spatial
information that is normally lost during lower-resolution image
acquisition processes. To effectively restore these details, the
mean absolute error (MAE) is employed in this article as a pri-
mary loss function. The choice of MAE is driven by its sensitivity
to minor discrepancies with a better convergence of the network.
By minimizing the MAE between reconstructed images and
ground truth, the network learns to accurately reconstruct the

spatial information, thereby enhancing the overall fidelity of the
reconstructed HR-HSI. The MAE is depicted as follows:

LMAE (θ) =
1

M

M∑
m=1

‖Om −Xm‖1 (12)

where Om and Xm are the mth reconstructed HR-HSI and
the ground truth, respectively. M is the number of images
in a training batch, and θ denotes the parameter set of the
network.

To address the critical challenge of spectral distortion in
HSI super-resolution, a spatial-spectral total variation (SSTV)
loss, as initially proposed in [52], is introduced as another loss.
The SSTV loss is particularly designed to minimize artifacts
and ensure fidelity in both spatial and spectral domains, which
is crucial for maintaining the essential characteristics of the
original scene. The mathematical representation of SSTV loss
is expressed as follows:

LSSTV (θ) =
1

M

M∑
m=1

(‖∇hO
m‖1 + ‖∇wO

m‖1 + ‖∇lO
m‖1)
(13)

where∇h,∇w, and∇l denote the gradient functions of the com-
puted horizontal, vertical, and spectral dimensions, respectively.

The final loss function is a composite loss function, taking
into account both MAE and SSTV, expressed as follows:

L (θ) = LMAE (θ) + βLSSTV (θ) (14)

where β is the tradeoff parameter, which is used to adjust the
weight between space and spectral reconstruction errors.

IV. EXPERIMENTAL RESULTS

This section presents the experimental results to demon-
strate the effectiveness of the proposed method. Initially, the
experimental configurations are introduced, encompassing de-
scriptions of the utilized datasets, data simulation procedures,
and implementation details. Following this, the reconstruction
performance on three public datasets is illustrated and compared
against the state-of-the-art algorithms, supplemented by a con-
cise analysis. Finally, an ablation study is provided to validate
the effectiveness of the proposed method.

A. Experimental Configurations

1) Datasets: Experiments are conducted on three publicly
available hyperspectral datasets, the CAVE dataset [53], the
Harvard dataset [54], and the Washington DC Mall (WDC)
dataset [32]. The CAVE dataset was captured by a cooled
charge-coupled device camera and consists of 32 different in-
door scenes, with each HSI presenting a spatial resolution of
512 × 512 pixels and encompassing 31 spectral bands at 10 nm
intervals in the range of 400–700 nm. The Harvard dataset,
captured by Nuance FX and CRI INC cameras, contains 77 real
indoor and outdoor scenes, with each HSI presenting a spatial
resolution of 1024 × 1392 pixels and encompassing 31 spectral
bands at 10 nm intervals in the range of 420–720 nm. The WDC
dataset was captured by the HYDICE sensor and contains one
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TABLE I
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON CAVE, HARVARD, AND WDC DATASETS

HSI of a large urban area, which presents a spatial resolution of
1280 × 307 pixels and encompasses 191 spectral bands with a
range of 400–2400 nm.

2) Data Simulation: In this article, considering that both the
CAVE and Harvard datasets have 31 bands and similar coverage
ranges, 20 images from the CAVE dataset are selected for the
training set. The remaining 11 images, along with 9 randomly
selected images from the Harvard dataset, are set aside as the test
set to evaluate the network’s generalization ability. For the WDC
dataset, four 128 × 128 images are cropped from the original
image for testing network performance, while the rest are used
for training. Due to the limited number of training samples,
the training images from the CAVE dataset are segmented into
4275 overlapping image patches of size 64 × 64 × 31. These
overlapping patches are then downsampled to a spatial resolution
of 16 × 16 × 31 using a Gaussian filter with a kernel size
of 3 × 3 and a standard deviation of 0.5 to generate LR-HSI.
Additionally, HR-MSI patches are generated using the spectral
response function of the Nikon D700 camera. For the training
images in the WDC dataset, 921 overlapping image patches of
size 64 × 64 × 191 are obtained and downsampled to generate
LR-HSI using the same method. The spectral response function
from blue to SWIR2 of the Landsat 8 is selected to generate
HR-MSI.

3) Implementation Details: The proposed SEST model is
implemented using Pytorch 1.13.1 and Python 3.7.16 on the
Windows operating system with an NVIDIA GPU GeForce
RTX4080. Regarding the hyperparameters in the network, the
channel feature mapping C is set to 48 in the shallow feature
extraction process. The number of transformer blocks in the
SEST residual block is set to 6, and the window sizes in the
multiwindow residual block are set to 8, 16, and 32, respectively.
To train the proposed network, the Adam optimizer is employed
with β1 = 0.9 and β2 = 0.999. The initial learning rate is set to
1e−4 and halved every 75 epochs. The network is trained for a
total of 350 epochs.

B. Performance Evaluation

To verify the performance of the proposed method, a compar-
ative analysis is conducted against six state-of-the-art HSI-SR
methods, including three traditional methods, namely CNMF
[32], FUSE [30], and HySure [31], along with three DL-based
methods, namely SSRNet [55], Fusformer [46], and PSRT [48].
To ensure a fair and consistent comparison, all DL models are
trained with the same input, and the hyperparameter settings
are aligned with the specifications outlined in their respective
original papers. Moreover, to provide a more intuitive and quan-
titative comparison of the performance of the aforementioned
methods, four widely used HSI-SR quality indices (QIs) are
employed, including PSNR, spectral angle mapping (SAM),
structural similarity (SSIM), and erreur relative global adimen-
sionnelle de synthèse (ERGAS). Among these QIs, superior
reconstruction performance is indicated by higher PSNR and
SSIM values, alongside lower SAM and ERGAS values.

1) Experimental Results on the CAVE Dataset: Table I
presents a comprehensive quantitative evaluation of the recon-
struction performance achieved by the proposed method along
with a comparison to state-of-the-art methods on the CAVE
dataset, with the best results highlighted in bold and the second-
best results underlined. Notably, the proposed SEST method
consistently outperforms comparable methods across all four
QIs on the CAVE dataset, establishing its consistently superior
efficacy.

To substantiate the quantitative findings through visual aspect,
two representative images, specifically balloon and feather,
are selected from the CAVE dataset for in-depth visualization.
Fig. 4 shows the reconstructed images and their corresponding
residual images produced by different methods, with highlighted
regions (within the red boxes) for detailed comparison. The
visual inspection reveals the superior performance of the SEST
method, particularly evident in the residual images (generated
by a randomly selected band), underscoring the ability of SEST
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Fig. 4. First column: the GTs and the corresponding LR-HSI images (in pseudo-colors) for the balloon (first and second rows) and the feather (third and fourth
rows) test cases from the CAVE dataset. The second to eighth columns: the visual results and the residuals (generated by a randomly selected band) between the
GT and the fused products for all the compared approaches. A zoomed area has been added to aid the visual inspection.

Fig. 5. Spectral vectors analysis of the GT and results of the compared approaches for the (a) balloon located at (60, 270) and (b) feather located at (50, 420).

to achieve reconstructions that closely align with the ground
truth (GT), thereby demonstrating better recovery of spatial
details.

To better compare the spectral fidelity of different methods,
two pixels from balloon and feather are randomly selected to
compare spectral differences against the GT, as shown in Fig. 5.
The spectral vectors generated by the proposed SEST closely
resemble the GT, indicating a significant reduction in spectral
distortion and an enhanced preservation of spectral fidelity of
the proposed SEST method.

2) Experimental Results on Harvard Dataset: To evaluate
the generalization capability of the proposed SEST method, the

CAVE dataset is exclusively used to train the proposed network,
which is then tested on the Harvard dataset. The quantitative
results, as presented in Table I, showcase that the proposed SEST
outperforms all compared methods in terms of PSNR, SAM, and
SSIM, while securing not that good in terms of ERGAS due to
the more complex noise types present in real-world scenarios.
For visual assessment, similar experiments are conducted with
the results shown in Figs. 6 and 7.

As shown in Fig. 6, two test images from the Harvard dataset
are selected for analysis, displaying pseudo-color images and
residual images of the reconstructed results. Similarly, Fig. 7
illustrates the spectral vector diagrams of the reconstructed
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Fig. 6. First column: the GTs and the corresponding LR-HSI images (in pseudo-colors) for the imga3 (first and second rows) and the imgc9 (third and fourth
rows) test cases from the Harvard dataset. The second to eighth columns: the visual results and the residuals (generated by a randomly selected band) between the
GT and the fused products for all the compared approaches. A zoomed area has been added to aid the visual inspection.

Fig. 7. Spectral vectors analysis of the GT and results of the compared approaches for the (a) imga3 located at (200, 400) and (b) imgc9 located at (200, 250).

results by different methods, facilitating a comparison of spectral
fidelity. The SEST consistently delivers superior results in both
spatial and spectral domains, aligning with the quantitative
analysis.

3) Experimental Results on the WDC Dataset: To evaluate
the robustness of the proposed SEST method on real-world data,
the majority of the WDC dataset is used for training the network,
while the remaining portion is used for testing its performance.
Quantitative results in Table I demonstrate that the proposed
SEST method outperforms all comparison methods in terms of
PSNR and SAM, and ranks second in SSIM. Similar perfor-
mance as the Harvard dataset of the ERGAS metric could be

drawn by the results. For visual assessment, similar experiments
are conducted with the results shown in Figs. 8 and 9.

As shown in Fig. 8, two test images from the WDC dataset
are selected for analysis, displaying pseudo-color images and
residual images of the reconstructed results. Similarly, Fig. 9
illustrates the spectral vector diagrams of the reconstructed
results by different methods, facilitating a comparison of spectral
fidelity. The SEST consistently delivers superior results in both
spatial and spectral domains, aligning with the quantitative
analysis.

4) Discussion and Analysis: The experimental results on
the CAVE, Harvard, and WDC datasets demonstrate that the
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Fig. 8. First column: the GTs and the corresponding LR-HSI images (in pseudo-colors) for the img1 (first and second rows) and the img2 (third and fourth rows)
test cases from the WDC dataset. The second to eighth columns: the visual results and the residuals (generated by a randomly selected band) between the GT and
the fused products for all the compared approaches. A zoomed area has been added to aid the visual inspection.

Fig. 9. Spectral vectors analysis of the GT and results of the compared approaches for the (a) img1 located at (40, 70) and (b) img2 located at (45, 80).

proposed method exhibits superior reconstruction performance
across the quantitative metrics of PSNR, SAM, and SSIM. How-
ever, despite these positive outcomes indicating the method’s
overall effectiveness in reconstructing spectral information, it
performs suboptimally in the ERGAS metric. Further analysis
reveals that although the reconstructed spectral curves closely
match the ground truth in general, the presence of extreme
outliers in certain bands results in significant deviations from the
ground truth, which substantially increases the ERGAS value.

A deeper investigation suggests that these outliers may be at-
tributed to two inherent limitations of the proposed method: 1) To

reduce the computational cost of the self-attention mechanism
and enhance the network’s ability to handle high-dimensional
data, the proposed method restricts sparse attention to fixed
windows. While this design effectively reduces computational
overhead, it also compromises the transformer model’s ability
to capture long-range dependencies, thereby affecting the pre-
cise reconstruction of spectral information and leading to large
errors in specific bands or pixels. 2) Although the multiwindow
residual block design reduces reliance on manual parameter
tuning, its inherent structural limitations may lead to inconsistent
performance when dealing with hyperspectral data of varying
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TABLE II
RECONSTRUCTION RESULTS ON DIFFERENT WAYS OF COMBINING

KEY MODULES

characteristics. In certain cases, these limitations can result in
increased errors in specific bands, thus causing larger deviations.

C. Ablation Study

This section evaluates the contributions of individual com-
ponents within the proposed SEST method through a series
of ablation experiments, mainly focusing on four critical as-
pects: the integration strategy of key modules, the sizes of the
residual windows, the location of spectral enhancement, and the
influence of loss functions. To be concise and not affect the
generality, the ablation experiments are exclusively conducted
on the CAVE dataset with a detailed analysis of different factors
of the proposed SEST model on the reconstruction performance,
allowing for a focused analysis of how each factor influences
reconstruction performance.

1) Integration Strategy of Key Modules: As has been demon-
strated before, the SEST framework incorporates three pivotal
modules: the multiwindow residual block, spectral enhance-
ment, and LeFF. While the multiwindow residual block is com-
prehensively analyzed in terms of window sizes separately (dis-
cussed in the subsequent subsection), this subsection assesses
the significance of the remaining SE and LeFF modules. Results
of the quantitative reconstruction metrics in Table II indicate that
integrating either the LeFF or the SE module individually yields
improvements in reconstruction quality compared to a baseline
model devoid of these two modules, confirming the necessity
of each module. Notably, when both modules are combined,
as shown in the final column of Table II, there is a markable
improvement in performance, surpassing the individual con-
tributions of each module. This synergistic effect underscores
the complementary nature of these two modules, enhancing the
overall efficacy of the HSI-SR process.

2) Size of Residual Windows: Experimental results concern-
ing various window sizes are detailed in Table III, illustrating the
effect of different window sizes on reconstruction quality, where
rows 2–9 delineate the impact of the single-window method with
window sizes varying from 4 to 32. Interestingly, the recon-
struction quality does not exhibit a straightforward improvement
with an increase of the window size. This observation under-
scores the significance of selecting an appropriate window size,
emphasizing the critical importance of the multiscale window
design.

Moreover, Table III also provides a comparative analysis of
the training time for each method, with the average time for

TABLE III
RECONSTRUCTION RESULTS ON DIFFERENT SIZES OF RESIDUAL WINDOWS

Fig. 10. Structure of the SSBv1 and SSBv2.

TABLE IV
RECONSTRUCTION RESULTS ON DIFFERENT LOCATIONS OF

SPECTRAL ENHANCEMENT

training one epoch. Notably, window-based methods demon-
strate significantly reduced training time compared to Fus-
former. While the multiscale window method requires more
training time compared to the single window, it should be noted
that each window operates independently within the network,
allowing for parallel training on multiple GPUs, thereby facili-
tating a reduction in overall training time.

3) Location of Spectral Enhancement: In an effort to as-
certain the optimal configuration of the spectral enhancement
module within the SEST architecture, two variants of the SSB
are tested, denoted as SSBv1 and SSBv2. SSBv1 places the
SE module externally to the transformer block, whereas SSBv2
integrates the SE module directly within the self-attention calcu-
lation to fine-tune the self-attention map, as depicted in Fig. 10.

The comparative results, presented in Table IV, demonstrate
that the SSBv2 configuration proves to be more conducive to
image reconstruction in terms of reconstruction quality. This
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TABLE V
RECONSTRUCTION RESULTS ON INFLUENCE OF LOSS FUNCTIONS

insightful analysis sheds light on the impact of the location
of the spectral enhancement module within the sparse trans-
former block, emphasizing its significance in improving HSI
super-resolution reconstruction efficacy.

4) Influence of Loss Functions: To balance the recovery of
high-frequency spatial details and spectral fidelity, this article
introduces the use of MAE and SSTV as loss functions, namely
LMAE and LSSTV. LMAE aims to reduce pixel-level errors
between the reconstructed and true images, thereby enhancing
overall image quality and detail. LSSTV, on the other hand,
constrains spatial and spectral variations to reduce noise and
maintain spectral consistency and fidelity.

To determine the impact of these loss functions on super-
resolution reconstruction results, this article tests three different
combinations: “w LMAE and w/o LSSTV,” “w/o LMAE and w
LSSTV,” and “w LMAE and w LSSTV.” Table V presents the
experimental results for these combinations. The comparison
shows that using either LMAE or LSSTV alone results in com-
parable reconstruction quality. However, using both together
significantly enhances the quality of the reconstructed images.
This finding indicates that a reasonable combination of different
loss functions can fully exploit their respective advantages,
leading to higher-quality image reconstruction.

V. CONCLUSION

This article presents a novel SEST network tailored for
HSI-SR tasks. This innovative model, engineered to operate
within the spatial domain, incorporates sparse self-attention and
a local enhancement feedforward network to capture global
features while preserving local details. Addressing the spectral
distortions in HSI-SR tasks, an SE module is specially designed
within the self-attention calculation process, forming a powerful
hybrid attention mechanism. Furthermore, to exploit multiscale
information inherent in the image, a well-crafted multiwindow
residual block is devised, contributing significantly to the overall
improvement in reconstruction quality. The comprehensive ex-
periments conducted on the CAVE, Harvard, and WDC datasets
convincingly validate the superior performance of the proposed
approach, underscoring its significance in the field of HSI-SR. In
light of the limitations identified in the experimental analysis, fu-
ture work could explore the integration of dynamic convolutions
to enable more flexible window size adjustments and diversified
attention patterns based on the characteristics of the input data,
thereby mitigating the occurrence of outliers.
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