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Small-Object Detection in Remote Sensing Images
With Super-Resolution Perception

Jiahang Liu

Abstract—Small objects are widely distributed on remote sensing
images (RSIs), and most of them are achieved by super-resolution
(SR) reconstruction followed by detection. However, due to the
independent training of the SR network and the detection net-
work, the lack of interaction between them leads to the limited
performance of small object detection (SOD). Furthermore, time
accountability is increased since the SR task is performed before
the detection task. To address these problems, we develop a new
SOD network to improve the SOD performance in RSIs, which
embeds the SR task into the SOD task. First, a channel attention
weighting module is proposed before the backbone to assign weights
to different channels of the input image, allowing the network
to selectively focus on different channels. Second, a self-attention
encoding module is designed between the backbone and neck to add
self-attention weight to the features extracted from the backbone
and enhance the feature representation ability of small objects.
Finally, the SR perceptual branch and perceptual loss are designed
so that the SR task and the detection task can be associated through
the SR perceptual loss, and the SR perceptual branch can guide
the backbone network to learn high-resolution features through
joint training, thus improving the detection performance of small
objects. In the inference phase, the SR perceptual branch has
been removed to improve the speed. Extensive experimental results
on VEDAI and DOTA datasets show that the proposed method
achieves an accuracy of 82.63% and 78.63%.

Index Terms—Attention mechanism, remote sensing images
(RSIs), small object detection (SOD), super-resolution (SR),
YOLOVS.

1. INTRODUCTION

EMOTE sensing image (RSI) object detection refers to
R obtaining the position and class of objects of interest from
RSIs [1]. RSI object detection is widely used in search and
rescue, automatic driving, defect detection, UAV observation
[2], and intelligent traffic monitoring [3]. Therefore, RSI object
detection is a very hot research issue.

With the development of deep learning technology in recent
years, RSI object detection based on deep learning shows pow-
erful advantages. Such as Cheng et al. [4] proposed a method
to learn a rotationally invariant convolutional neural network
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(CNN) model, which can significantly improve the performance
of object detection by the inclusion of a rotationally immune
layer. Long et al. [5] proposed a new framework for object
localization in RSIs, which includes three main processes that
enable the precise positioning of objects in RSIs. Dong et al. [6]
proposed a gated context-aware module, which was embedded
into a feature pyramid network (FPN) to enable the FPN to
effectively detect objects in RSIs. Ye et al. [7] proposed a
convolutional network model with an adaptive attention fusion
mechanism. The model can effectively realize object detection
in RSIs.

All the abovementioned methods can achieve good results
for object detection in RSIs. However, due to the long imaging
distance, the large field of view, and the relatively low resolu-
tion (LR) of RSIs, a large number of small objects (less than
32 x 32 pixels [8]) are present in RSIs. Although there has
been important advancement in object detection based on deep
learning, these methods are typically designed for medium or
large objects. Compared with medium and large objects, small
objects are difficult to have rich features because they contain
fewer pixels. In addition, due to the downsampling operation
of the deep neural network, as the network deepens, the deep
features contain less and less useful information about small
objects. The abovementioned problems make it very difficult
for deep neural networks to obtain the available information
about small objects. Therefore, using common object detection
based on deep learning for small object detection (SOD) cannot
achieve satisfactory results.

The most popular approach for SOD in RSIs is to use super-
resolution (SR) reconstruction combined with object detection.
One approach is to utilize a SR reconstruction network to recover
a high-resolution (HR) image containing texture and detail
features from a LR image before the SOD network. This HR
image can then be utilized for SOD. It is an effective method for
improving the accuracy of SOD. For example, Rabbi et al. [9]
proposed the edge-enhanced SR generative adversarial network
(EESRGAN). However, this method has some properties, such
as large parameters, difficulty in network training, and the GAN
lack of guidance from the detection network. Another approach
is to use the SR network as a parallel branch of the SOD network
to guide the detection network by reconstructing the features
extracted from the detection network or to directly utilize the
reconstructed features for SOD. Liu et al. [10] proposed ESRT-
MDet which embeds the SR network into the detection network
to generate HR features and improve the detection accuracy
of small objects. However, these methods do not consider the
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differences between SR and SOD tasks. As aresult, SR and SOD
networks cannot be optimized together to improve the detection
accuracy of small objects.

This article aims to develop a network for SOD in RSIs
using SR techniques. This will address the issues of high model
complexity, difficulty in convergence, and poor performance
of SOD in RSIs. To achieve high-precision detection of small
objects in RSIs, we proposed simple and effective methods.
Our approach addresses the shortcomings of the previously
mentioned detection network combined with SR methods and
achieves SOTA detection performance. The contributions of this
article can be summarized as follows.

1) We designed a channel attention weighting module

(CWM) to replace the Focus module in YOLOvS [11].
This module enables the backbone to focus on useful chan-
nels, thereby generating more effective features, which
significantly improves the SOD performance.

2) We designed a self-attention coding module (SCM). This
module enhances the network’s capacity to obtain global
contextual features and improves the representation of
small objects, which in turn enhances the SOD perfor-
mance.

3) A parallel SR perceptual branch (SRPB) and perceptual
loss are presented. This structure guides the backbone of
the SOD network to learn HR features and improves the
expressiveness of the features extracted by the backbone.
The modules in the inference stage are removed and a
lightweight detection model is implemented to improve
the inference speed.

II. RELATED WORK

This section reviews recent related work from three aspects:
object detection based on deep learning, SR techniques, and
SOD in RSIs based on SR techniques. Because the proposed
method integrates both object detection and SR techniques.

A. Object Detection Based on Deep Learning

In recent years, the task of object detection has reached an
unprecedented level of development due to the rapid advance-
ment of CNN technology [12]. There are two categories of
object detection algorithms based on deep learning: two-stage
and one-stage methods.

Two-stage algorithms first extract many candidate boxes, then
process the candidate boxes through operations such as classifi-
cation, bounding box regression, and bounding box filtering, and
finally obtain the detection results. The first two-stage detector
is the region proposals CNN (RCNN) [13]. It uses a selective
search algorithm for region proposals and passes the proposals
to the CNN to generate feature vectors for each proposed region.
The final classification task is performed using a support vector
machine. FastRCNN [14] was proposed as an improvement
to RCNN. It uses deep convolutional networks for efficient
classification of object proposals and employs aregion of interest
(Rol) layer to address the challenges posed by scale variations.
However, its speed is slow due to the complex algorithms used
for generating region proposals. Later, FasterRCNN [15] was
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proposed as an improvement to FastRCNN. It introduces a
region proposal network to extract candidate boxes, which im-
proves the computational speed. The two-stage algorithms have
high accuracy but do not meet speed requirements in real-time
detection.

The one-stage detector does not generate region proposal
boxes in advance but detects them directly through a process.
This greatly improves object detection speed. The YOLO series
[16], [17], [18], [19] is a typical one-stage detector that enables
direct object detection. This feature simplifies the network struc-
ture and accelerates the object detection. Particularly, YOLOv5
introduces the GloU [20] loss function and uses Adam [21] as
an optimization function. These improvements make YOLOv5
faster and more accurate than other YOLO series in detecting
densely occluded objects. YOLOVS [22] is the latest model in the
YOLO series. It uses a new structure, convolutional layers, and
anchor-free detector heads to further improve the speed of object
detection. Other popular one-stage object detection algorithms
include the SSD [23] and the RetinaNet [24] algorithm. The SSD
algorithm assigns a score to the default boxes on the feature map
and modifies them for object detection. However, it is dependent
on human experience and requires manual parameter setting for
the preselected frames. RetinaNet solves the problem of category
imbalance by using the Focal loss function. However, it cannot
detect objects in real-time and is less effective at detecting small
or multiple objects.

B. SR Technology

To address the SR problem of images, early approaches uti-
lized interpolation techniques based on sampling theory [25].
Tai et al. [26] utilized natural image statistics to reconstruct
HR images. Dong et al. [27] were the first to introduce deep
learning approaches to SR, and a series of SR methods based on
deep learning followed. Kim et al. [28] proposed VDSR, which
can process multiple scales of SR in a single network. However,
VDSR requires bicubic interpolated images as inputs, resulting
in increased computational time and memory usage compared
with other up-sampling methods. SRResNet [29], which was
put forward later, effectively solved the abovementioned time
and memory problems and had good performance. However, it
simply adopts the ResNet [30] architecture without significant
modifications. It is important to note that the original ResNet
is more suited to the resolution of complex computer vision
problems, such as image classification and detection. Therefore,
it may not be optimal to apply the ResNet directly to simple
vision problems such as SR. In 2017, Lim et al. [31] proposed
enhanced deep residual networks (EDSR), which remove the BN
layer from the ResNet architecture. This is because BN removes
the range flexibility in the network and significantly improves the
quality of image SR. The method can realize SR with arbitrary
multiplicity. The SR problem has been effectively addressed by
GAN [32] through deep learning. Enhanced SRGAN [33] has
achieved even more significant performance improvement by
removing the BN from the generator and designing a residual
dense block in place of the normal ResBlock. K. Jiang et al.
[34] proposed an edge enhancement network based on a GAN
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for robust satellite image SR reconstruction. Wang et al. [35]
proposed a technique called dual SR learning, which has been
demonstrated to effectively improve segmentation accuracy
without introducing additional computational cost. In general,
the majority of SR methods aim to achieve optimal results
by increasing the complexity and parameters of the model.
However, such a complex SR network limits the application of
SR technology in other fields, such as object detection.

C. SOD in RSIs Based on SR

Small objects are usually difficult to distinguish from other
categories in RSIs, which can lead to inaccurate detection of
small objects [36]. Data augmentation is an effective method
for improving the performance of SOD [37]. It has been proven
effective in sampling small objects of interest and uses SR as a
preprocessing step for data in the detection task [8]. Shermeyer
and Van Etten [38] explored the effect of super-resolution tech-
niques on the performance of object detection algorithms and
demonstrated their effectiveness. Courtrai et al. [39] improved
the dimensions and details of the objects to be detected by SR
to solve the problem of detecting small objects in satellite or
aerial RSIs. Bashir and Wang [40] improve SOD performance
by enhancing the SR framework in combination with cyclic gen-
erative adversarial networks and residual feature aggregation.
Ferdous et al. [41] developed a framework for vehicle detection
in LR aerial images using SR techniques. Zhang and Ma [42]
used a pseudo-label generation approach and weakly supervised
learning to learn object detection in RSIs.

The preceding studies have demonstrated that the challenging
issue of SOD in LR images can be effectively addressed through
the application of the SR. However, the resolution of the input
image must be increased by the SR network, which incurs
additional computational costs compared with a single detection
model. Unlike the previous work, the integration of SR networks
as a supplementary approach to improve the SOD performance
is more promising. Zhang et al. [43] used a lightweight SR
network as a parallel auxiliary network and used the fused
features extracted from the YOLOvVS backbone as input to the SR
network to restore HR images. However, this method ignores the
differences between the backbone features and the HR images,
leading to poor detection results. Although it avoids the high
computational overhead associated with SR networks, it reduces
the detection accuracy.

III. METHOD

In this section, we will carefully present the proposed method.
First, we give an overview of the baseline model. Second, the
CWM is introduced, which adds the channel weights of the
image before it enters the backbone. Next, we introduce the
SCM located between the backbone and neck. This module
adds self-attention coding weights to the features extracted from
the backbone. Then, we present the SRPB and perception loss
we designed. The SRPB can guide the backbone to learn HR
features. The perception loss can reduce the difference between
the detection task and the SR task. By doing so, the two tasks
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TABLE I
COMPARISON RESULTS OF MODEL SIZE AND INFERENCE ABILITY IN
DIFFERENT BASELINE YOLO FRAMEWORKS ON LR IMAGES OF THE VEDAI
VALIDATION SET

Method Layers Params(M) GFLOPs mAP0.5(%)
YOLOVS5s 224 7.073 16.4 62.4
YOLOvV5m 308 21.07 50.4 64.2
YOLOVvS5I 397 46.64 114.2 65.6
YOLOvV5x 476 87.13 217.5 64.0
YOLOv8s 225 7.073 28.5 62.0

can promote each other to achieve optimal results. Finally, we
present the overall structure of our proposed framework.

A. Baseline Structure

Since the first generation of the YOLO model was put forward,
researchers have made several updates and iterations to improve
its performance. Although YOLOVS is the latest version in the
YOLO series, it is less stable than other versions. Additionally,
experiments in Table I have shown that YOLOvS8 does not
perform as well as YOLOVS in terms of SOD, the number of
model parameters, and the number of GFLOPs. Therefore, we
have chosen YOLOVS as our basic framework.

Fig. 1 shows the structure of the YOLOvVS, which is di-
vided into three parts: the backbone, the neck, and the detec-
tion head. The backbone is composed of Convolution-Batch-
normalization-SiL.u (CBS) [44], cross-stage partial (CSP) [45],
and spatial pyramid pooling (SPP) [46] modules. Its main func-
tion is to extract shallow texture features and deep semantic fea-
tures. CSPNet extracts feature information from the backbone,
which includes the CBS and CSP modules. The feature maps
of the previous layer are assigned to the two branches through
the CSP module. One branch is connected to the end of the
module, while the other is used as input for the ResNet block or
the CBS block. Finally, the two feature maps are connected, and
the features are merged before being fed into the CBS block.
The CSP can reduce the number of channels by half using a
1 x 1 convolution to decrease computation. The SPP module
comprises parallel max-pooling layers with varying kernel sizes
to extract multiscale depth features. The CSP can reduce the
number of channels by halfusinga 1 x 1 convolution to decrease
computation. The SPP module comprises parallel max-pooling
layers with varying kernel sizes to extract multiscale depth
features.

The neck of YOLOVS utilizes the FPN [47] and PANet [48]
structures to enhance the features extracted by the backbone
and address the multiscale problem in object detection. It passes
deep semantic features and shallow texture features. The neck
is composed of columns of CBS, Up-sample, Concat, and CSP
modules. The CBS module used in the neck is the same as the
one used in the backbone. The Up-sample module is used to
up-sample the feature map by a factor of 2 using the nearest-
neighbor up-sample method. The CSP module used in the neck
network differs slightly from the one used in the backbone, as
shown in Fig. 1. It does not have a Resblock module because it
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Fig. 1. Structure of YOLOVS. The low-level texture and high-level semantic features are extracted by stacked CSP, CBS, and SPP structures.

is unnecessary to further deepen the network in the neck. It is
more appropriate to use the C3 module without residuals. The
role of the Concat module is to splice the feature map based on
the channel dimension.

The role of the detection head is to finalize the object clas-
sification and position regression. YOLOVS has three detection
heads that address the multiscale issue in object detection by
using different feature scales in the feature pyramid.

B. Channel Attention Weighting Module

RSIs often include bands beyond red-green-blue (RGB), with
the near-infrared (NIR) band being the most used. Research has
demonstrated that combining RGB and NIR images consider-
ably enhances SOD performance [43]. Some studies have treated
RGB and NIR images as two completely distinct modalities and
have developed separate branches for multimodal image fusion
[49]. The imaging mechanism is the same for RGB and NIR
images, they are both solar radiations reflected from ground
objects received by the same sensor. So, we think RGB-NIR
image fusion with two different branches for SOD is unlikely to
improve performance and may even increase model complexity.
To reduce the complexity of the model and enhance the perfor-
mance of SOD, we treat the NIR image as having the same prop-
erties as the RGB image. Consequently, we designed a CWM
to facilitate SOD in RGB-NIR images and RGB images. This
module applies to both ordinary RGB images and RGB-NIR
images, as shown in Fig. 2. It adds channel attention weights to

the input images while fusing RGB-NIR images, enabling the
network to pay attention to the channel features of the images
of different bands and improving the expression ability of the
subsequent backbone features. We replaced the Focus module in
YOLOVS5 with this module, inspired by [43], which significantly
improved the detection performance of small objects.

First, the RGB and NIR images are combined into a four-
channel image using channel concatenation. If the input image
is a standard RGB image, there is no need for a channel con-
catenation operation. The resulting images are then normalized
to the [0, 1] interval before being fed into the first convolutional
module to obtain the mask feature Myt

ey

f(+) denotes the convolution of 1 x 1. The mask features are
then multiplied with the input image to add mask weights

Minput = f (Xinput)

@)

Xmask' = XMLput & Minput

® denotes element-wise matrix multiplication.

Second, to avoid losing information from the original image,
the resulting image must be convolved with the input image
before extracting further image features

Xfull = f (Xmask + Xinput) . (3)

Finally, the image is fed into the SE module [50]. This module
extracts the internal channel features of the image, which are
then fed into the backbone. This enables the backbone to better
focus on the internal channel features of the image.
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Fig. 2. Architecture of the channel-attention weighting module.
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Fig. 3. Principle of self-attention coding module.

As illustrated in Fig. 1, the Focus module within the YOLOvVS
backbone reduces the quantity of input data by reducing the
spatial dimension of the input image and increasing the channel
dimension. Consequently, this process results in the loss of spa-
tial information of small objects. We replace the Focus module
in the YOLOVS backbone with CWM to avoid the degradation
of the input image resolution and thus improve the detection of
small objects.

C. Self-Attention Coding Module

The YOLOVS backbone is a stack of convolutional layers. In
comparison to medium and large objects, small objects exhibit a
faster loss of information as the network deepens. So, the deeper
features contain minimal information about the small objects
themselves. This is one of the main reasons for the current poor
detection of small objects. The optimal use of global information
related to small objects is a key to enhance SOD. To enhance
the global information of the features extracted by the backbone
and the long-range dependency between pixels, an SCM was
designed between the backbone and the neck. This module

augments the global information in the feature map through
interactions between feature image pixels, as shown in Fig. 3.

The YOLOVS network utilizes a feature map extracted by
backbone from P3, P4, and PS5 in Fig. 1 for feature fusion and
detection. To improve this, we have implemented self-attentive
coding for these three feature maps (P3, P4, and P5), denoted by
Finput € REO*WXH These three features are obtained through
different convolution and reshape operations are defined as
follows:

Fo v = reshape (fq/xv (Finput)) 4)

fq/k /v (s) represents three different 1 x 1 convolutions, and
reshape(.) represents the reshaped operation on the features.
To obtain the interactions between each pixel in the fea-
ture map, Fy € RN*Y(N = W x H) is matrix multiplied with
Fr € RN and the SoftMax operation is performed to obtain
the weight 1 ention € RV >V . This weight reflects the interac-
tions between each pixel of the feature. It can reflect the global
context of the feature.
Finally, Fyitention and Fy are multiplied and then deformed
to obtain the feature map with the added attention weights. The
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Small Objects Detection Task
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To enhance the fitting ability of the module, we introduce a
learnable parameter . During the initial training of the network,
the output result after this module remains equal to the input
result and o changes gradually as the model is trained.

The SCM is designed to improve global context information in
the feature map by capturing long-range dependencies between
features through the self-attention mechanism. This allows for
interaction between each pixel and feature. By enhancing the
feature information of small objects through their interaction
with surrounding pixels and other small objects, we can improve
their feature expression and subsequently enhance the detection
performance for small objects with weak information.

Foutput =« (TGShape (Fattetion X FV)) + Fz'nput-

D. SR Perception Branch

This section presents the designed SRPB and the overall struc-
ture of our proposed framework, illustrated in Fig. 4. The SRPB
comprises two main parts: the super-resolution reconstruction
module (SRM) and the parallel perception module (PPM).

The primary function of the SRM is to transform the LR
features of the backbone into HR features, allowing the back-
bone to learn HR features. This is comparable to the EDSR
structure, which is composed of multiple ResBlock modules that

Overall architecture of our proposed methodology, and the specific composition details of our proposed modules.

are stacked on top of each other and up-sample convolution.
The channel number of SRM was adjusted to ensure that the
input LR features and output HR features have the same number
of channels. It can reduce the loss of information. The role of
up-sample convolution is to up-sample the LR features twice.
As a result, our SRM can achieve a twofold SR task.

In the article [43], the HR features output from the SR module
and the HR image are computed as a loss. This method ignores
the difference between the feature and the image and does not
consider the difference between the object detection task and
the SR task, which leads to the two different tasks cannot guide
each other to achieve the best performance. To connect the SR
network and the object detection network, we designed a PPM
inspired by the perceptual loss in the field of SR reconstruction.
The main role of the PPM is to extract features of interest to
the object detection network in HR images. The paper proposes
a PPM with the same backbone as the detection network. This
same structure ensures that the extracted HR features are very
similar to the LR features extracted by the object detection
network.

The SRM can transform the LR features extracted by the
detection network into HR features. PPM is capable of extracting
HR features from HR images. Since the structure of the PPM
is the same as the backbone of the detection network, the HR
features extracted by the PPM are exactly those needed by the
detection network. These two HR features are then used to
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calculate the perceptual loss for subsequent optimization of the
detection network. Using PPM allows the SRM to complete a
process from LR features to HR features, avoiding the LR feature
to image that would result from the direct use of the SR network.
This makes the HR features reconstructed by the SRM more in
line with the features needed by the SOD network, which in
turn can enable the SOD network to achieve better detection
performance. The addition of PPM enables the SRM to better
guide the detection network, allowing it to achieve better results.

E. Loss Function

The loss of our proposed network has two main parts: the
detection loss Lo and the perception loss Lg, which can be
expressed as follows:

Liotat = c1Lo + c2Lg 6)

the coefficients c¢; and ¢, balance the detection and SR percep-
tion tasks. The Lo loss [51], which consists of the localization
loss Ly, classification loss L, and confidence loss Ly,
which can be expressed as follows:

2 2 2

Lo = Aoz § a1 Lpox + Aeis § biLeis + )‘obj § ClLobj
=0 =0 =0
(7

[ represents the feature layer used for the detector, while a;, b;,
and ¢; are the weights of the three loss functions in the different
detection layers. Additionally, the weights Apor, Aczs and Aoy
are used to adjust the bias of the weights between the three losses.

The loss function Lg can be expressed as follows:

Ls = Liow + Limea + Lhigh ®)

the Lg loss comprises three types of feature loss: low-level
(Liow), medium-level (Ly,eq), and high-level (Lpiqgn). These
losses are computed from the L1 loss [51] and correspond to
the features of P3, P4, and P5 in after SR reconstruction.

IV. EXPERIMENTAL RESULTS
A. Dataset

The experiments utilized the Vehicle Detection in Aerial Im-
agery (VEDAI) dataset [52], which consists of cropped images
from the Utah Automated Geographic Reference Center dataset.
Each image collected from the same altitude has a resolution
of approximately 12.5 cm x 12.5 cm per pixel and contains
about 16000 x 16000 pixels. The images in the same scenes
are available in RGB and NIR. The VEDAI dataset contains 1246
images with backgrounds including grass, highways, mountains,
and urban areas. All images contain both 1024 x 1024 and
512 x 512 sizes. The objective is to detect 11 classes of vehicles,
such as cars, pickups, campers, and trucks.

B. Implementation Details

The proposed framework was implemented using the PyTorch
framework and tested on a server with NVIDIA 3090 Ti. We
trained our module on the VEDALI dataset, which consisted of
1089 training images and 121 testing images. The annotation
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for each object in the image contains the coordinates of the
center of the bounding box, the orientation of the object relative
to the positive x-axis, the coordinates of the four corners, the
category ID, a binary flag indicating whether the object is
occluded, and another binary flag indicating whether the object
is cropped. Categories with less than 50 instances in the dataset,
such as airplanes, motorcycles, and buses, were excluded. The
annotations of the VEDAI dataset were converted to YOLO
format, and we transferred the ID of the interested class to 0,
1, ..., 7. During training, the input image size for the detection
network is 512 x 512, while for the SRPB, it is 1024 x 1024.
During testing, the input image size is consistent with other
comparison algorithms, which is 512 x 512. We also utilized
data augmentation techniques such as mosaic and flip during
training, which were not used during inference. The standard
stochastic gradient descent [53] is used to train the network with
amomentum of 0.937, a weight decay of 0.0005 for the Nesterov
accelerated gradients utilized, and a batch size of 2. The learning
rate is set to 0.01 initially. The entire training process involves
300 epochs.

C. Accuracy Metrics

Accuracy metrics are used to evaluate the difference between
the predicted results and the ground truth. The recall (R), pre-
cision (P), and mean Average Precision (mAP) are commonly
employed as accuracy metrics to evaluate the performance of the
method being compared. The definitions of P and R are defined
as follows:

TP
P=—
TP+ FP ©)
TP
R= TP+ FN (10)

where the true positive (TP) and true negative (TN) denote
correct prediction, and the false positive (FP) and false nega-
tive (FN) denote incorrect outcome. The mAP is the average
precision across all categories, and the average precision is the
area enclosed by the precision and recall curves, so the mAP is
calculated by

_ AP _ [yp(r)dr

AP
m N N

(1D
where p is precision, r is recall, and N is the number of cate-
gories. m AP, 5 is the average precision when the IOU threshold
is 0.5.

In addition to the evaluation metrics, we employ two further
metrics to assess model complexity and computation: giga float-
ing point operations per second and parameter sizes.

D. Ablation Study

In this section, we designed a large number of ablation exper-
iments to validate the effectiveness of our proposed method.

1) Validation of the Baseline Frameworks on LR Datasets:
We compared several models from the more maturely developed
YOLOVS series and one model from the current SOTA YOLOVS8
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TABLE II
TEST RESULTS OF OUR PROPOSED CWM FOR THREE DIFFERENT INPUT IMAGE, RGB, NIR, AND RGB-NIR

method layers Params(M) GFLOPs mAPO0.5(%)
RGB Focus 224 7.100 16.4 62.4
CWM 289 7.098 68.1 68.2
Focus 224 7.100 16.4 55.2
YOLOVS5 IR
VoS CWM 289 7.098 68.1 62.1
MF 291 7.099 67.9 69.9
+
RGBHIR CWM 289 7.098 68.6 70.9

series. Table I shows the results of the evaluation of the vari-
ous baseline frameworks on the VEDAI dataset. The detection
performance of the models is evaluated using mAPO0.5. Among
the models compared, YOLOVS5] achieves the best detection
performance with a mAPOQ.5 of 65.6%, however, its layers and
parameter sizes (Params) are 1.8 and 6.6 times larger than those
of YOLOVSs, respectively, and GFLOPs are 6.9 times larger
than those of YOLOVSs. It should be noted that while YOLOvS8
is the latest model in the YOLO series, it is not without flaws
due to its recent release. YOLOV8s has more layers, parameters,
and GFLOPs than YOLOVS5s, and its mAPQ.5 for small objects
is slightly lower than that of YOLOVSs (62.0% versus 62.4%).
Concerning YOLOVS5s, although its mAPOQ.5 is slightly lower
than YOLOVS5I, its smaller size in terms of layers, parameters,
and GFLOPs makes it more suitable for deployment in real-time
applications, resulting in higher inference capabilities. There-
fore, considering the detection performance, model complexity,
and inference ability, we choose YOLOvSs as our baseline
framework.

2) Validation of CWM: The Focus module, shown in Fig. 1,
will resize the input image before entering the backbone. How-
ever, this operation can cause resolution degradation and loss
of spatial information for small objects. Previous research [43]
has demonstrated that removing the Focus module significantly
improves the YOLOvS model’s accuracy in detecting small
objects. As stated in Section III-B, the NIR images in the VEDAI
dataset are considered the same as the RGB images. Therefore,
the input image is treated as a four-channel image. We designed
a channel-weighting module to replace the Focus module in the
original YOLOVS5 model. The experimental results are presented
in Table II.

The effectiveness of CWM was validated in three cases: RGB
image only, NIR image only, and RGB-NIR images. When
the input images are only RGB and NIR images, using CWM
instead of the Focus module significantly improves the detection
performance of small objects. Our proposed CWM resulted in
a 5.8% (68.2% versus 62.4%) and 6.9% (62.1% versus 55.2%)
improvement in SOD performance, respectively. The size of the
layers and parameters in our proposed CWM are comparable
to those of Focus, while the GFLOPs are higher. When the
input image is RGB-NIR images, we compared the detection
performance of the CWM and the MF [43]. The CWM re-
sulted in a 1.0% (70.9% versus 69.9%) improvement, and its
Layers, Params, and GFLOPs are comparable to those of the
MEF. The reason for not differentiating between RGB and NIR

in the VEDALI dataset is that transportation objects have similar
performance characteristics on both types of images. Therefore,
distinguishing between them would not effectively improve the
detection performance of transportation objects. Additionally, it
would increase the complexity of the network, as demonstrated
by the abovementioned experiments.

It was found that the detection performance is significantly
higher when the input image is an RGB-NIR images compared
with RGB or NIR images (70.9% versus 68.2%), (70.9% versus
62.1%), respectively. Although the performance characteristics
of NIR images on objects such as vehicles are not fundamentally
different from RGB images, the addition of NIR images in-
creases the information on small objects. This allows the network
to acquire more features of small objects and thus improves the
detection performance of small objects.

3) Validation of SCM on RGB-NIR Images Dataset: One
reason for the low accuracy of SOD is the limited information
contained within the small object. Research has shown that
increasing contextual information is crucial for improving the
accuracy of SOD. The self-attention mechanism can consider
both global and local features, making it effective for detecting
small objects. To improve the network’s attention to global
features, we inserted a SCM between the backbone and the neck.

The detection results of adding SCM under two different
fusion methods, the channel connection operation (Contact) and
CWM, were compared, as shown in Table III. The models with
the addition of SCM showed significantly higher mAP0.5 com-
pared to those without SCM. Specifically, mAPO.5 increased by
1.3% (69.9% versus 68.6%) and 7.2% (78.1% versus 70.9%),
respectively. When using the Contact, the model with the addi-
tion of SCM showed higher detection performance for Camping,
Other, Boats, and Vans compared with the model without SCM.
The mAPO.5 of the model improved by 10.4%, 4.8%, 0.7%,
and 2.0%, respectively. When using the CWM, the model with
the addition of SCM shows higher detection performance for all
classes compared to the model without SCM. Specifically, Truck
and Van show an improvement of more than 10% (14.8% and
10.0%). Pickup, Camping, Other, and Boat more than 5% (9.5%,
7.8%, 5.8%, and 8.2%). The Car and Tractor classes show an
improvement of 1.2% and 0.2%, respectively.

The study found that using both CWM and SCM simulta-
neously resulted in a significant improvement of 7.2% in the
model’s mAPO.5. This is because both modules enhance the
detection performance of small objects, and their combined use
allows for co-optimization to improve the detection of small
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TABLE III
TEST RESULTS OF OUR PROPOSED SAEM ON THE VEDAI VALIDATION SET

Method Car Pickup Camping Truck Other Tractor Boat Van mAP0.5(%)
Contact 874  83.2 61.5 759 473 81.7 427 69.1 68.6
Contact+tSCM  86.9  81.8 71.9 75.1 521 76.7 434 71.1 69.9
YOLOvVS5s
CWM 872 76.5 68.0 70.8  58.7 812 559 69.0 70.9
CWM+SCM  88.4  86.0 75.8 85.6  64.5 81.4 64.1 79.0 78.1

TABLE IV
ABLATION EXPERIMENT RESULTS ABOUT THE INFLUENCE OF SRPB ON
DETECTION PERFORMANCE ON THE VEDAI VALIDATION SET

Method
baseline

CWM SEM  SRPB  mAP0.5(%)
68.6
v 70.9

N 69.9
76.0
78.1
76.2
79.6

82.6

Ours

< 2
< 2
< 2 2 <

objects. These experimental results demonstrate that the inclu-
sion of the self-attentive coding module leads to a significant
improvement in the accuracy of SOD.

4) Validate the Effects of SRPB: Some ablation experiences
about the SRPB are completed in Table IV. The YOLOvVS5s
Focus module was replaced with Contact as the baseline. Com-
pared with the baseline, the model only with SRPB added gets
mAPO0.57.4% (76.0% versus 68.6%) better than the baseline.
Compared with the model with only CWM, the model with
both CWM and SRPB gets mAP0.55.3% (76.2% versus 70.9%)
than the model with only CWM. Compared with the model with
only SCM, Models using both SCM and SRPB get mAP0.59.7%
(79.6% versus 69.9%) than models with only SCM. Models that
utilized CWM, SEM, and SRPB achieved the highest mAP0.5,
which was 4.5% (82.6% versus 78.1%) higher than models that
only used CWM and SCM.

Based on the experimental results, it was found that the inclu-
sion of SRPB significantly enhances the detection performance
of small objects in RSIs. Because, SRPB can generate HR
features, our design of SR perceptual loss links the relationship
between the detection task and the SR task. This allows the SR
perceptual loss to guide the detection network in learning HR
features, resulting in improved detection performance for small
objects.

E. Comparisons With Previous Methods

The VEDALI dataset was used to compare several RGB-NIR
detection algorithms with modified unimodal detection algo-
rithms. Three of the more advanced RGB-NIR detection algo-
rithms, SuperYOLO [43], YOLOFusion [49], and YOLOrs [55],
were compared with three current SOTA algorithms, EESRGAN
[9] and ESRTMDet [10], which use SR techniques for object
detection. The experimental results are presented in Table V. The

proposed method achieves the highest detection performance
with a mAPO.5 of 82.63%. It also outperforms other algorithms
in detecting Camping, Truck, Other, Tractor, and Van. However,
its performance is lower than other algorithms in detecting Cars,
Pickup, and Boat. This is because the similarity in appearance
between Cars and Pickups makes it challenging to differentiate
between the two objects. The ESRTMDet uses SR to recover
HR images or features, resulting in improved resolution of Car
and Pickup features. This makes it easier for the network to
distinguish between the two types of objects.

Fig. 5 shows a comparison of the visual inspection results
between our proposed method, SuperYOLO, and YOLOFusion.
Our proposed method achieves detection results closest to the
ground truth. It effectively addresses missed detection cases of
SuperYOLO and YOLOFusion (Truck class in groups a and b)
and also performs well in misdetection cases of SuperYOLO and
YOLOFusion (Truck class in group b and Other class in groups
c and d). We have observed that our proposed method achieves
the highest confidence level even for objects that are correctly
detected by the other two methods. For instance, in group b,
our proposed method achieves an average confidence level of
0.55 for the truck class, which is 0.1 higher than YOLOFusion.
Similarly, in group ¢, our proposed method achieves an average
confidence level of 0.9 for the Camping class, which is 0.3
higher than YOLOFusion. For the Camping class in group
d, our proposed method achieved an average confidence level
of 0.67. This is 0.1 and 0.2 higher than the SuperYOLO and
YOLOFusion methods, respectively. In summary, our proposed
method achieved the best detection performance.

Grad-CAM can be used to analyze the region of interest of the
network model for a certain category, which can be localized to a
specific image region. This makes the decision-making process
of the neural network more interpretable and visualizable. The
Grad-CAM visualization results of our proposed algorithm and
the Super YOLO method are shown in Fig. 6 Upon analyzing the
heat map, it is evident that our proposed method outperforms
SuperYOLO in terms of focusing on the region of interest. Our
algorithm excels in complex backgrounds (such as groups a and
¢) by accurately identifying the object of interest and avoiding
interference from the complex background. Our proposed algo-
rithm can accurately localize the region of interest and detect
the object of interest even when the objects are small and blend
into the background (e.g., shown in group b).

F. Experimental Results on Other Datasets

We validate our proposed method on the DOTA dataset. The
DOTA dataset is a large-scale aerial object detection dataset,
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TABLE V
EXPERIMENTAL RESULTS OF THE COMPARISON WITH OTHER ALGORITHMS ON THE VALIDATION SET OF VEDAI DATASET

Method Car  Pickup Camping Truck Other Tractor Boat Van mAP0.5 Params GFLOPs

YOLOrs [55] 84.15 78.27 68.81 52.60 46.75 67.88 2149 5791 59.73 -

EESRGAN [9] 86.61 82.18 71.88 68.11 50.26 8528 4941 85.12 7236  23.798 259.4
ESRTMDet [10]  93.07 87.58 72.35 67.63 6342 86.11 54.17 86.41  76.35 12.737 217.3
YOLOFusion [49] 89.09 81.99 81.45 70.38 7134 86.38 58.16 82.72  77.69 11.414 113.5
SuperYOLO [43] 91.82 87.26 78.31 86.59 72.88 79.86 74.40 70.08 80.15 7.071 67.9
Ours 89.76 87.07  81.64 87.47 73.03 87.03 6671 8834 82.63  7.791 73.7
The significance of the bold values are the best results for each methodology.
SuperYOLO YOLOFusion Ours Ground Truth

Fig. 5.
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Visual results of SOD using different methods involving SuperYOLO, YOLOFusion, and our proposed methods.
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(b)

Fig. 6.

(©)

Grad-CAM visualization results. The first line is the result of the SuperYOLO method and the second line is the result of our proposed method.

TABLE VI
EXPERIMENTAL RESULTS OF THE COMPARISON WITH OTHER ALGORITHMS ON THE DOTA DATASET

Method SV PL SH HE P R mAP0.5 mAP0.5-0.95
YOLOvV5s [11] 68.70 93.50 85.01 55.25 76.94 73.76 75.62 44.72
YOLOvVS5m [11] 70.01 94.70 86.21 46.21 77.82 73.95 74.28 46.30
YOLOVSI [11] 67.38 94.81 85.91 48.58 79.46 72.28 74.17 46.49
YOLOvSx [11] 67.93 94.70 86.79 51.21 80.33 72.74 75.16 46.71
YOLOVSs [22] 71.71 94.35 89.04 41.92 76.17 72.15 74.26 49.14
RTDETR [54] 74.43 93.24 86.11 25.82 72.85 66.53 69.89 43.79
EESRGAN [9] 75.26 93.55 89.64 33.93 68.61 78.82 73.10 49.57

SuperYOLO [43] 67.20 95.59 88.61 42.17 74.26 75.02 73.39 49.06
ESRTMDet [10] 73.63 95.19 90.20 36.71 71.76 76.36 73.93 48.16
Ours 75.86 97.01 89.98 51.66 81.13 75.93 78.63 50.80

The significance of the bold values are the best results for each methodology.

which consists of 2806 aerial images ranging from 800 x 800 to
4000 x 4000, and contains a total of 188282 instances of 15 com-
mon object categories, such as planes (PL), baseball diamonds
(BD), bridges (BR), ground track fields (GTF), small vehicles
(SV), large vehicles (LV), ships (SH), helicopters (HC) and other
categories. We cut the original image into 1024 x 1024 subim-
ages with an overlap region of 200 pixels, take the 1024 x 1024
subimages as the HR image, and bilinear down-sample the HR
image twice to get 512 x 512 images as the low-resolution
image. To meet the definition of small objects, we removed

the targets with too large size in the original dataset and kept
those with smaller size as our targets of interest, i.e., we selected
the four categories of planes (PL), small vehicles (SV), ships
(SH), and helicopters (HC) as our object of interest for detection.
Finally, 7185 images were obtained and 80% of them were used
as training sets and 20% as validation and test sets.

To verify the superiority of our proposed method in this
article, we selected 9 generic methods for comparison: one-stage
detection algorithms, YOLOv5s-x [11], RTDETR [54], and
YOLOVSs [22] and three algorithms, EESRGAN, SuperYOLO,
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and ESRTMDet, which utilize SR techniques to improve object
detection. In addition to the previously mentioned evaluation
parameters of accuracy (P), recall (R), and mean accuracy at an
IOU threshold of 0.5 (mAPQ.5), we also utilized the mAP at
different IoU thresholds (ranging from 0.5 to 0.95 with a step
size of 0.05) (mAP0.5-0.95) as an additional evaluation metric.

As presented in Table VI. The results indicate that our pro-
posed algorithm achieves the optimal detection result. Compared
with the two most advanced SR object detection algorithms,
SuperYOLO and ESRTMDet, our proposed algorithm achieves
the best detection results for three types of objects: small vehicles
(SV), planes (PL), and helicopters (HC). Our proposed method
improves the precision by 6.89% and 9.37%, mAP50 by 5.24%
and 4.7%, and mAP0.5-0.95 by 1.74% and 2.68%, respectively.

V. CONCLUSION

In this article, we propose a SOD network for RSIs with SR
perception, which is a lightweight SOD network built on the
widely used YOLOVS framework that can be used to enhance
the detection performance of small objects in RSIs. First, we
target RGB images and RGB-NIR images, which are often used
in the field of RSI processing. We designed a CWM, that can
realize both modal fusion and channel weighting for RGB-NIR
RSIs and channel weighting for unimodal (RGB) RSIs so that
the network can realize different attention for different channels
of RSIs. The module was used to replace the Focus module
in YOLOVS, resulting in a significant improvement in the de-
tection accuracy of small objects in RSIs. The following section
addresses the issue of poor performance in SOD, which is caused
by the limited amount of available information on small objects
in RSIs. Then we address the problem of poor performance of
SOD caused by little available information on small objects in
RSIs. We designed a SCM between the backbone and the neck.
This module allows the network to understand the influence
relationship between each pixel in the feature map. As a result,
the network can focus on the global information of the image
while also paying attention to specific pixels. This approach
increases the useful information of small objects in RSIs and
improves the detection performance of small objects. Finally,
we address the issue of the separation between the detection and
SR tasks in the current SR-based SOD neighborhood of RSIs.
Currently, there is no established interrelationship between the
two tasks, which leads to low accuracy in SOD in RSIs. The
SRPB and perceptual loss are designed to connect the object
detection and SR tasks. HR features from the SR task guide
the detection network, allowing the two networks to interact
during training for optimal detection results. By removing the
SRPB during the inference stage, small objects can be detected
without altering the network’s original structure. This results
in faster inference speed. With the combined contribution of
these ideas, our proposed model achieves state-of-the-art de-
tection on the VEDAI dataset, reaching 82.6% mAP0.5, which
is slightly higher than the SuperYOLO algorithm in terms
of the number of network parameters and GFLOPs. Addi-
tionally, our model achieves optimal mAPQ.5 in several other
categories.
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The main limitation of our proposed method is that the model
must be trained by HR and LR RSIs. Where LR images are
involved in the detection task and HR images are involved in
the perception task. Therefore, such training conditions limit
the usage scenarios of the proposed method to some extent.
However, our proposed method only needs LR data in the
inference stage to achieve a higher detection effect than the
general model that only uses LR data.

This article highlights the role of SR techniques in SOD in
RSIs. It has been demonstrated that SR techniques are important
for enhancing the detection of small objects in RSIs. Our goal
is to continue improving our model to increase its speed and
accuracy in detecting small objects in real-time RSIs.
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