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An Integrated Framework of Positive-Unlabeled
and Imbalanced Learning for Landslide

Susceptibility Mapping
Zijin Fu , Hao Ma, Fawu Wang , Jie Dou , Bo Zhang, and Zhice Fang

Abstract—Machine learning is pivotal in data-driven landslide
susceptibility mapping (LSM). However, the uncertainty of neg-
ative samples and the imbalance between positive and negative
samples, which leads to misjudgments and overestimation, remain
ongoing challenges. This study introduces a novel framework for
LSM that integrates positive-unlabeled (PU) learning with im-
balanced learning methods, making full and correct use of vast
unlabeled samples. First, a prior model based on the spy algorithm
is generated to obtain reliable negative (RN) samples, which is used
to create imbalanced training and testing sets. Subsequently, four
imbalanced learning models, namely synthetic minority oversam-
pling technique-deep neural network (SMOTE-DNN), adaptive
synthetic-DNN (ADASYN-DNN), balanced random forest (BRF),
and EasyEnsemble (EE) are employed to process the imbalanced
training and testing sets and generate the final prediction models.
We have tested our LSM framework using a dataset of regional
rainfall-induced landslides that occurred in Beijing, China. The
positive impacts of RN samples are evaluated using baseline models
and extensive saturation tests with various imbalance ratios are
conducted. Imbalanced learning methods enhanced prediction for
negative classes, with balance peaks observed in the saturation tests.
BRF showed the best performance and stability across different
imbalance ratios. This framework can improve the prediction accu-
racy for both positive and negative classes, which has the potential
to reduce overestimation and misclassification and holds promise
for significantly impacting future modeling strategies in LSM.

Index Terms—Data-driven landslide susceptibility mapping
(LSM), imbalanced learning, negative samples, positive-unlabeled
(PU) learning.

I. INTRODUCTION

LANDSLIDE presents a destructive geological hazard pos-
ing huge threats to both life and property, especially in
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mountainous regions. Landslides are particularly susceptible to
being triggered by external events such as intense rainfall or
earthquake in areas with fragile geological settings. The com-
bination of surface erosion, softening of rock and soil masses,
and increased pore water pressure resulting from heavy rainfall
can easily lead to the occurrence of geo-hydrological disasters
like landslides and mudflows [1]. In the context of climate
change, frequent extreme weather events can easily trigger a
large number of landslides in specific areas [2], [3]. For instance,
during four consecutive days (from July 29 to August 1 in
2023) of heavy rainfall in the western mountainous areas of
Beijing, China, over 15 000 landslides were triggered. These
widely and randomly distributed landslides have brought huge
challenges to regional disaster prevention and mitigation. Land-
slide susceptibility mapping (LSM) is used to predict the spatial
probability of landslide occurring under certain conditions over
a large-scale area. LSM is one of the tools for risk assessment
of regional disasters, providing effective forecasts for disaster
prevention and mitigation, and improving our understanding of
the distribution pattern of such hazards.

The methods of LSM can be broadly divided into three
categories: knowledge-driven, physics-based and data-driven
methods [4]. While knowledge-driven methods tend to be sub-
jective and the physics-based methods need multiple and accu-
rate physical field parameters that can be laborious to acquire,
the efficiency and accuracy of data-driven methods have made
them increasingly popular in LSM. Advances in remote sensing
techniques have provided a wealth of accessible multisource
data, which also promotes the modeling process for data-driven
LSM [5], [6], [7], [8]. Machine learning as a prevalent data-
driven approach, has been widely applied and promoted in
LSM, encompassing classical algorithms like logistic regres-
sion, support vector machine, decision tree (DT), random forest
(RF), Bayes as well as deep learning methods like deep neural
network (DNN), convolutional neural networks, residual net-
work, transformer, etc. [9], [10], [11], [12]. However, within
the supervised learning framework that most methods align
with, the fundamental understanding of landslide data often gets
overlooked. It is crucial to recognize that LSM based on super-
vised learning faces a positive-unlabeled (PU) and imbalanced
problem.

The problem of PU in LSM is mainly due to the uncertainty
of the unlabeled samples. Nonlandslide samples are not directly
obtained but need to be generated in LSM. Many studies on LSM
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using supervised learning have employed random sampling as
the most commonly used method based on the assumption that
areas without landslides are likely to be stable [13]. Although this
method is convenient and fast, areas without detected landslides
may still have undetected landslides or conditions conducive to
landslides, making them highly susceptible to landslides [14].
Thus, the unlabeled samples generated by random sampling
actually contain a significant amount of uncertainty, which re-
sults in misjudgments. Researches show that negative samples
screened by prior models can improve the prediction perfor-
mance better than unlabeled samples [15], [16], [17], [18], [19].
Prior models like presence-only and PU learning methods can
be used for this purpose. In addition, physics-based prior models
can also be adapted to enhance the model’s generalization capa-
bilities and achieve a data-physics hybrid driver [20], [21], [22].
The quality of the negative samples generated from prior model
trained by large amounts of unlabeled samples and landslide
samples can also significantly affect the modeling of LSM.
Some conclusions have been drawn from studies that extremely
negative samples can lead to overestimation of susceptibility
levels and critical negative samples can strengthen the deci-
sion boundary of models [23], [24]. In addition, innovative PU
techniques have been applied in LSM, offering a promising
direction for selecting reliable negative (RN) samples [25],
[26].

The problem of imbalance within LSM is evident in the
unequal or deeply imbalanced distribution of landslide and
nonlandslide classes. This imbalance is similar to challenges
encountered in various imbalanced classification tasks in in-
dustries like fault detection, fraud detection medical diagnoses,
and so on [27], [28]. In LSM, the disparity between the ma-
jority class (nonlandslide) and the minority class (landslide)
can be significant with ratios of 10:1, 100:1, or even larger
in the reality [29]. It can be inferred from the most datasets
of landslide inventory that landslides account for less than
5%, 1%, or much smaller of the study total area even in ar-
eas with strong earthquakes or heavy rainfall, although there
may be incomplete interpretations due to invisibility [30], [31],
[32]. Most standard machine learning methods usually treat
all classes equally, assigning them the same misclassification
cost and balanced proportion [27]. However, these methods are
not optimal for imbalanced datasets due to inconsistency of
sample distribution, the tendency to overlook misclassification
of minority classes, and the neglect of valuable information in
unlabeled samples. To address this, many algorithms have been
optimized to adapt to imbalanced dataset by adjusting the sample
weights for different classes. Studies have explored the effect of
imbalanced datasets containing different numbers of negative
samples on the LSM results, both sensitivity and specificity are
significantly affected by the imbalance ratio [14], [33], [34],
[35], [36]. In recent years, intelligent imbalanced learning has
evolved into the following broad categories: data-level approach,
ensemble approach, algorithm-level approaches, cost-sensitive
learning, and hybrid algorithms [29], [37], [38]. Among these,
the undersampling and oversampling methods of the data-level
approach as well as ensemble learning methods are effective
and worth investigating for imbalanced landslide susceptibility

datasets. Some imbalanced learning study have already achieved
superior results compared to common machine learning models
in LSM [39], [40], [41].

The quality and quantity of negative samples used in the LSM
profoundly influence the prediction. Recognizing LSM as a PU
and imbalanced problem highlights the significance of optimiz-
ing PU learning and imbalanced learning methods. However,
few studies have merged these approaches. This study proposes
a novel framework combining PU learning with imbalanced
learning for LSM. The main contributions of this study can be
summarized as follows:

1) a susceptibility prior model based on the PU spy algorithm
is generated to obtain a large number of RN samples;

2) four imbalanced learning models including synthetic
minority oversampling technique-DNN (SMOTE-DNN),
adaptive synthetic-DNN (ADASYN-DNN), balanced ran-
dom forest (BRF), and EasyEnsemble (EE) from over-
sampling and ensemble learning are trained and tested on
imbalanced training and testing sets;

3) extensive repeated sampling, detailed model comparison,
and saturation test with different imbalanced ratios are
conducted to compare the improvement brought by RN
samples and the performance of different imbalanced
models.

II. STUDY AREA AND DATA

A. Study Area

From 29 July 2023 to 2 August 2023, an unusual and intense
rainfall event occurred in Beijing, lasting for 83 h. The average
cumulative rainfall across Beijing reached 331 mm, accounting
for about 60% of the annual average rainfall (599.5 mm). The
rainfall center is located in the western part of the city [see
Fig. 1(a)], which is mountainous [see Fig. 1(b)]. Taking into
account the rainfall distribution and geological conditions, the
mountainous areas in western Beijing were selected as the study
area, which covers all mountainous areas in Fangshan District
and Mentougou District, as well as the southwest of Changping
District. The study area covers an area of approximately 3250
km2. Affected by this rainstorm, a large number of landslides
were triggered in this area.

The western mountainous area is located at the northern
end of the Taihang Mountains, and complex geological and
geomorphic conditions make this area the highest prone area
to geological hazards in Beijing. The NE compartmentalized
fold structures shaped the basic tectonic framework. The strata
are dominated by Cambrian and Ordovician carbonate rocks, as
well as sandstone and mudstone of the Jurassic and Permian. In
addition, igneous rocks and metamorphic rocks are also locally
exposed. Affected by tectonic activities, many areas exist with
massive fragmental rocks. The mountain ridges generally trend
northeastward, consistent with the regional structural direction.
The elevation of the mountainous areas generally ranges from
1000 to 1500 m. The highest altitude is over 2000 m. The
main types of landforms include medium-sized mountains, low
mountains, hills, and valleys. Erosion landforms are developed.
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Fig. 1. (a) Cumulative rainfall distribution in Beijing from 8:00 PM on 29 July 2023, to 1:00 PM on 31 July 2023 (from Beijing meteorological bureau).
(b) Elevation distribution of Beijing. (c) Satellite images one month prior to this rainstorm. (d) Satellite images one month after this rainstorm where noticeable
rainfall-induced landslides can be identified. (e) Distribution of landslides in the study area.

B. Landslide Inventory

For establishing the landslide inventory, the high-resolution
satellite images approximately one month before and one month
after this rainstorm event were used to visually identify the
landslides triggered these rainstorm events [see Fig. 1(c) and
(d)]. The resolution of the images is between 0.8 and 2.0 m,
and the data is from SIWEIearth platform. A total of 15 383
landslides were identified [see Fig. 1(e)], covering a combined
area of 19.3 km2. The area of an individual landslide ranges from
about 40 m2 to 2.1 × 105 m2 in the landslide area. In total, 70%
of the landslides caused by this rainfall event have an area of less
than 1000 m2. As most landslides triggered by this rainstorm are
small at the initiation area and larger at the moving and deposit
areas, the locations of the landslide main scarp are identified,
which will serve as landslide training and testing samples for
this study.

C. Landslide Conditioning Factors

Identifying landslide conditioning factors (LCFs) is a cru-
cial step in LSM. LCFs can be divided into broad categories
including topographic factors, geological factors, hydrological
factors, and environmental factors in existing research works
[42]. Due to extreme rainfall being the main cause of landslides
in the study area in the short term, we added the accumulative
rainfall during the landslide occurrence period as one of the
LCFs, which is a common characteristic of event-induced LSM
research works [43], [44]. Based on the availability of data and
the characteristics of rainfall-induced landslides in the study
area, we have preliminarily selected the following 16 LCFs:

elevation, aspect, slope, plane curvature (PLC), profile curvature
(PRC), terrain ruggedness index (TRI), topographic wetness
index (TWI), topographic position index (TPI), stream power
index (SPI), lithology, geological age (GA), distance to faults
(DTF), distance to river (DTR), landcover, NDVI, and accumu-
lative rainfall (AR). Almost all factors are commonly used in the
LSM field, and all data types and sources are shown in Table I.
The lithology is divided into the following seven categories: soil,
andesite, volcanic clastic rock, gneiss, sandstone, carbonate,
and granite. The GA includes Cambrian, Sinian, Ordovician,
Carboniferous, Permian, Jurassic, Cretaceous, Quaternary, and
Proterozoic. Landcover contains seven classes of bare ground,
built area, crops, rangeland, trees, water, and flooded vegetation.
All of the LCFs are processed on ArcGIS 10.8 and all layers are
resampled with a resolution of 12.5 m.

III. METHODOLOGY

Fig. 2 depicts the detailed flow chart of this study. Initially,
16 LCFs are collected and examined by multicollinearity and
importance analysis. Then, we apply the spy algorithm as a PU
learning method to generate LSM prior models to obtain RN
samples. Training and testing sets are constructed with a ratio
of 7:3 using landslide and RN samples, and the testing set is
fixed with an imbalanced ratio of 1:200. Next, four imbalanced
learning models (SMOTE-DNN, ADASYN-DNN, BRF, and
EE) are applied to process the imbalanced training and testing
sets and generate the final prediction models. In this process, two
benchmark models (DNN and RF) are employed to verify the
positive impact of RN samples and saturation tests with different
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TABLE I
DETAILED INFORMATION OF LCFS

Fig. 2. Flow chart of this study.
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Fig. 3. Work flow of spy algorithm.

imbalance ratios are performed. Eight metrics are used to assess
and compare the aforementioned models in detail, and the results
of LSM are discussed.

A. LCFs Selection

1) Multicollinearity Analysis: Multicollinearity analysis is
an essential process for selecting LCFs for LSM. It is gener-
ally believed that a certain conditioning factor does not have
multicollinearity with other factors when the variance inflation
factor (VIF) is smaller than 5. When VIF is between 5 and 10, this
factor has weak multicollinearity with other factors. Factors with
VIF values above 10 are considered to have moderate or higher
multicollinearity [45]. In LSM, it is recommended to remove
the conditioning factors of VIF above 10 to avoid redundant
indicators leading to distorted predictions [46].

2) Importance Analysis: Gini importance or mean decrease
in impurity can be used to evaluate the importance of every
feature using impurity-based method [47]. The Gini coefficient
in RFs is used to evaluate the importance of LCFs and to assist
in the selection of LCFs.

B. Spy Algorithm

Two-step approach (TSA) is another common way to solve
PU problems like LSM and consists of the following two main
steps: 1) identify relatively RN samples (RRN); 2) construct a
final classifier based on RRN samples [25], [48]. Two classifiers
need to be constructed in the TSA, the first one uses positive and
unlabeled samples and the second one uses positive and RRN
samples identified from the first classifier. Building upon the
TSA, this study adopts the spy technique and RF classifier to
solve the PU problem in LSM.

The spy technique is an auxiliary technique in the two-step
framework that is widely used because it outperforms other
methods and is computationally fast [49], [50]. Fig. 3 shows
the process of TSA with the spy technique. In step 1, 15% of the

landslide samples are randomly selected as spy samples (S) to
be added to the unlabeled sample set (U) to form a new sample
set (US). Then train the first classifier with the positive sample
set excluding spy samples (PS) and the US sample set and make
predictions for all the samples. Determine the threshold based
on the probability value of S, by which RRN samples are filtered
in the set of unlabeled samples. In step 2, another classifier is
trained based on the P and RRN as the final model for LSM. RF
classifier is chosen as the two classifiers described above, which
is widely used in LSM for its excellent predictive performance
and efficiency.

C. Data-Level Imbalanced Learning

1) Synthetic Minority Oversampling Technique-DNN: One
of the best-known techniques in oversampling methods is
SMOTE [51]. SMOTE employs linear interpolation to generate
new samples within the minority class. Random oversampling
randomly copies existing minority class samples, which may
easily cause the model to overfit due to too many repeated
samples. SMOTE can mitigate the issue of over-fitting caused
by random oversampling [52]. The process of SMOTE is shown
in Fig. 4. For each minority class sample, find its K nearest
neighbors in the minority class, then randomly select one of the
K nearest neighbors, the synthetic sample is generated randomly
on the connection between the selected neighbor and the current
minority class sample. Repeat the above-mentioned operations
until the number of minority class samples and majority class
samples are balanced. The pseudo samples it creates are not the
same with the original samples but retain the similar relationship
with them. In order to pay more attention to samples near the
decision boundary, some models such as SMOTE-borderline,
SMOTEBoost, and ADASYN are developed based on SMOTE
[53], [54].

2) Adaptive Synthetic: ADASYN is another technique simi-
lar to SMOTE that generates synthetic samples from the minority
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Fig. 4. Schematic diagram of SMOTE.

class to balance the dataset from data-level [55]. Similar to
borderline-SMOTE and SMOTE-boost, ADASYN pays more
attention to minority samples that are hard to learn by determin-
ing the number of synthetic samples to each minority sample
based on density distribution [53]. ADASYN first calculates the
weight of all the minority class samples through the proportion of
majority class samples around the sample. Then, each minority
class sample is assigned the number of synthetic samples needed
to be generated based on its weight. This method generates more
synthetic samples for the minority with blurred boundaries to
the majority, which helps to train the decision boundaries of the
model.

D. Ensemble Imbalanced Learning

1) Balanced Random Forest: The BRF is proposed to im-
prove the performance of normal RF when facing an extremely
imbalanced dataset [56]. RF is a supervised learning algorithm
based on bagging, while bootstrap sampling is conducted to
obtain input samples of each DT and random features of the
sample are selected for splitting. Due to strong randomness, it
has high robustness and is not easy to overfit. However, when
facing extremely imbalanced data, most of the DT may receive
few or even none minority class data, which greatly reduces its
predictive performance on minority classes. In order to solve
the category bias of the training samples on each tree, BRF
introduces the sampling strategies to improve RF. Each tree of
BRF receives a balanced subset generated by undersampling or
oversampling.

2) EasyEnsemble: EE is one of the effective undersampling
techniques based on ensemble learning, which demonstrates
high accuracy while solving imbalanced problems [27], [57].
This method operates by randomly sampling multiple sub-
sets from the majority class and then training base-classifiers
through a combination of these subsets with minority class
data. Each subset matches the minority class in number, ensur-
ing that every base-classifier is trained on a balanced dataset.
These base-classifiers use the AdaBoost algorithm, and the

Fig. 5. Structure of DNN.

AdaBoost algorithm itself is also an ensemble learning method.
AdaBoost is an iterative algorithm that adjusts the sample
weight according to whether the sample can be correctly clas-
sified after each base classifier is trained. The weights of
each base-classifiers are adjusted according to their predictive
performance and AdaBoost is constructed of these weighted
classifiers [58]. As the representative algorithm of Boosting,
AdaBoost has extremely strong predictive performance and
robustness. This structure suggests that EE is an ensemble of
ensembles, which is a bagging ensemble based on the boosting
ensembles.

E. Benchmark Prediction Models

RF and DNN are employed as benchmark models for the
comparation with the framework of PU and imbalanced learn-
ing. These two models are frequently used in the field of
LSM due to their nonlinear processing ability and high fea-
tures [10], [25]. RF is also deployed as base learners for spy
algorithm and as the benchmark for the 1:1 trained balanced
model in the imbalanced learning section, considering its good
fitting effect and fast training speed on small datasets. When
oversampling in data-level imbalanced methods, millions of
samples will be generated, which requires a huge amount of
time for training an RF model. Hence, we choose to use DNN
models to train the extensive number of samples generated by
data-level method. Neural networks contain massive computa-
tional parameters, making them suitable for handling complex
relationships between large-scale datasets. In addition, with
the support of hardware devices such as GPUs, DNN has a
very high training efficiency in dealing with millions of data.
After using the data-level method, the DNN model is used
to process the generated sample sets on different imbalanced
ratios. Fig. 5 shows the DNN structure used in the study, where
the input layer is the results of the partial discretization of
LCFs.
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F. Model Evaluation Metrics

Confusion matrix is the most commonly used way to mea-
sure the accuracy of classification results. This matrix shows
the correct classification and misclassification of positive and
negative samples by the prediction and provides very useful
information to measure the predictive performance of the model.
The confusion matrix of the two-classification problem contains
four parameters: true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). Based on the confusion
matrix indicators, six metrics including overall accuracy (OA),
precision, sensitivity, specificity, Balanced Accuracy (BA) and
G-mean are selected for model assessment. OA reflects the OA
of the positive and the negative predictions, while precision
highlights the success rate of predicted positive samples from
a forecasting perspective. Sensitivity and specificity measure
the rate of successful prediction of real positive and negative
samples from an objective perspective. BA and G-mean are
metrics for evaluating models on imbalanced datasets, which
reflect the balance between positive and negative predictions
[39]. We also specify area under ROC curve (AUC) and area
under the precision-recall curve (AUPRC) as the comprehensive
predictive ability metrics. The AUPRC is a more useful metric
for evaluating a model’s ability to correctly classify positive
samples when processing imbalanced datasets than AUROC,
although it is rarely used in LSM evaluation [59]. Due to the
differences in the use of precision and false positive rate (FPR)
within the calculation of AUPRC and AUC, in imbalanced
datasets where TN is very large and TP is very small, AUPRC
is much more sensitive to changes in FP. The relevant formulas
of these metrics are as follows:

OA =
TP + TN

TP + FN + FP + TN
(1)

precision =
TP

TP + FP
(2)

sensitivity = recall = TPR =
TP

TP + FN
(3)

specificity =
TN

TN + FP
(4)

BA =
1

2

(
TP

TP + FN
+

TN
TN + FP

)
(5)

G−mean =
√
sensitivity ∗ specificity (6)

FPR =
FP

FP + TN
. (7)

G. Experimental Setting

As advocated by the framework, due to the uncertainty that
exist in unlabeled samples, unlabeled samples cannot be directly
used as negative samples in the testing set. The testing set needs
to consist of deterministic samples, but we cannot guarantee
that any unlabeled sample must be a nonlandslide. Therefore,
we propose a PU and imbalanced LSM testing method as the
following steps show:

1) divide the landslide samples into training and testing sets;

Fig. 6. VIF value distribution of the LCFs.

2) to match the landslide samples in the training and testing
set, unlabeled samples in the training and testing set need
to be extracted from unlabeled samples without repetition
independently and randomly;

3) train two prior model using landslide samples from the
training and testing set, as well as matching unlabeled
samples;

4) extract points from very low and low susceptibility (LS)
areas of training and testing prior models as training and
testing negative samples, and combine them with matched
landslides to form imbalanced training and testing sets,
respectively.

Separating landslide samples and unlabeled samples from
the beginning in this testing method can effectively prevent
information leakage between the training and testing sets. This
proposed testing method can provide an objective and accurate
evaluation of our proposed models.

In this research, the ratio of the training set to the testing
set is 7:3. The unlabeled samples extracted by the prior model
are three times the number of corresponding landslide samples,
which is set by experience. In order to unify the measure-
ment standards, an imbalanced testing set with a positive and
negative sample ratio of 200:1 is fixed to evaluate all of the
models, which is determined by the above-mentioned PU and
imbalanced testing methods. In addition, different imbalanced
ratios between positive and negative samples in the training
are set from 1:2.5 to 1:200 for conducting saturation tests
of the amounts of negative samples on our imbalanced mod-
els. In the training process, the hyperparameters of machine
models are determined by grid search within the range we
specify.

IV. RESULTS AND ANALYSIS

A. Analysis of LCFs

The VIF values of all LCFS are shown in Fig. 6. The values of
all the LCFs are smaller than 10, it can be inferred that no factor
exhibits high multicollinearity. The VIF values of Slope and TPI
are relatively large, with values of 6.80 and 5.13, respectively,
showing slight multicollinearity. The VIF values of all other
influencing factors are smaller than 5, indicating a low level of
collinearity between them. Fig. 7 shows the importance of all
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Fig. 7. Results of importance value of the LCFs.

Fig. 8. Training and testing prior models generated by spy-algorithm. (a) Prior
model generated by training set. (b) Prior mode generated by testing set. RN
samples are selected from the very low and LS area of above models.

LCFs. The importance of Elevation, AR, and NDVI are relatively
high, with values of 0.115, 0.111, and 0.110, respectively. Vari-
ous terrain factors, fault and river have also certain importance.
The importance of lithology and GA are relatively low, and
landcover gets the lowest importance of 0.008. It can be seen that
the terrain, vegetation, and hydrologic factors play a crucial role
in landslide occurrence. Although the importance of landcover
is small, it can still assist in distinguishing nonlandslide samples
(such as built area and water), which means all LCFs have
promoting effects on model prediction. Considering the absence
of severe collinearity and redundant variables in LCFs, as well as
the strong adaptability of the machine learning methods chosen
next, we choose to retain all LCFs in the following modeling
process.

B. Improvement of the RN Samples on the Performance of LSM

Fig. 8 shows the results of prior models generated by the spy
algorithm using training and testing sets. After constructing the
imbalanced testing set, the comparative tests are carried out to
discover the improvement on the performance of LSM brought
by RN samples using RF and DNN. In order to reduce stochas-
ticity, 10 repeated random sampling of unlabeled samples and
RN samples with the same quantity as landslide samples are
conducted.

Table II presents the average test results obtained by training
models using DNN with unlabeled samples (U-DNN), DNN
with RN samples (RN-DNN), RF with unlabeled samples (U-
RF), and RF with RN samples (RN-RF). U-DNN and U-RF are
baseline models that do not use either PU methods or imbalanced
learning methods. From unlabeled samples to RN samples, the
metrics are improved mainly in sensitivity and AUPRC. From
U-RF to RN-RF, AUPRC increased from 0.5810 to 0.6881,
and sensitivity increased from 0.7833 to 0.9265. From U-DNN
to RN-DNN, AUPRC increased from 0.1685 to 0.3528, and
sensitivity increased from 0.8064 to 0.9072. There is also a small
improvement in metrics such as BA, AUC, and G-mean in both
DNN and RF. However, the use of RN samples resulted in a
decrease in precision, specificity, and OA. In addition, whether
on unlabeled samples or RN samples, the overall performance
of RF is generally better than that of DNN.

From the difference in metrics in Table II, it can be inferred
that the improvement of using RN samples is mainly reflected
in the improvement of the predictive ability of positive samples
(seen from the large improvement in sensitivity and AUPRC).
OA and specificity have decreased, which is the side effect
of the decrease in negative sample predictive ability while the
positive sample prediction performance has increased. At the
same time, because the negative samples in the testing set
are the majority class, this side effect will cause OA to drop
significantly. However, using RN samples can definitely improve
the overall prediction performance of the model, because the
comprehensive predictive performance metrics of the positive
reflection model, BA, AUC, and G-mean, have been improved
to a certain extent. In particular, BA and G-mean reflect the
improvement of the model’s trade-off between positive and
negative predictive capabilities.

C. Comparison of Different Imbalanced Learning Models

A total of 12 different imbalance ratios from 1:200 to 1:2.5 are
set to compare the four imbalanced learning models including
SMOTE-DNN, ADASYN-DNN, BRF, and EE. In this section,
we selected the largest ratio (1:200) and the smallest imbalance
ratio (1:2.5) to show the performance difference between the
four imbalance models. Figs. 9 and 10 display the box plots of
test results of models trained on 10 sets of RN samples. Table III
shows the mean values of the testing metrics of the benchmark
models (RN-DNN and RN-RF) and imbalanced learning models
under an imbalance ratio of 1:2.5 and 1:200.

In the ratio of 1:200, four imbalanced learning methods have
consistently improved in precision, specificity, OA, BA, and
G-mean than benchmark models as shown in Fig. 9. SMOTE-
DNN achieved the highest precision and specificity (0.1093
and 0.9645), followed by ADASYN-DNN (0.0932 and 0.9572),
BRF (0.0659 and 0.9361), and EE (0.0539 and 0.9204). The
increase in precision and specificity compared to the benchmark
models indicates an enhanced ability to predict negative classes
and reduction of FP samples in imbalanced learning models.
Since negative classes are the majority in the testing set, the OA
follows a similar pattern to specificity. Regarding model balance,
BRF achieved the highest BA and G-mean (0.9185 and 0.9184),
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TABLE II
AVERAGE TEST RESULTS OF DNN AND RF TRAINED WITH UNLABELED SAMPLES AND RN SAMPLES IN 10 TIMES SAMPLING

Fig. 9. Metrics results of benchmark models and imbalanced learning models with imbalance ratio of 1:200. (a) Precision. (b) Sensitivity. (c) Specificity. (d) OA.
(e) BA. (f) G-mean. (g) AUPRC. (h) AUC.

TABLE III
AVERAGE TEST RESULTS OF DNN AND RF TRAINED WITH UNLABELED SAMPLES AND RN SAMPLES IN 10 TIMES SAMPLING



FU et al.: INTEGRATED FRAMEWORK OF PU AND IMBALANCED LEARNING FOR LANDSLIDE SUSCEPTIBILITY MAPPING 15605

Fig. 10. Metrics results of benchmark models and imbalanced learning models with imbalance ratio of 1:2.5. (a) Precision. (b) Sensitivity. (c) Specificity.
(d) OA. (e) BA. (f) G-mean. (g) AUPRC. (h) AUC.

followed by SMOTE-DNN (0.9157 and 0.9144), ADASYN-
DNN (0.9150 and 0.9140), and EE (0.9138 and 0.9138). In terms
of AUPRC, the DNN-based methods showed significant im-
provement through oversampling. Among the ensemble learning
methods, BRF achieved the highest AUPRC (0.7326), whereas
EE showed a decline (0.5690). Due to the extremely imbalanced
nature of the testing set, the AUC values for the four models
did not show significant changes. In addition, sensitivity and
specificity show a trend of mutual restriction. Compared with
the benchmark models, SMOTE-DNN and ADASYN_DNN
decrease the most in sensitivity, while BRF and EE decrease
less.

In the ratio of 1:2.5, it is observed that most of the metrics
including precision, specificity, OA, BA, and G-mean show an
improvement over the benchmark models, but the extent of the
improvement is limited compared to the scenario in ratio of
1:200, and some models even exhibit a decline. BRF achieves the
highest precision and specificity (0.0646 and 0.9348), followed
by SMOTE-DNN (0.0552 and 0.9215), EE (0.0529 and 0.9189),
and ADASYN-DNN (0.0401 and 0.8865). In terms of model
balance, both BA and G-mean are higher for SMOTE-DNN
and ADASYN-DNN compared to the benchmark RN-DNN,
while BRF and EE are higher than benchmark RN-RF. BRF has
the highest balance (0.9175 and 0.9173). In the oversampling
methods and imbalanced learning methods, AUPRC shows an
improvement compared to their respective benchmarks, except
for the EE model. BRF still exhibits the best performance in
AUPRC (0.7157).

The above-mentioned analysis highlights that imbalanced
learning significantly enhances the model’s predictive capability
for negative samples, while also improves precision and main-
tains a good level of sensitivity in positive instances, thereby

enhancing model balance. Simultaneously, there is a noticeable
reduction in FPRs (referred in AUPRC). BRF achieves the
best balance in both the maximum and minimum ratios. Based
on oversampling, DNN models can exhibit stronger predictive
power for negative classes compared to ensemble learning when
given sufficient samples. However, oversampling-based DNN
models are highly susceptible to the influence of imbalanced
ratios. In addition, SMOTE outperforms the ADASYN method
across most of the metrics.

D. Exploring the Effects of Different Imbalanced Ratio on
Imbalanced Learning Model

In order to investigate the impact of imbalanced ratios on
imbalanced learning models, we set up 12 groups of imbalanced
ratios: 1:2.5, 1:5, 1:7.5, 1:10, 1:15, 1:20, 1:25, 1:50, 1:100, 1:150,
and 1:200. This process is referred to as saturation test, aimed
at exploring at what point the model performance reaches a
bottleneck as the number of negative samples increases. The
higher density of ratio settings in the earlier stages is aimed at
capturing the significant variations in model performance during
this phase. For each ratio, the models are trained on 10 sets of
data, which are repeatedly sampled and tested on the fixed 1:200
imbalanced testing set.

The average evaluation results of precision, sensitivity, speci-
ficity, G-mean, AUPRC, and AUC of imbalanced learning mod-
els trained with different imbalanced ratios and benchmark
models on imbalanced testing set are shown in Fig. 11. The
results of OA and BA are omitted because they are very close to
specificity and G-mean respectively and have similar meanings.
In oversampling methods, as the imbalance ratio increases, the
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Fig. 11. Mean values of metrics results of benchmark models and imbalanced learning models during saturation test of different imbalance ratios. (a) Precision.
(b) Sensitivity. (c) Specificity. (d) G-mean. (e) AUPRC. (f) AUC.

precision, specificity, G-mean, and AUPRC of the oversam-
pling models increase significantly, and the sensitivity decreases
significantly. This change is most obvious, especially between
the ratio of 1:2.5 and 1:25. When the ratio exceeds 1:25, the
G-mean shows a slight decline and AUPRC tends to be stable.
This trend is also slightly reflected in the ensemble learning
imbalanced models (BRF and EE). Metrics of ensemble learning
tend to be stable after the imbalance ratio reaches 1:10. Ensemble
learning especially the BRF is insensitive to fluctuations in the
imbalance ratio, and performs at similar levels at lower and
larger ratios. The performance of BRF and EE can stabilize
after the imbalance ratio reaches a threshold. After reaching the
threshold, although G-mean and AUPRC tend to be stable, the
changes in precision, sensitivity, and specificity are still obvious
in oversampling models.

In the aspect of models’ balance (G-mean), there are imbal-
anced peaks existing in the imbalanced models. Comparing the
above four imbalanced models, BRF can always maintain a
better balance than the benchmark models in different ratios,
followed by SMOTE-DNN, ADASYN-DNN, and EE. In terms
of AUC, although the differences among the four models are
small, the other models can outperform RN-DNN after reaching
a certain ratio threshold except for EE.

E. Comparison of LSM Results

Fig. 12 shows the LSM results of the balanced models using
unlabeled samples (U-DNN and U-RF), the balanced models
using RN samples (RN-DNN and RN-RF), and four imbalanced
learning models with an imbalance ratio of 1:200. In order to
provide a more quantitative distribution pattern of susceptibility
levels, Fig. 13 shows the distribution percentages of very low
susceptibility (VLS), LS, moderate susceptibility (MS), high

susceptibility (HS), and very HS (VHS) for each model. When
using U-DNN and U-RF, the VHS area is significantly smaller,
and VHS of RF is smaller than DNN’s. When reliable samples
are used, the VHS area of RN-DNN and RN-RF increases
significantly, and the VLS and LS areas also decrease slightly.
This can be also seen from the changes in Sensitivity and
specificity in Table II. The use of RN samples in the training
process significantly increases the model’s predictive ability
for positive samples. When the imbalanced learning model
is compared with the balanced benchmark models RN-DNN
and RN-RF models, the most intuitive change is reflected in
the significant increase in the area ratio of VLS and LS. The
area ratio of VHS is slightly reduced in imbalanced learning
models, too. The oversampling models ADASYN-DNN and
SMOTE-DNN can provide a higher proportion of VLS and
LS than the ensemble learning BRF and EE. This is the pos-
itive benefit brought by the improvement of specificity and
precision through oversampling models. Introducing a large
number of RN samples can better identify VLS and LS re-
gions, reduce the false prediction of false positive samples
while maintaining a good level of reliable prediction for positive
classes.

The high scores of AUC indicate that the models can correctly
classify most of the samples. The slight differences in metrics
come from the ability to correctly classify the ambiguous sam-
ples. To highlight the comparison between models, focus areas
where the models have significant disagreements are manually
selected. On one hand, these areas can highlight the models’
ability to handle ambiguous samples. On the other hand, these
areas are small and abnormal due to divergence, which cannot
reflect the overall prediction performance of the region. Fig. 14
shows the comparison of LSM results of three selected subfocus
areas. It can be seen that U-DNN and U-RF easily misjudge VHS
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Fig. 12. LSM results of all models. (a) U-DNN. (b) U-RF. (c) RN-DNN. (d) RN-RF. (e) SMOTE-DNN. (f) ADASYN-DNN. (g) BRF. (h) EE. The imbalance
ratios of (e)–(h) are 1:200.

Fig. 13. Distribution percentages of VHS, LS, MS, HS, and VHS of each
model.

as VLS, LS, or MS. After using RN samples, this misjudgment
is greatly corrected. After further using the imbalanced learning
methods, most of the correctly predicted VLS areas are main-
tained, and the prediction of stable areas, namely VLS and LS, is
enhanced. In the oversampling method, as the proportion of VLS
and LS areas increases significantly, it is possible to generate a
false prediction of FN samples, while ensemble learning can
maintain a correct judgement.

In summary, the combination of the PU learning and im-
balanced learning models can improve the prediction accuracy

of VHS, VLS, and LS. The ambiguous MS and HS areas in
the middle level are reduced, which has a clearer indicative
significance for disaster prevention and mitigation.

V. DISCUSSIONS

In this study, a novel framework combining PU learning
and imbalanced learning is proposed for accurate LSM work
and tested in a regional rainfall-induced landslides dataset in
Beijing, China. This framework demonstrates its advanced na-
ture in terms of principles and results, especially in its ability
to uncover underlying laws and make accurate predictions in
complex scenarios. Through the logic of this framework, two
common modeling problems are identified in most LSM works:
uncertainty in negative samples and the imbalanced nature of
positive and negative classes. To solve these problems, we utilize
the spy PU learning model to obtain RN samples and incorpo-
rate four imbalanced learning models. The ultimate goal is to
improve the model’s predictive capabilities for both positive and
negative samples, resulting in an improved balance of the model.
In terms of model selection rationale, we have chosen four
representative and easily implementable models considering
data-level and ensemble learning as two mainstream directions
for imbalanced learning. As this framework is an initial attempt,
we also encourage the exploration and comparison of various
other PU or imbalanced learning models.

A progressive testing procedure is used to justify the devel-
opment of this framework. It can be found in the comparation
of U-DNN, U-RF, RN-DNN, and RN-RF that the inclusion
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Fig. 14. Comparison of LSM results of some selected subfocus regions with divergence generated by different models. In these regions: landslide failure sites
in U-DNN and U-RF are not easily identified as VHS, while in RN-DNN and RN-RF models, landslide failure sites are more easily corrected to VHS; the support
of the imbalanced learning methods can maintain the correct identification of VHS while enhancing the identification of VLS and LS around landslides.

of RN samples can enhance the predictive ability of positive
classes. In the comparation of four imbalanced learning models
and the balanced benchmark models of RN-DNN and RN-RF,
the predictive ability for negative samples is enhanced while
maintaining the good level of predicting the positive samples by
imbalanced learning. This framework enhances both positive
and negative predictions, ultimately resulting in an improved
balance of the model (G-mean and BA). When comparing im-
balanced models and conducting saturation tests on imbalanced
ratios, it is observed that the balance of four models has increased
significantly comparing the benchmark models, with BRF being
the most stable. It is found that balance peaks exist in the vary-
ing imbalanced ratios, while the balance of ensemble learning
models BRF and EE maintain a stable state, the balance of the
oversampling methods SMOTE and DNN decreases after this
threshold. This phenomenon has been mentioned in some studies
that the oversampling method can generate a large number of
false landslide samples [39]. Once the false landslide samples
overwhelm the true landslide samples, it can lead to the model
deviating from predicting the positive class. This phenomenon
is closely related to the decrease in sensitivity in Fig. 11. Tak-
ing this into account, using imbalanced models advocates the
utilization of imbalanced ratios up to the balance peaks in LSM
work. This can provide the model with sufficient negative sample
information and have a positive impact on the prediction. For
ensemble imbalanced learning models, the ratio can exceed this
peak due to their stability. However, for oversampling models,
it may not be appropriate to increase the ratio after reaching its
balance peak. Nonetheless, employing BRF is both convenient
and stable.

In the field of LSM research, there is a lack of attention given
to model balance. Some LSM models that lose balance can also
show extremely high accuracy, but this may be due to blindly
overestimating the level of susceptibility [23]. Such predicted
results do not align with reality, while accurate assessment of

VLS and LS is neglected. The main reasons for this phenomenon
are the lack of imbalanced modeling ideas and unified imbal-
anced model evaluation criteria. On the one hand, only using
negative samples equivalent to the number of landslides makes
it difficult to reflect the true situation of negative class predictive
ability in both the training and testing process. In a specific study
area, there are a large number of unlabeled samples that are not
entirely without value. In fact, learning these unlabeled samples
helps the model comprehend the overall situation in the area
and enables it to make more reasonable assessments. On the
other hand, AUC is the most commonly used metric in LSM
evaluation, but this metric is quite insensitive to the balance of
models in this study and other imbalanced learning field [59].
Some studies have used imbalanced testing set and some useful
imbalanced evaluation metrics like G-mean, sensitivity, and
specificity for evaluating the LSM model’s performance [33],
[39]. The use of imbalanced testing set and suitable evaluation
metrics urgently requires to become a standard procedure in
LSM modeling. We simply used BA and G-mean to evaluate the
balance of the models and also monitored other indicators like
AUPRC. Innovative and convenient metrics are needed in future
LSM works.

There are still some limitations and points to be studied
in this study. We only use DNN due to the huge amount of
computation brought by oversampling. The performance of
oversampling combined with other algorithms in combination
with algorithm optimization and hardware improvement remains
to be tested. Besides, whether more advanced PU methods and
imbalanced learning models can improve the performance of this
framework remains to be compared and tested in the future. In
addition, in this study, framework of PU learning and imbalanced
learning are divided into two parts, a one-step efficient model
that combines the advantages of both is yet to be developed.
The selection of imbalanced ratios requires the adaptation of
intelligent methods. More importantly, convolutional networks
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are becoming more accurate and commonly used in LSM, and
the applicability of this framework to convolutional modeling
remains to be tested. This study demonstrates that the framework
has strong classification capabilities for binary classification
problems, making it suitable for addressing the complex patterns
of landslides induced by heavy rainfall. In theory, the framework
can be applicable to landslide datasets from different regions
with different causes. In the future, further testing on similar
landslide datasets or other types of landslide datasets (like
earthquake-induced landslides) will be necessary to validate
its effectiveness. Our next steps will focus on the generalized
application of this model across landslide datasets from different
regions and with various causes. Ultimately, we aim to develop
a transfer learning model based on this framework to predict
real-world landslides in advance. Similar PU and imbalanced
binary classification problems similar to regional landslides (not
limited to geological disasters) can also consider adopting a
TSA based on this LSM framework: 1) use PU methods to
construct a prior model to screen out RN samples from the
unlabeled sample set; 2) train imbalanced learning models to
obtain reliable predictors.

VI. CONCLUSION

In this article, we propose a novel framework combining PU
learning and imbalanced learning, aiming to solve the prob-
lems of uncertainty in negative samples and imbalance between
positive and negative classes in the LSM modeling process.
We used the spy algorithm to generate the prior model and
obtain RN samples. We then deployed four imbalanced learning
models from the oversampling method and ensemble learning
method including SMOTE-DNN, ADASYN-DNN, BRF, and
EE to process the imbalanced training and testing sets. This
framework significantly improves the predictive performance of
both positive and negative classes in LSM. We have tested our
LSM framework on a dataset of regional rainfall-induced land-
slides in Beijing, China, and conducted detailed comparisons
using benchmark models (DNN and RF) and saturation tests of
imbalanced ratios on the imbalanced training and testing sets.
The main findings of the study are as follows.

1) By using the RN samples generated by a prior model
based on the spy algorithm instead of randomly selecting
unlabeled samples, the overall predictive performance and
balance of RN-DNN and RN-RF have been enhanced,
especially the predictive ability of positive samples.

2) Based on the use of imbalanced learning methods, the
ability for predicting negative classes is significantly
enhanced. Moreover, the ability for predicting positive
classes can be maintained at a good level. As the im-
balance ratio increases, imbalanced models reach a point
of saturation on balance (balance peaks) after reaching
a certain threshold. Beyond these thresholds, the balance
and other metrics of ensemble imbalanced learning models
(BRF and EE) tend to be stable. However, the balance of
the oversampling models (SMOTE-DNN and ADASYN-
DNN) slightly decreases and the predictive ability of the

positive class also decreases after exceeding these thresh-
olds. Overall, BRF is the best performing and stable model
in this study.

3) By combining the above PU technique and imbalanced
learning, the predictive capabilities of both positive and
negative classes can be improved as well as the overall
balance of the models can be improved simultaneously.
This model helps to address the issue of overestimation or
misjudgment of susceptibility, resulting in a more accurate
and balanced susceptibility assessment.
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