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Dynamic Spectral Guided Spatial Sparse Transformer
for Hyperspectral Image Reconstruction

Junyang Wang, Xiang Yan
Shuowen Yang

Abstract—Hyperspectral image (HSI) reconstruction plays a
crucial role in compressive spectral imaging with coded aperture
snapshot spectrometry. Although HSI reconstruction has attracted
much attention in recent years, it remains a challenging problem.
Existing deep learning-based methods leverage all the spectral
information to reconstruct the HSI images without considering the
spectral redundancy of HSI images, leading to high computational
costs. In this article, we present an efficient method named dy-
namic spectral guided spatial sparse transformer (DGST). Specif-
ically, DGST consists of three core modules as follows. 1) spectral
sparse multihead self-attention hybrid spatial feature enhancement
(SSHE) module, which employs a top-k spectral sparsity method
to filter noise and redundant spectral information while extracting
spectral information from HSI. 2) Spatial information compensa-
tion module, which utilizes a multiscale approach to extract spatial
information and compensates for the spatial information neglected
by SSHE. 3) Mask-guided spatial sparse multihead self-attention
hybrid spectral enhancement module, which dynamically gener-
ates masks to guide the filtering of irrelevant regions, reducing
computational costs while focusing on spatial information recon-
struction. Our DGST improves the quality of HSI reconstruc-
tion by integrating spatial-spectral details and global information.
Extensive experiments on public HSI reconstruction benchmark
datasets demonstrate that our approach achieves state-of-the-art
performance in end-to-end hyperspectral reconstruction. The su-
perior performance of the proposed DGST is showcased on real
and simulated hyperspectral imaging datasets.

Index  Terms—Compressed imaging, dual attention,
hyperspectral image (HSI) reconstruction, sparse transformer.
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I. INTRODUCTION

YPERSPECTRAL imaging uses multichannel technol-
H ogy, where each channel can obtain the information at a
specific spectral wavelength for an actual scene. Compared to
regular RGB images, hyperspectral images (HSIs) contain richer
information and reveal more details of the scene. Given this
inherent superiority, HSIs are employed for many tasks, such as
image classification [1], [2], [3], [4], [5], target detection [6],
[71, [81, [9], target tracking [10], [11], remote sensing [12],
[13], [14], [15], and medical image understanding [16], [17],
[18]. However, capturing HSIs efficiently and effectively is a
challenging problem.

At the advent, the HSI systems leveraged a spectrometer to
scan along the spatial dimension and acquire the desired spectral
information in an extended time. Such methods are particularly
undesirable for dynamic scenes. As a remedy, researchers have
proposed snapshot compressive imaging (SCI) systems to obtain
the desired HSIs. It utilizes the principle of compressed sensing
to map 3-D HSI into a single 2-D measurement [19], [20] and
capture the HSI through snapshots in a single integration cycle.
Numerous recent SCI systems are built of this new imaging
paradigm [21], [22], [23], [24]. The coded aperture snapshot
spectral imaging (CASSI) system [25] is widely used for SCI.
CASSI generates a 2-D compressed measurement by modulat-
ing HSI signals at different wavelengths with coded aperture
and dispersive elements. The measurement is then leveraged to
recover its corresponding 3-D hyperspectral cube, i.e., the HSI.
Efficiently recovering the 3-D HSI cube from a 2-D measure-
mentis a key problem in this paradigm. Itis generally formulated
as an ill-posed inverse problem of image reconstruction.

To solve the above-mentioned problem, numerous 3-D HSI
reconstruction approaches have been proposed. Earlier methods
leverage handcrafted features and make assumptions, such as
sparsity [26], [27], total variation [28], low rank [29], [30], and
nonlocal similarity [31], [32]. However, these approaches rely
on manual tweaking of key hyperparameters in the underlying
models, leading to poor generalization. As with many other HSI
processing tasks, its reconstruction has witnessed a huge success
recently following deep learning approaches [33], [34], [35],
[36], [37], [38]. The deep convolutional neural network (CNN)
was first introduced to HSI reconstruction in Xiong et al.’s [39]
work. Subsequently, a series of CNN-based approaches sur-
faced [40], [41], [42], [43]. However, due to inductive bias,
CNN-based methods generally face limitations in modeling
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the interspectra similarities and lack in leveraging long-range
dependencies in the data. Moreover, CNN-based techniques
generally also suffer from an irreversible spectral information
loss in the feature extraction phase, which compromises the final
reconstruction quality.

More recently, transformer architectures [44], [45], [46],
[47] have become popular in computer vision. Due to their
ability to exploit global dependencies between image regions
and capture nonlocal similarities, transformers have achieved
excellent results for many tasks in computer vision, e.g., object
detection [48], semantic segmentation [49], and image restora-
tion [50]. Inspired by their success in vision tasks, transformer-
based methods have also been developed for HSI tasks, e.g., HSI
denoising [51], [52], superresolution [53], [54], [55], [56], and
classification [2], [57]. Transformers saw their early application
in HSI reconstruction in Cai et al.’s [58] work. Subsequently,
further efforts to tailor the technique for improved reconstruction
quality appeared in [59] and [60]. To obtain the long-range
interspectra similarity and dependencies, these methods design
spectralwise multihead self-attention (S-MSA) or spectra-aware
screening mechanism (SASM). The former regards each spectral
feature as a token and computes multihead self-attention (MSA)
along the spectral dimension. The latter divides the image into
nonoverlapping patches and selects the ones containing infor-
mation that can characterize HSI, to compute its corresponding
MSA efficiently. To reduce computational cost, these methods
apply spectral dimension self-attention or leverage spatial spar-
sity in the learning model.

Although the above-mentioned methods improve reconstruc-
tion to some extent, they are unable to fully leverage both
spatial and spectral information simultaneously. Addressing
that, S2-transformer-based HSI reconstruction is proposed in
Wang et al.’s [61] work, which performs spectral and spatial
attention modeling to disentangle the blended information in a
2-D measurement. A customized deep unfolding transformer
framework for HSI reconstruction is also proposed in [23],
[62], and [63]. This framework breaks HSI reconstruction into a
data subproblem and a prior subproblem. It converts traditional
iterative optimization algorithms into a sequence of deep neural
network blocks, addressing the two subproblems iteratively.

In the unfolding CASSI reconstruction [23], [62], [63], de-
noising networks are embedded in each stage of the unfolding
network to optimize the reconstruction model step by step. In
contrast, spectral and spatial collaborative attention transformer
reconstruction framework [61] needs only one optimization
step for the reconstruction. In this article, we also prefer this
approach, which makes S?-transformer-based reconstruction in
Wang et al.’s [61] work highly relevant to our work. However,
that approach faces two major challenges. 1) The use of raw
spectra for spectral attention leads to an enormous computational
load and lacks noise suppression. 2) S2-transformer’s utilization
of spatial-spectral self-attention does not leverage the spatial
sparsity of HSI data, which makes the model heavy in the number
of parameters and computational load.

We propose a dynamic spectral guided spatial sparse trans-
former (DGST) framework for HSI reconstruction that addresses
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the above-mentioned challenges. Our DGST employs the spec-
tral sparse multihead self-attention hybrid spatial feature en-
hancement (SSHE) module, which utilizes spectral sparse multi-
head self-attention (SS-MSA) to extract global spectral informa-
tion. Simultaneously, a spatial feature enhancement (SPA-FE)
module is integrated within SS-MSA to inject spatial informa-
tion. Moreover, we design a spatial information compensation
(SIC) module to compensate for the high-frequency spatial
features of HSI. The features obtained by SSHE and SIC are
fused to get coarse-grained features that generate dynamically
varying masks, which guide filtering of irrelevant regions to
reduce computational overhead. Eventually, the dynamic masks
and the deep features obtained by the fusion of SSHE and
SIC are input into a mask-guided spatially sparse multihead
self-attention hybrid spectral feature enhancement (MSSHE)
module that extracts high-level features from HSI that lead to
extensive comprehensive features for favorable reconstruction
performance. In the following, we summarize the specific con-
tributions of our work.

1) We propose DGST for HSI reconstruction, which takes
the advantage of the similarity and sparsity of HSI for
image reconstruction by employing SSHE and MSSHE,
enabling the reconstruction model to overcome noise and
redundant information interference while reducing the
computational and memory costs to facilitate spectral and
spatial reconstructed capabilities.

2) We introduce the notion of SSHE that reduces recon-
struction computations as well as suppresses noise. We
also combine SSHE with an SIC module to extract high-
frequency spatial information to reconstruct the spatial
texture details of HSI.

3) We propose MSSHE that utilizes masks to guide spatial
sparse MSA combined with spectral enhancement to im-
prove reconstruction quality with low computation.

II. RELATED WORK

Deep learning has profoundly accelerated the advancement
of HSI reconstruction methods. In this instance, we primarily
delineate the related deep HSI reconstruction models. Initially,
we provide a brief overview of traditional model-based meth-
ods, followed by a discussion on CNN-based methods and
transformer-based HSI reconstruction approaches.

A. CNN-Based HSI Reconstruction Methods

CNNs have been successfully applied to various low-level
hyperspectral visual tasks, such as HSI denoising [64], [65],
HSI resotoration [36], and HSI superresolution [54], [66]. Their
success in these tasks also encouraged researchers to apply
CNN architectures to HSI reconstruction. A large number of
CNN-based techniques have been developed to learn mapping
functions of hyperpectral image reconstruction [23], [41], [67],
[68], [69], [70]. In these methods, A-Net [67] developed a
dual-stage model to reconstruct the desired HSI image using a
hierarchical channel reconstruction to progressively reconstruct
spectral channels leveraging the features extracted by the neural
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Fig. 1.

Overview of DGST framework containing a three-level U-Net structure. The DGSB module consists of the SSHE module, SIC module, and MSSHE

modules, along with an FEN. The DGSB dynamically generates an adaptive mask-guided MSSHE that utilizes MSS-MSA for spatial domain modeling. Subsequently,
the spatial domain information extracted by MSSHE is fused with the spectral information and spatial context information extracted by SSHE and SIC, respectively.
Subsequently, the fused features of MSSHE, SSHE, and SIC are fed into an FEN for further processing. Finally, the output of the last DGSB is processed through
a mapping function and fused with the initial features to generate the reconstructed HSI.

network and previously reconstructed channels. Wang et al. [71]
introduced a deep nonlocal unrolling HSI reconstruction ap-
proach that utilizes data-driven prior to adaptively exploit the
local and nonlocal correlations in the spectral image. Similarly,
Wang et al. [41] proposed a deep spatial-spectral prior-based
HSTI reconstruction method that replaces the conventional hand-
crafted prior with a data-driven alternative. TSA-Net [68] intro-
duces spatial-spectral self-attention to sequentially reconstruct
HSI. DGSMP [72] is a deep Gaussian scale mixture (GSM) prior
for HSI reconstruction that learns the scale prior and estimates
the local means of the GSM models by deep CNNs. HDNet [69]
proposes a high-resolution dual-domain learning deep network
for HSI reconstruction, which uses a high-resolution spatial—
spectral attention module with feature fusion that provides fine
continuous features. Meng et al. [73] presented a self-supervised
CNN for spectral compressive imaging. They developed a new
framework by integrating deep image priors into a plug-and-
play regime to get the HSI reconstruction images. CNN-based
methods demonstrate impressive performance, yet they exhibit
limitations in capturing nonlocal similarities and correlations
between spectra.

B. Visual Transformer-Based HSI Reconstruction Methods

MST [58] and CST [60] were the first methods to employ
transformers for HSI reconstruction while capturing the inter-
spectra similarity and dependencies. CST [60] embeds spatial
sparsity into the transformer structure to reduce reconstruction
model parameters and computational complexity while improv-
ing reconstruction performance. Subsequently, the degradation-
aware unfolding half-shuffle transformer (HST) [62] was

designed for HSI reconstruction that simultaneously gets lo-
cal contents and nonlocal dependencies. The HST was then
plugged into a degradation-aware unfolding HSI reconstruc-
tion framework to improve the reconstruction performance.
Wang et al. [61] proposed a spatial-spectral transformer with
a masking-aware learning strategy for HSI reconstruction. In
this method, the authors simultaneously leveraged spatial and
spectral attention modeling to disentangle the blended informa-
tion in a 2-D measurement along spectral and spatial dimen-
sions. Liu et al. [63] proposed a pixel adaptive deep unfolding
transformer of HSI reconstruction that leveraged pixel-level
adaptive and nonlocal spectral transformer to recover the pixel
and spectra for HSI. More recently, with the remarkable success
of the diffusion model in high-fidelity image synthesis, the
diffusion model was also introduced in spectral compressive
imaging in Wuetal.’s [74] work. It applies a latent diffusion prior
to generating degradation-free prior to improve the regression
ability of the deep unfolding HSI reconstruction framework.

C. Sparse Representation

The computational complexity of transformers scales
quadratically with the spatial dimensions that increase the com-
putational complexity. To do this, various sparse transform-
ers were proposed for image classification, image restoration,
image superresolution, and image retraining [75], [76], [77],
[78]. For example, BiFormer [75] introduces dynamic sparse
attention to obtain flexible content-aware computation allocation
by dual-layer routing. In [76] and [78], they design a sparse
attention module that can make the sparse regions interact with
each other. It will greatly enhance the representation ability
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of transformers. SGSFormer [77] utilizes sparse self-attention
to filter out redundant information and noise, enabling the
model to focus on the features more relevant to the degraded
regions. DynaST [79] leverages dynamic attention units to cover
changes in the optimal token count. DRSformer [78] proposes
an adaptable top-k selection operator to selectively retain the
most important attention scores from each query key for better
feature aggregation.

In the field of HSI reconstruction, CST [60] embedded HSI
sparsity into deep learning for HSI reconstruction, where is the
first study to apply the spare transformer to HSI reconstruction.
They proposed an SASM for coarse-grained selection. The en-
coding mask used in CST [60] is generated by SASM that is fixed
and lacks adaptability. By contrast, we employ a dynamic mask
generation strategy that allows the encoding mask to evolve
with the increasing depth of the model. Moreover, inspired by
DRSformer [78], we introduce for the first time the incorporation
of spectral sparsity into deep learning for HSI reconstruction.

III. METHOD

Our objective is to design an efficient transformer model for
HSI reconstruction from 2-D compressed measurements. Con-
sidering a spectral image X, € RT*W>*N. where N, represents
the total number of channels, the captured HSI from real scenes
is first modulated by a coded aperture C; € R*W>*N: Here, H
and W represent the height and width of the HSI, respectively.
The 2-D temporary measurement Y, can be represented as
Y, = ZnN-::l shear(C; ® X, ) + G. Here, ® denotes elemen-
twise multiplication, shear(-) is a shearing operation along the
y-axis, and G € REX(WHd(N,—1)) signifies the measurement
noise arising from the process.

The aim of HSI reconstruction is to utilize the Y, to recon-
struct the desired high fidelity HSI image X, that makes it as
close to the real HSI image as possible. In general, this objective
is translated into an ill-posed inverse problem. As a solution, we
design a DGST. This structure does not rely on physical degrada-
tion mechanisms but requires sufficient sample data for learning
an end-to-end reconstruction model. The overall framework of
the proposed DGST is shown in Fig. 1. The DGST framework
is an end-to-end reconstruction paradigm that consists of three
core modules as follows.

1) SSHE for extracting global spectral information from

HSIs.

2) SIC module for compensating high-frequency spatial in-

formation during the reconstruction process.

3) MSSHE module for capturing spatial details of HSIs.

We leverage these three modules to enhance the performance
of HSI reconstruction and reduce the computational complexity.

A. Overall Pipeline

Given the initial 2-D measurements Y, , we first shift it along
the horizontal direction according to the dispersive function with
a stride k to obtain a 3-D tensor H € R7*W >N Subsequently,
*H is concatenated with a 3-D mask M € RT*W>*N: (g generate
anew 3-D tensor X € RF*Wx2Ni which serves as the input of
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the DGST network. Then, the spectral dimension of X is halved
by pointwise convolutions to generate the low-level shallow
feature embedding Xini; € RT*W >N To improve the training
speed and accuracy of our proposed HSI reconstruction model,
we make the X5+ pass through layer normalization to obtain
new feature Xp,N.

In this study, we adopted a three-layer U-Net as the primary
framework for our DGST to enhance reconstruction perfor-
mance since it can well capture detailed information in HSIs.
As shown in Fig. 1, our proposed HSI reconstruction framework
consisted of several dynamic spectral guided spatial sparse
blocks (DGSBs). The U-Net encoder and decoder at each level
contain multiple DGSB blocks. With the layers of the U-Net
framework increasing from top to bottom, the number of DGSB
blocks gradually increases to boost the capability of feature
extraction, which will help extract abundant deep features of
the HSI. Especially, the obtained shallow features Xj,;; are
sent to the encoder layers of the U-Net structure to encode the
shallow information of the HSI. The spatial resolution decreases
while the spectral channel dimension doubles with the network
layers increasing. The decoder of this U-Net structure takes the

. W40 .
low-resolution deep feature X ;' * as input and gradually
restores the HSI with increasing of its network layers.

In this symmetric structure, we use pixel shuffle and convo-
lution to achieve upsampling and downsampling, respectively.
In this case, the spatial details of the HSI could be lost during
the encoding and decoding processes once the classical U-Net
structure is adopted. Therefore, we introduce a cross-scale fea-
ture aggregation block (CSAB) to aggregate information from
multiple scales to reduce semantic information loss and preserve
structure and texture details in the reconstructed image. Using
our proposed structure, we obtain the decoded feature Xy. The
decoder features X, are a series of feature maps containing var-
ious image feature information, which cannot directly generate
the final reconstructed HSI image. This is because the encoder
encoded the shallow features and the corresponding decoder gets
new high-level features that must be mapped into an HSI image.

To obtain the reconstructed HSI, we need to transform these
feature maps through a mapping layer to obtain the reconstructed
result X/, .. Finally, we fuse the low-level feature Xj,;; with
X! .+ with skip connections to obtain the final reconstructed
HSI 7 that can further alleviate the loss of certain fine-grained
details during the encoding and decoding process. Based on
this method, we compute the HSI image H with heightened
fidelity and superior visual quality. In the following, we provide
a detailed description of our SSHE, SIC, and MSSHE modules.

1) SSHE Module: The S-MSA [58], [59] has shown promis-
ing results for HSIreconstruction. However, it does not fully con-
sider the inherent redundancy of spectral information in HSIs.
Thus, ithas large computational complexity, which inadvertently
also compromises spectral domain reconstruction performance.
In the imaging process of the CASSI system, sensors may
introduce a certain level of electronic noise and thermal noise,
while compression algorithms may lead to information loss. In
addition, inaccuracies are possible during the mask generation
process, which can result in additional noise when generating a
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Fig. 2. (a) SSHE module consists of an SS-MSA module and an spatial feature enhancement (SPA-FE) module. (b) Illustration of the SIC module. (c¢) MSSHE

module utilizes the dynamically generated mask from the coarse-grained feature extraction stage to guide the MSS-MSA to spatial sparsity representation. It also

leverages the spectral feature enhancement (SPE-FE) to enhance spectral features.

3-D HSI cube from 2-D measurements. Ultimately, these noises
will impact the reconstruction results of the HSI.

In recent years, the sparse transformers have achieved great
success in image restoration task [18], [76], [78]. Inspired by
this, we try to introduce it into HSI reconstruction. Specifically,
we customize an SS-MSA architecture to solve noise signals
and spectral information redundancy in HSI reconstruction.
As shown in Fig. 2(a), we propose the SSHE module, which
consists of an SS-MSA module, a spectral feature enhancement
(SPE-FE) module, and a spatial feature enhancement (SPA-FE)
module. Traditional S-MSA calculates the similarity matrix by
performing a dot product between the query vector and key vec-
tors, followed by a softmax operation. However, our proposed
SS-MSA adopts a top-k calculation strategy, where the top-k
values are first computed before applying the softmax operation
to generate the similarity matrix. In our proposed framework,
we adapt the multiple distinct top-k selections followed by
summation that facilitates the capture of a broader spectrum of
hierarchical information. It will provide a more comprehensive
representation of interdata relationships. Based on this strategy,
it can effectively capture spectral characteristics and enhance the
ability of the model to characterize complex data structures. In
this article, we optimize the calculation process of the similarity
matrix with the aid of SS-MSA sparsity. The process only retains
the relevant information related to the target, which reduces the
model’s computational cost while ensuring its performance. In

addition, SS-MSA also helps mitigate the noise, further improv-
ing the reconstruction results’ accuracy and reliability.

Specifically, we use the feature X[y to encode the contextual
information in the spectral domain with a combination of 1 x 1
convolution and 3 x 3 depthwise separable convolution (DW-
Conv) to generate projections of queries Qspe, keys Kgpe, and
values V. to enrich local contextual information. They are
described as follows:

Qupe = XLnWIW (1)
Kope = XpnWEWE 2
Vipe = Xpn W) W 3)

where WEE;) denotes 1x1 pointwise convolution, and Wg
represents 3x3 depthwise convolution. Next, we respec-
tively divided Qgpe, Kgspe, and Vg, into N attention

heads along the channel dimension: Qgspe = [Qlye, - - -, QL.
Kope = Kl - KN, Vipe = [Vier -, Vo], where

each head has a dimension of dimgp. = %, with C representing
the number of channels and N representing the number of heads.
oo A cyC

Subsequently, we calculate the similarity matrix AJ , € R¥ "%
between Qgpc and Kgpc via dot product operation in each head,
represents the current band

where j denotes the jth head, Q.
of interest from which we aim to gather information, and Kgpe
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represents all other bands in the sequence, serving as reference
points for comparison with Qgpe. This aids in determining the
correlation and significance of each band relative to Qgpe. Then,
top-k screening is conducted for the spectral information in
the attention matrix. To fully exploit the spectral information,
SS-MSA performs multiple calculations of spectral attention
maps with different sparsity levels and fills the nontop-k regions
with zero to obtain multiple spectral attention maps with differ-
ent sparsity levels. The similarity computation is expressed as
follows:

tOp-k ( épe (Kgpe)T>

Al = softmax +B| @
(81
nge = Z Aépe : Vgpe )
t=1

where B represents the relative positional encoding, the scaling
factor « is a learnable parameter that is used to alleviate the
saturation problem that may occur during softmax function
computation, which can lead to gradient vanishing, j denotes the
index of the current attention head, k represents sparsity level,
A;pe represents the ith similarity matrix with top-k extracted
regions, and V. represents the information related to each
band in the jth head, carrying the actual features of the input, n
represents the number of different top-k values. nge represents
the attention weighted values of the jth head.

Based on the obtained multiple similarity matrices with dif-
ferent sparsity levels, we perform softmax computation to focus
SS-MSA on the spectral-related information in HSI, rather than
irrelevant content. We get a series of similarity matrices with
different sparsity levels, which are then computed with Ve
to generate spectral attention maps. Finally, we can obtain the

spectral feature Y, by concatenating all nge. They can be
denoted as follows:
Ype = concat (Y., Y2, ....YX.). (6)

Once the spectral feature Y, is obtained, the output of SS-
MSA, Xss-msa can be described as follows:

XSS-MSA = Yspewspe (7)

where W, € RE*C denotes the learnable weight matrix that
is used for linear transformation in the attention mechanism.
Next, we incorporate SPA-FE and spectral feature enhance-
ment (SPE-FE) modules into the SSHE to improve the spatial—
spectral information interaction within the SSHE, thereby en-
hancing the quality of HSI reconstruction. The SPA-FE module
uses global pooling to extract global information from the input
feature map, which will facilitate the learning of abstract and
generalized features to enhance the model’s generalization capa-
bility. Subsequently, the module applies pointwise convolution
(1 x 1 convolution), GELU activation function, and DW-Conv
to the output of the global pooling layer. These operations aim
to optimize feature representation while preserving the spatial
structure of the input feature space. Finally, a sigmoid function
is applied to enhance the capability of the network’s feature
representation. The SPE-FE module and SPA-FE module share
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similarities, yet SPE-FE diverge in their approach by omitting
the global pooling layer to focus on extracting information in
the spectral domain. In the SPA-FE module, feature information
processed through DW convolution is injected into SS-MSA,
while in the SPE-FE module, spectral information derived from
SS-MSA is integrated into feature information processed after
DW convolution. This interplay between the two modules fosters
interaction between spatial and spectral information, enhancing
the overall feature extraction capability of SSHE and thereby
strengthening the model’s perception and understanding of the
data. Ultimately, we obtained the X'ssyg feature that contains
rich spectral feature information extracted by the SSHE

X.oup = Xssmsa © SPA-FE (DW (Xyx)) ®)

SSHE

)(2

SSHE

= DW (Xn) © SPE-FE (Xgs.Mms4) )

Xgsnr = XL+ X2 (10)

SSHE SSHE

+ Xinit

where SPA-FE(-) and SPE-FE(-) represents the spatial fea-
ture enhancement and spectral feature enhancement module,
respectively. DW(-) denotes the DW-Conv and ® represents
elementwise multiplication.

2) SIC Module: The proposed SSHE utilizes spectral atten-
tion to model the spectral domain and extract spectral informa-
tion from the HSI images. However, the spectral information ex-
tracted by SSHE mainly contains global low-frequency spectral
information, lacking high-frequency local spatial information.
This makes the dynamically generated masks fail to effectively
represent the relationships between different regions, leading to
poor spatial attention sparsity that can increase computational
complexity or degrade the reconstruction quality. To address
this, we design an SIC module that compensates for the spatial
details ignored by the SSHE, enabling the fusion of spatial and
spectral information. This improves the high-fidelity reconstruc-
tion of HSIs while preserving more detailed features and texture
characteristics. The specific design of SIC module is illustrated
in Fig. 2(b).

Specifically, we first input the Xy into a pointwise convo-
lutional operation for preliminary feature extraction, obtaining
an initialized spatial feature Xiyi¢ spa. Then, Xini_spa is fed into
a high-frequency spatial feature extractor (HSE). The HSE is
an inception structure, extracting multiscale spatial information
from the initialized feature by four different branches that will
compensate for the missing high-frequency spatial information
after spectral attention. To reduce the parameter and computa-
tional complexity of the SIC module, each branch is equipped
with a pointwise convolutional operation at its corresponding
head, compressing the spectral dimension to dimgjc = %

The four branches of HSE are composed of pointwise convo-
lution, lightweight feature extraction module (LFE), and global
average pooling (GAP) operations. LFE consists of DW-Convs,
GELU activation function, and pointwise convolution, which
is stacked to achieve feature information extraction at different
scales. The deep features obtained from the four different scales
are concatenated along the spectral dimension, and processed
with two DW-Convs and an activation function to generate deep
features Xgjc containing multiple scale information. Finally, to
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reduce the loss of spatial detail information during processing,
we apply skip connections to fuse the initial features Xy
extracted by layer normalization with the Xgjc to generate new
feature X, that containing more spatial textures and details.
Then, we can fuse the spectral feature Xgsyg obtained by the
SSHE module with this spatial feature X§;. to get the spatial—
spectral fusion feature Xy. It is denoted as follows:

X'sic = Xsic + Xin (11)

Xuse = concat (Xssug, X'sic) (12)

where concat(-) denotes the operation of concatenating these
feature maps together.

3) MSSHE Module: In Cai et al.’s [60] work, a spatial
sparse multihead attention mechanism is proposed that typically
involves designing a small mask generator to create a fixed
mask for extracting the top-k relevant spatial elements. For that
method, the feature maps of the HSI undergo changes with
the features encoding and decoding of the three-level U-Net
structure. However, the masks generated by this strategy do not
change, and cannot adaptively filter out irrelevant regions at
different scales in each layer, leading to excessive sparsity or
poor sparsity effects in the spatial sparse multihead attention.
In contrast, our MSSHE module applies dynamically changing
masks to extract the top-k relevant spatial elements. This allows
the model to learn the relevance of the spatial elements at each
stage, efficiently extract the top-k relevant spatial elements,
and reduce the number of parameters. It enhances the model’s
ability to utilize spatial domain fine-grained features and global
features. Furthermore, we employ a local attention mechanism
and a sliding window strategy to facilitate information interac-
tion between the windows. By doing so, we can significantly
enhance the modeling capability for the spatial domain and
improve the reconstruction performance of the proposed model.
As illustrated in Fig. 2(c), our MSSHE module is composed
of three major components, namely mask-guided spatial sparse
multihead self-attention (MSS-MSA), SPE-FE, and SPA-FE.

We apply a projection mapping function to the fusion feature
Xiuse With a Convs, 3 to get a new feature F € RHXWx(Ni+1)
Then, we partition the feature F' along the channel dimension
into two parts: Ximax € R 1 and Xpey € REFW>*N: Next,
we apply GAP and subsequent binarization to the X,,,sx to
get the new mask feature X! . Afterward, we also utilize
it to guide the spatial feature Xy, to obtain sparse features.
Subsequently, the top-k algorithm is performed on this sparse
feature to select the relevant tokens as new spatial-spectral
sparse feature X} .. Subsequently, X . passed through layer
normalization to obtain X| N fes. Finally, the X N_feq 1S divided
into nonoverlapping local windows X, € R#7 %3 Mo and spa-
tial attention is calculated for each window in the spatial domain.
In the spatial attention branch, X,, is linearly transformed into

Qspa, Kspa, Vspa
Qspa = XwWQ> Kspa = XwWK7 Vspa = wav (13)

where WY, WX, and WV are learnable projection matrices.
Following the strategy of SSHE with multihead attention, we
divide the Qqpa, Kgpa, and Vi, along the spectral dimension
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into multiple heads. In this section, we set the number of heads to
1 for simplification purposes. Subsequently, we use dot product
interaction for Qgp, and Ky, to generate a similarity matrix

A 6 R]WZXJWZ
spa
S aKg a
Agpa = soft max (Qpﬁp + B) (14)
Yspa = Aspa ' Vspa (15)

where [ is a learnable parameter that adjusts the inner product
before the softmax function, while Y, represents the atten-
tion weighted values and Wy, € RE*C denotes the learnable
weight matrix that is used for linear transformation in the at-
tention mechanism. Once the spatial feature Y, is obtained,
the output of MSS-MSA, i.e., Xjyss-msa can be described as
follows:

XMSs-MSA = YspaWspa~ (16)

Next, we integrate spatial feature and spectral feature enhance-
ment modules within the MSSHE to improve the spatial-spectral
information interaction within the MSSHE, thereby enhancing
the quality of HSI reconstruction. In the case of the SPA-FE
and SPE-FE modules within MSSHE, their inputs are different.
Specifically, SPA-FE injects deep spatial information computed
by MSS-MSA into shallow feature information obtained from
DW convolution. In contrast, SPE-FE focuses on extracting
spectral information from the shallow feature information pro-
cessed by DW convolution, and then integrates the extracted
spectral information into MSS-MSA. This strategic interaction
between spatial and spectral information enhances MSSHE’s
capability in extracting spatial and spectral features. As a result,
we obtained a feature X'yssyp extracted by the MSSHE to
enrich spatial characteristic information

X! o = Xussvsa © SPE-FE (DW (Xingear))  (17)
X2 o = DW (Xinfear) © SPA-FE (Xnss-msa)  (18)
XMSSHE = Xllv[ss,HE + deSSHE + X,feat (19)

where SPA-FE(-) and SPE-FE(-) denote the spatial and spectral
feature enhancement modules, respectively.

The MSSHE module focuses on capturing spatial details when
reconstructing HSIs. However, the use of a sliding window
approach may disrupt the global dependence of HSIs. Hence, we
integrate the spectral interdomain feature information extracted
by the SSHE module with the high-frequency local spatial
information extracted by SIC. The fused feature information
is then connected with the spatial details and texture features
extracted by the MSSHE module and collectively input into a
feedforward neural network (FFN) to provide global information
to the spectral domain to alleviate the potentially disruptive
effects. In this case, we separately learn the spatial and spectral
information of HSIs by their corresponding spatial attention and
spectral attention and fuse spatial and spectral attention features
to gain the fused feature Y, which helps improve reconstruction

Y = F (Project (concat (Xfeat, Xnmssur) + Xinie)) - (20)
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In the above-mentioned equation, concat(-) denotes the opera-
tion of concatenating the feature maps, F(-) refers to a FFN,
and the Project(+) is a mapping function composed of Convs 3
that reduces the number of channels from 2N, to N, .

In our model, we adopted an FFN structure similar to
Restormer [50]. Our FFN can control the flow of information
at each hierarchical level, allowing each level to focus on fine
details that complement those at other levels, and to better utilize
contextual information to enrich features.

IV. EXPERIMENTS

We conduct our experiments on both real HSI and simulation
datasets. Following the existing literature [23], [58], [63], we
also select a set of 28 wavelengths ranging from 450 to 650 nm
by employing spectral interpolation techniques applied to the
HSI data.

A. Experimental Settings

1) Simulated HSI Data: To ensure the fairness of the ex-
periments, we adopt a similar experimental strategy to that of
[23], [58], and [63], we also use CAVE [80] as the training
dataset and KAIST [81] as the testing dataset. We selected ten
scenarios from the KAIST dataset to assess the efficacy of our
method and contrast it with alternative approaches. In addition,
to validate the effectiveness of the proposed algorithm in the
remote sensing domain and assess its generalization capability,
we conducted tests on existing remote sensing datasets, such as
Pavia Centre, Pavia University [82], and Urban. These datasets
are cropped and resized to 256 x 256 pixels, with spectral
dimensions uniformly selected from bands 11 to 38, resulting
in a test set of size 256 x 256 x 28 . For the CAVE dataset, we
selected 28 wavelengths from 450 to 650 nm and configured
the fundamental channel with C =N, = 28 to retain the HSI
information and obtained the HSI data by spectral interpolation.
Then, we randomly cropped patches of size 256 x 256 x 28
from the dataset for training.

2) Real HSI Data: For the real-world experiment, we utilized
the real HSI data provided by TSA-Net [68] to verify the
superiority of our method in real scenes. However, since the
widely used datasets captured by the CASSI system consist
mainly of indoor and outdoor close-range data and lack remote
sensing datasets, we only conducted real experiments on the
dataset provided by TSA-Net [68]. To this end, we randomly
cropped the 3-D real HSI dataset to generate patches of size
660 x 660 x 28, which matches the physical mask size, and set
the displacement & in dispersion to 2.

3) Evaluation Metrics: For the simulation experiment, we
conducted the quantitative comparison with the full-reference
image quality assessment metrics, peak signal-to-noise ratio
(PSNR), structure similarity index measure (SSIM), and spectral
angle mapping (SAM), which are commonly employed for
assessing the performance of HSI reconstruction in previous
works [23], [58], [63]. Specifically, PSNR is used to assess
the quality of reconstructed images by comparing differences
between the reconstructed results and original images. A higher
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PSNR value indicates greater similarity between the recon-
structed and original images. SSIM is based on similarities of
local luminance, contrast, and structure between a reference
image and a distorted image. It is applied to measure the
similarity between restored images and references. The SSIM
value ranges between [0, 1], where values closer to 1 indicate
higher similarity. On the contrary, it reveals that there are larger
differences between the reconstructed results and references.
SAM is used to measure the similarity between two spectral
vectors. It evaluates spectral similarity by comparing the angle
between two vectors; a smaller angle indicates higher similarity,
while a larger angle indicates lower similarity.

4) Implementation Details: Our DGST framework is imple-
mented with PyTorch. We construct two variants of DGST with
different complexities according to the difference in the number
of DGSBs in the three-level U-net structure, called DGST-S
and DGST-L, with the composition of the DGSB module block
numbers DGST-S (112), and DGST-L (246), respectively. The
DGSB is mainly composed of SSHE, SIC, and MSSHE. All
DGST model variants are trained with Adam [83] optimizer
($1 = 0.9 and By = 0.999) on a single RTX 3090 GPU for 300
epochs using a cosine annealing [84] scheme. The learning rate
is set to 4 x 1074, and the model is optimized by minimizing
the Charbonnier loss. The batch size is set to 4. In the shallow
feature embedding module, the embedding dimension is set to
28, aiming to restore the spectral dimension of the concatenated
HSI cube obtained during network input, and back it to its
original size. In addition, the quantity of distinct top-k value for
SS-MSA is set to 4, while the sparsity levels are set to 2C, 2C,
%C, and %C’, respectively. MSS-MSA utilizes a window size
of 8, with a spatial sparsity rate set at 0.5. During the training
phase, we use random horizontal flips and rotations to augment
the training data, which makes the proposed model training more
effective.

B. Comparison Results

1) Qualitative Results: We benchmark our proposed DGST
method against 17 SOTA HSI reconstruction techniques,
which encompass one model-based approaches (DeSCI [31]),
five CNN-based approaches (A-net [67], TSA-Net [68],
DGSMP [72], GAP-Net [85], HDNet [69]), five transformer-
based approaches (MST [58], MST++ [59], CST [60], S?-
transformer [61], D2PL-Net [86]), five deep unfolding-based
approaches (ADMM-Net [87], DAUHST [62], EDUNet [88],
LRSDN [89], and PADUT [63]) and one diffusion-based
method (DiffSCI [90]). The main comparison metrics include
params, floating point operations per second (FLOPS), PSNR,
SSIM, and SAM, which are widely used in previous works, such
as [58], [60], and [91]. In addition, to ensure fair experiments, we
adopt the same settings as [58], [60], and [63], where all methods
are trained on the same dataset and tested on ten simulated
scene data. To validate the generalization performance of our
method, we also compare it with nine SOTA HSI reconstruction
methods on the popular remote sensing datasets of Pavia Centre,
Pavia University, and Urban. The methods include four CNN-
based techniques (X -net [67], GAP-Net [85], ADMM-Net [87],



15502

HDNet [69]) and five transformer-based methods (MST [58],
MST++ [59], CST [60], DAUHST [62], and PADUT [63]). To
ensure fairness, we trained all methods using the same settings.
For the D2PL-Net, EDUNet, LRSDN, and DiffSCI, we used
the values of PSNR and SSIM from the original papers as
compared parameters since the codes of these three methods are
not released. It should be noted that their dataset selection and
processing approaches align with ours. However, SAM metrics
were not disclosed in their papers, thus we cannot get them. Next,
we will conduct detailed quantitative analyses on the KAIST,
Pavia Centre, Pavia University, and Urban datasets as follows.
1) KAIST Dataset: Table I displays the objective assessment
outcomes of various methods on the ten simulated scene
datasets. In Table I, it can be seen that our smallest
model DGST-S has fewer parameters than the compared
methods, except MST-S. However, our DGST-S has higher
SSIM, PSNR, and SAM compared to MST-S. Compared
with all other methods, our DGST-S model has the lowest
computational complexity. Our larger model DGST-L*,
outperforms CST-L* for all the evaluation metrics. Specif-
ically, compared to CST-L*, our approach is more efficient
in terms of parameter count and computational complex-
ity, yetit achieves a significant performance improvement.
Our method shows an increase of 0.61 in PSNR, 0.08
in SSIM, and a decrease of 0.425 in SAM compared
with CST-L*. This achievement is mainly attributed to the
SS-MSA strategy. In comparison to CST-L*, our DGST
with SS-MSA can more effectively extract spectral infor-
mation and focus more precisely on the reconstruction
of spectral dimension details. Moreover, compared to the
most relevant methods D2PL-Net and S2-transformer, our
DGST-L* achieves better performance on all evaluation
metrics. In particular, our DGST demonstrates a PSNR
improvement of 0.64 dB and an SSIM improvement of
0.053 when compared to D2PL-Net. Compared to the S2-
transformer method, our method shows a PSNR improve-
ment of 0.25 dB, an SSIM improvement of 0.007, and a
reduction in SAM by 1.494. Compared with the recently
introduced deep unfolding-based approaches DAUHST-
2stg, EDUNet, LRSDN, and PADUT-3stg, our larger
model DGST-L* is superior to the DAUHST-2stg and
EDUNet in terms of SSIM, PSNR, and SAM. Our DGST-
L* is only 0.22 lower in PSNR but with higher SSIM
compared to the PADUT-3stg. Notably, in comparison to
the recently proposed diffusion-based method DiffSCI,
our method exhibits lower PSNR values only in scenarios
3 and 5. However, across all scenarios, our SSIM values
consistently outperform those of DiffSCI. Moreover, from
Table I, we can also find that our larger model DGST-L*
has the highest SSIM value compared with all the other
methods. Compared with all other SOTA methods, our
DGST approach exhibits the second best performance in
terms of spectral angle mapper (SAM) in the field of HSI
reconstruction, apart from PADUT-3stg. This underscores
the advantage of deep unfolding-based models in this
domain.
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2) Pavia Centre, Pavia University, and Urban Dataset: Ac-
cording to the results in Table II, the proposed DGST
demonstrates significant advantages in terms of PSNR
and SSIM compared to the four CNN-based methods.
Furthermore, when compared to MST-L, MST++, and
DAUHST-2stg; our DGST also leads in terms of PSNR
and SSIM. In comparison to CST-L, although DGST has
a slightly lower PSNR on the Urban dataset, it exhibits
superior performance in terms of SSIM. On the Pavia
Centre and Pavia University datasets, our DGST shows
improvements over CST-L. Compared to PADUT-3stg,
DGST stands out more on the Pavia Centre and Urban
datasets; while on the Pavia Centre dataset, although
the PSNR and SSIM are 0.04 and 0.001 dB lower than
PADUT-3stg, it still achieves strong results. To validate
the real-time performance of our method, we conducted
inference time calculations across the Pavia Centre, Pavia
University, and Urban datasets. As indicated in the table,
our approach exhibits commendable performance in terms
of real-time image reconstruction, with only slight delays
compared to HDNet and MST++. Notably, our method
achieves superior reconstruction quality compared to HD-
Net and MST++ while sacrificing real-time constraints,
evidenced by higher PSNR, SSIM, and SAM metrics.
In comparison to DAUHST-2stg and PADUT-3stg, our
method outperforms DAUHST-2stg notably. However, it
does not exhibit significant advantages over PADUT-3stg
in terms of the Pavia University dataset. This underscores
the advantages of deep unfolding-based models in the re-
construction domain. However, for a comprehensive eval-
uation of various methods’ generalization capability and
effectiveness on remote sensing datasets, we conducted a
overall assessment across the entire dataset. From Table II,
it can be clear seen that our DGST method achieves the
best performance in terms of PSNR and SSIM metrics,
highlighting its superior effectiveness in spatial and pixel-
level reconstruction. This underscores DGST’s significant
advantage in the field of remote sensing image recon-
struction, demonstrating excellent generalization perfor-
mance. Overall, CST-L demonstrates good generalization
but lacks specialization, whereas PADUT-3stg excels in
specialization but lacks generalization. Our method also
obtained acceptable performance for SAM that ranked
second among above-mentioned methods. In comparison,
our DGST method not only demonstrates strong special-
ization capabilities but also exhibits excellent generaliza-
tion, along with good real-time performance.

As shown in Tables I and I1, the results validate the superiority
of our proposed DGST method in HSI reconstruction. This
is mainly attributed to the spatial high-frequency information
compensation provided by our designed SIC module and the
low-frequency information extraction enabled by the spectral
attention module. Furthermore, the dynamic generation of masks
through the spectral attention module serves as sparse guidance
for spatial attention that effectively extracts sparse spatial infor-
mation from the high-dimensional HSI. This strategy not only
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(BOTTOM) FOR DIFFERENT APPROACHES

TABLE I
COMPARISON OF DGST’s RESULTS FOR 10 SIMULATED SCENARIOS ON THE KAIST DATASET WITH PARAMS, FLOPS, PSNR (TOP), SSIM (MIDDLE), AND SAM

Methods Params ~ GFLOPs  Metrics S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg
PSNR 27.13 23.04 26.62 34.95 23.94 22.38 24.45 22.03 24.56 23.59 25.27

DeSCI [31] _ _ SSIM 0.748 0.62 0.818 0.897 0.706 0.683 0.743 0.673 0.732 0.587 0.721

SAM 11263 16.049  8.366 6.439 11.605  16.693 11297 21.620  9.668  17.381  13.038

PSNR 30.1 28.49 27.73 37.01 26.19 28.64 2647 26.09 275 27.13 28.53

A-Net [67] 62.64M 117.98 SSIM 0.849 0.805 0.87 0.934 0.817 0.853 0.806 0.831 0.826 0.816 0.841

SAM 14.127 17409 15.605 24.039 16351 26.036 14.078 27.574 15862 26.020 19.710

PSNR 32.03 31 32.25 39.19 29.39 31.44 30.32 29.35 30.01 29.59 31.46

TSA-Net [68] 44.25M 110.06 SSIM 0.892 0.858 0.915 0.953 0.884 0.908 0.878 0.888 0.89 0.874 0.894
SAM 8.736  10.350  7.391 8.369 6.721 9.700 7.659  11.377  7.668 9.558 8.753

PSNR 33.26 32.09 33.06 40.54 28.86 33.08 30.74 31.55 31.66 31.44 32.63

DGSMP [72] 3.76M 646.65 SSIM 0.915 0.898 0.925 0.964 0.882 0.937 0.886 0.923 0.911 0.925 0.917
SAM 9.225  11.920  7.740 7.741 9.878 8.275 8.081 10.905  8.340 7.366 8.947

PSNR 33.74 33.26 34.28 41.03 31.44 324 32.27 30.46 33.51 30.24 33.26

GAP-Net [85] 427M 78.58 SSIM 0911 0.9 0.929 0.967 0919 0.925 0.902 0.905 0.915 0.895 0.917

SAM 9.114  13.071 8.605 9.549 7.874 12,611 8404  16.084  8.757 13.234  10.730

PSNR 34.12 33.62 35.04 41.15 31.82 32.54 3242 30.74 33.75 30.68 30.68

ADMM-Net [87] 4.27M 78.58 SSIM 0918 0.902 0.931 0.966 0.922 0.924 0.896 0.907 0.915 0.895 0.895

SAM 8596  13.048  8.133 9.372 7.900 12758 8340  16.889  8.291 12.831  10.616

PSNR 35.14 35.67 36.03 42.3 32.69 34.46 33.67 3248 34.89 32.38 34.97

HDNet [69] 2.37M 154.76 SSIM 0.935 0.94 0.943 0.969 0.946 0.952 0.926 0.941 0.942 0.937 0.943
SAM 7.376 8.155 5.653 5.817 5.070 6.856 6.550 8.147 6.352 6.808 6.679

PSNR 34.71 34.45 3532 41.5 319 33.85 32.69 31.69 34.67 31.82 34.26

MST-S [58] 0.93M 12.96 SSIM 0.93 0.925 0.943 0.967 0.933 0.943 0.911 0.933 0.939 0.926 0.935
SAM 7299  10.655  6.809 8.687 7.136 10335 6932 12.609 8012 10274  8.875

PSNR 354 35.87 36.51 4227 3277 34.8 33.66 32.67 3539 32.5 35.18

MST-L [58] 2.03M 2815 SSIM 0.941 0.944 0.953 0.973 0.947 0.955 0.925 0.948 0.949 0.941 0.948
SAM 7.028 8.122 6.085 7.425 5.800 7.848 6.270  10.338  7.467 8.357 7.474

PSNR 35.77 36.21 37.36 43.81 33.37 3539 34.32 33.67 36.63 33.35 35.99

MST++ [59] 1.33M 19.42 SSIM 0.948 0.949 0.961 0.981 0.956 0.962 0.937 0.959 0.958 0.952 0.956
SAM 6.740 7.477 4.595 6.957 4.641 6.613 5.927 8.295 5.725 6.621 6.359

PSNR 34.78 34.81 3542 41.84 3229 34.49 33.47 32.89 34.96 32.14 34.71

CST-S [60] 1.20M 11.67 SSIM 0.93 0.931 0.944 0.967 0.939 0.949 0.922 0.945 0.944 0.932 0.94
SAM 7.508 8.142 5.682 6.576 5.428 7.203 6.224 8.601 6.291 6.879 6.854

PSNR 35.96 36.84 38.16 42.44 33.25 3572 34.86 34.34 36.51 33.09 36.12

CST-L* [60] 3.00M 40.1 SSIM 0.949 0.955 0.962 0.975 0.955 0.963 0.944 0.961 0.957 0.945 0.957

SAM 6.404 6.467 4.269 5.784 4.690 5918 5.437 6.708 5.465 5.960 5.710

PSNR 35.83 36.97 3772 43.93 33.44 35.59 34.54 33.44 36.43 33.04 36.09

D2PL-Net [86] 7.65M 84.71G SSIM 0.926 0.950 0.938 0.931 0.894 0.895  0.954 0.896 0.901 0.837 0.912
SAM - - - - - - - - - - -

PSNR 36.48 37.65 37.19 42.85 34.29 35.70 35.37 34.18 36.81 33.46 36.40

EDUNet [88] 1.51M 2424 SSIM 0.951 0.961 0.963 0.981 0.962 0.966 0.949 0.962 0.960 0.951 0.961
SAM - - - - - - - - - - -

PSNR 34.96 34.60 39.83 42.65 35.21 33.12 36.29 30.42 37.27 28.49 35.28

DiffSCI [90] _ _ SSIM 0.907 0.905 0.949 0.951 0.946 0.917 0.944 0.887 0.931 0.821 0.916
SAM - - - - - - - - - - -

PSNR 36.17 37.57 37.29 42.96 34.40 36.44 35.41 34.50 36.54 33.57 36.48

S2-Transformer [61]  3.01M 199.65 SSIM 0.949 0.958 0.957 0.975 0.960 0.965 0.946 0.963 0.959 0.952 0.958
SAM 7.151 8.353 5.224 6.108 5.359 7.136 6.425 8.855 6.569 6.605 6.779

PSNR 35.44 34.89 38.90 45.29 34.71 33.18 37.76 30.57 39.49 30.62 36.08

LRSDN [89] _ _ SSIM 0.923 0.909 0.961 0.985 0.949 0.930 0.964 0.901 0.963 0.889 0.938
SAM - - - - - - - - - - -

PSNR 35.93 36.70 37.96 44.38 34.13 35.43 34.78 33.65 37.42 33.07 36.34

DAUHST-2stg [62] 1.40M 18.44 SSIM 0.943 0.946 0.959 0.978 0.954 0.957 0.940 0.950 0.955 0.941 0.952
SAM 6.136 7.124 4.340 5.868 4.374 6.619 5.417 8.566 5.200 6.338 5.998

PSNR 36.25 37.92 39.63 44.55 34.59 35.58 35.69 33.76 38.26 33.24 36.95

PADUT-3stg [63] 1.35M 22.91 SSIM 0.951 0.963 0.970 0.985 0.964 0.965 0.950 0.960 0.963 0.947 0.962

SAM 5.798 5.692 3.557 4.036 3.486 5.046 4915 6.594 4.263 5.092 4.848

PSNR 35.00 35.47 37.17 43.78 32.73 34.39 33.58 32.53 35.49 31.97 35.21

DGST-S 1.03M 10.1 SSIM 0.940 0.945 0.962 0.984 0.947 0.958 0.934 0.955 0.952 0.938 0.951
SAM 6.673 6.857 4.547 4.998 4.652 5.887 5.795 7.011 6.241 5.506 5.817

PSNR 36.14 37.38 38.08 44.02 33.87 35.62 34.80 33.86 37.30 33.10 36.41

DGST.L 274M 23.48 SSIM 0.956 0.960 0.963 0.984 0.961 0.964 0.943 0.962 0.962 0.953 0.961
SAM 5.865 6.277 4.059 4.763 4.351 5.603 5.440 6.816 5.196 5.317 5.369

PSNR 36.43 37.75 38.47 44.56 33.96 35.83 35.10 34.07 37.57  33.58 36.73

DGST-L* 2.74M 29.72 SSIM 0.959 0.964 0.966 0.986 0.965 0.969 0.947 0.967 0.967  0.958 0.965
SAM 5.786 6.224 4.060 4.444 4.300 5.484 5.399 6.725 5.161 5.262 5.285

Where “*” indicates that no sparse approach is taken. Results shown in bold are the best.
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TABLE II
COMPARISON ON THE PAVIA CENTRE, PAVIA UNIVERSITY, AND URBAN DATASETS WITH PARAMETERS, FLOPS, PSNR, AND SSIM FOR DIFFERENT APPROACHES

A-Net GAP-Net ADMM-Net HDNet MST-L MST++ CST-L* DAUHST-2stg PADUT-3stg DGST-L*

Params 62.64M 4.27M 4.27M 2.37TM 2.03M 1.33M 3.00M 1.40M 1.35M 2.74M
GFLOPs 117.98 78.58 78.58 154.76 28.15 19.42 40.1 18.44 2291 29.72

Time 0.45 0.19 0.17 0.09 0.23 0.1 0.26 0.3 0.19 0.16

Pavia Centre

PSNR 27.17 31.02 31.23 32.41 32.87 33.04 33.23 33.14 33.27 33.31

SSIM 0.660 0.841 0.847 0.881 0.896 0.896 0.902 0.900 0.905 0.906

SAM 10.365 7.503 7.569 5.610 5.828 5.507 5.607 7.503 4.660 4.799

Pavia University

PSNR 25.50 29.14 29.21 30.34 30.99 31.28 31.39 31.28 31.43 3141

SSIM 0.672 0.847 0.849 0.886 0.902 0.904 0.910 0.905 0.913 0.912

SAM 9.971 7.529 7.474 5.486 5.891 5.361 5.307 7.529 4.668 4.808

Urban

PSNR 27.40 31.13 31.33 32.38 32.75 32.81 33.10 33.09 33.07 33.09

SSIM 0.671 0.845 0.851 0.889 0.899 0.899 0.904 0.902 0.906 0.908

SAM 8.813 6.632 6.679 5.042 5.056 4.957 4.556 6.632 3.787 3.900

Average of Pavia Centre, Pavia University, and Urban Datasets

PSNR 26.69 3043 30.59 31.71 32.20 32.38 32.57 32.50 32.59 32.60

SSIM 0.667 0.844 0.849 0.885 0.899 0.900 0.905 0.902 0.908 0.909

SAM 9.716 7.221 7.241 5.379 5.592 5.275 5.157 7.221 4.372 4.502

Here, * indicates that no sparse approach is taken. The best results are bold-faced.
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Reconstruction results on Scene 2. Nine SOTA methods and the proposed method are presented on four out of 28 spectral channels. A comparison plot

of the spectral density curve profiles for the selected regions is displayed in the bottom left position. For a more detailed analysis, we recommend zooming in for

better visualization.

reduces Params and GFLOPs but also achieves better recon-
struction performance compared to the most relevant methods.
Overall, our method slightly lags behind the PADUT-3stg, but
our method delves into the potential of the end-to-end deep
learning approach, offering fresh insights into HSI reconstruc-
tion and yielding satisfactory outcomes in this domain.

2) Simulated HSI Reconstruction Results:

1) KAIST Dataset: In this experiment, we select four chan-

nels (466.0, 536.5, 584.5, and 648.0 nm) out of the 28
spectral channels to visualize Scene 2 from the KAIST
dataset. We visually show the reconstruction of our
method and other nine advanced methods with repre-
sentative examples in Fig. 3. The figure illustrates that
conventional model-based approaches struggle to com-
pletely recover all characteristics of the original HSI. Pre-
vious deep learning-based methods struggle to balance the
preservation of high-frequency texture information and

low-frequency structural information in HSI, leading to
oversmoothing, loss of detailed information, or generation
of speckle textures and color artifacts when preserving
details. In contrast, our DGST method extracts high-
frequency texture information through the SIC module and
models the spatial and spectral dimensions separately us-
ing spatial attention and spectral attention to capture both
the high-frequency texture information and low-frequency
structural information of HSI. Fig. 3 indicates that our
method performs exceptionally well in maintaining spatial
details. We also generate spectral density curves for the
reconstructed regions to validate the superiority of our
method in terms of spectral consistency using ground
truth. The spectral correlation coefficients displayed in
the bottom left corner in Fig. 3 indicate that our method
achieves the highest spectral correlation, affirming its
effectiveness and superiority in HSI reconstruction.
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Reconstruction results on Urban datasets. Nine SOTA methods and the proposed method are presented on four out of 28 spectral channels. A comparison
plot of the spectral density curve profiles for the selected regions is displayed in the bottom left position. For a more detailed analysis, we recommend zooming in
for better visualization.
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Reconstruction results on Pavia University. Nine SOTA methods and the proposed method are presented on four out of 28 spectral channels. A comparison
plot of the spectral density curve profiles for the selected regions is displayed in the bottom left position. For a more detailed analysis, we recommend zooming in
for better visualization.

Pavia Centre Dataset: In the Pavia Centre dataset, as
illustrated in Fig. 4, the variety of architectural shapes
present in the scenes results in an overwhelming level
of detail, leading to less than optimal reconstruction out-
comes. Among CNN-based hyperspectral reconstruction
methods, A-net, GAP-Net, ADMM-Net, and HDNet dis-
play varying degrees of blurring and information loss
in the reconstructed images. Despite HDNet achieving
relatively superior reconstruction results, some blurring
persists along building edges, failing to delineate clear
boundaries. Transformer-based reconstruction methods
excel in preserving contour information but struggle to
effectively reconstruct edge details. Among these meth-
ods, MST-L, MST++, and CST-L-Plus outperform CNN-
based methods in reconstructing more intricate details,
with some enhancement in addressing building boundary
issues, albeit with tendencies toward excessive smoothing
and blurred reconstruction of small structures. Similar
challenges are observed with the DAUHST-2stg method.
Conversely, PADUT-3stg, combined with our approach,
further addresses these issues, demonstrating outstanding

3)

performance in reconstructing edge details of buildings
of varying sizes and achieving seamless transitions. The
spectral correlation coefficients depicted in the bottom left
corner of Fig. 4 attest that our method achieves the highest
spectral correlation except for PADUT-3stg, thereby af-
firming its efficacy and superiority in hyperspectral image
reconstruction.

Pavia University Dataset: In the Pavia University
dataset, as illustrated in the Fig. 5, the presence of
small-scale buildings in the scene leads to suboptimal
reconstruction outcomes. Despite employing CNN-based
hyperspectral reconstruction methods, such as A-net,
GAP-Net, and ADMM-Net, varying degrees of blurriness
and information loss persist. Moreover, HDNet suffers
from blurriness in reconstructing small targets, resulting
in a significant loss of architectural details. In contrast, all
transformer-based methods, depth-expanded techniques,
and our proposed approach demonstrate notably superior
reconstruction performance. While transformer-based
methods and DAUHST-2stg exhibit some distortion in
reconstructing lower edge lines, PADUT-3stg and our
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method excel in this aspect. The spectral correlation
coefficient in the bottom-left corner of Fig. 5 confirms
that our method achieves the highest spectral correlation
except for PADUT-3stg, thus validating its effectiveness
and superiority in HSI reconstruction.

Urban Dataset: In the Urban dataset, as illustrated in
Fig. 6, the presence of smaller scale buildings poses
challenges for CNN-based hyperspectral reconstruction
methods, such as A -net, GAP-Net, and ADMM-Net,
resulting in varying degrees of blurriness and information
loss. In addition, HDNet exhibits subpar reconstruction
performance for densely populated areas, characterized
by significant blurriness and loss of detail. Conversely,
transformer-based approaches show improvements in ad-
dressing these issues, although methods such as MST-L,
MST++, and CST-L-Plus suffer from some degree of over-
smoothing. In contrast, the results obtained by PADUT-
3stg and our proposed method are notably superior. The
spectral correlation coefficient in the bottom-left corner of
Fig. 6 demonstrates that our method achieves the highest
spectral correlation except for PADUT-3stg, confirming
its effectiveness and superiority in HSI reconstruction.

HDNet MST++ CST-L-Plus S*-Transformer DGST

Reconstructed real HST comparisons of Scene 3 with four out of 28 spectral channels, including nine SOTA methods and our proposed method DGST.

3) Real HSI Reconstruction Results: To validate the effec-
tiveness of the proposed DGST method on real-world scenes, we
conducted additional experiments on a real-scene dataset with
nine comparative methods. A qualitative comparison of results
is provided in Fig. 5. This dataset was captured using an HSI
system designed by TSA-Net [68], with each HSI containing
28 spectral channels. For the real-world scenes experiment, we
followed the same setup as [58], [60], and [68] and retrained
the models using the CAVE [80] and KAIST [81] datasets for
training. To simulate more realistic conditions for scene recon-
struction in the training set, we injected 11-bit random noise into
the 2-D compressed measurement images, which were used as
inputs to the model during training. From Fig. 5, we can see
that our DGST method exhibits significant improvements in re-
construction compared to the previous model-based algorithms
and CNN-based methods. As compared to the transformer-based
methods [58], [60], [61], our method can reconstruct more
spatial detail and texture information, resulting in more realistic
image details. These results demonstrate the advantages of our
DGST method in balancing high-frequency texture information
and low-frequency structural information, particularly in the
zoomed region.
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TABLE III
ABLATION STUDIES OF INDIVIDUAL MODULES OF DGST

S-MSA  SS-MSA  Spa-FE CSAB SIC  MSS-MSA  Spe-FE  Params (M) FLOPs (G) PSNR (dB) SSIM SAM
v 0.66 6.55 33.43 0.928 7.146
v 0.63 6.44 33.92 0.931 6.724
v v 0.65 6.57 33.04 0.932  6.605
v v v 0.71 8.03 34.16 0.935 6.519
v v v v 0.78 8.74 34.43 0.941  6.357
v v v v v 0.98 10.02 35.12 0.950  5.883
v v v v v v 1.03 10.10 35.21 0951 5.817
TABLE IV TABLE V
ABLATION STUDIES OF DGST CORE COMPONENTS ABLATION STUDY OF DIFFERENT SPATIAL AND SPECTRAL MULTIPLE
SELE-ATTENTION MECHANISMS
Method Params (M) FLOPs (G) PSNR (dB) SSIM  SAM
SSHE 0.71 8.03 34.16 0935  6.519 Model Params (M) FLOPs (G) PSNR (dB) SSIM SAM
SSHE+SIC 0.78 8.74 34.43 0.941  6.357
SSHE+MSSHE 0.93 9.38 34.77 0.947  6.174 Spectral MSA
SSHE+SIC+MSSHE (DGST) 1.03 10.10 35.21 0951 5817
S-MSA 0.66 6.55 3343 0.928  7.146
SS-MSA 0.63 6.44 33.92 0.931 6.724
Spectral MSA
C. Ablation Study G-MSA 1.03 19.38 35.12 0949  5.889
. . . . . W-MSA 1.03 10.10 35.09 0.949  5.967
This section includes ablation experiments for our DGST Swin-MSA 103 1010 3521 0951 5817

model, where we eliminate different modules and use S-MSA
as our benchmark model.

1) Break-Down Ablation: To explore the influence of various
modules on the reconstruction performance (PSNR and SSIM),
we decomposed the DGST model and conducted experimen-
tal evaluations. The experimental results are summarized in
Table III. Our baseline model achieves a PSNR of 33.43 dB
and an SSIM value of 0.928. As we gradually incorporate
our proposed modules, the reconstruction performance of our
model improves, and the metrics show significant improve-
ments. Specifically, when we replaced S-MSA with SS-MSA,
the PSNR performance was improved by 0.49 dB. In addition,
there was a reduction in parameter count and computational
complexity. Subsequently, the PSNR performance further in-
creases by 0.12 dB by introducing the CSAB module. More-
over, the inclusion of the SIC module also makes a PSNR
improvement of 0.27 dB and an SSIM improvement of 0.006,
and a reduction of SAM by 0.162. Finally, by embedding the
MSS-MSA module into our proposed model, our overall model
achieved a unified improvement of 0.69 dB in PSNR and 0.009 in
SSIM, with areduction of SAM by 0.474. These results validate
that the effectiveness of our proposed improvement modules and
the efficacy of the interactions between these modules.

2) SIC Modular Ablation: We conducted ablation experi-
ments to validate the impact of the proposed SIC module on
the reconstruction performance. We compare the results with
and without SIC in Table IV. Only utilizing SIC, the recorded
PSNR is 34.43 dB. When only MSSHE is used, the PSNR is
34.77 dB. However, when both SIC and MSSHE are employed
simultaneously, the PSNR improves by 0.44 dB. To visually
demonstrate the structural and textural changes in image re-
construction after introducing the SIC module, we visualize the
reconstructed results of DGST in Fig 6. From the figure, we
can see that the introduction of the SIC module can capture
more spatial details and textural information. This improvement
is attributed to the SIC capability of the SIC module, which

Without SIC

With SIC

Fig.8. Reconstruction effect of DGST-S. At the top is the original RGB image,
while the middle and bottom rows show the reconstructed results without and
with SCI, respectively. SCI is employed in combination with SSHE to generate
a mask that guides MSSHE to pay attention to details during the reconstruction
process.

focuses on capturing high-frequency spatial details within the
HSI images. It dynamically generates masks by integrating
the captured spatial details with the globally captured spectral
information using the MSS-MSA attention mechanism. These
masks effectively represent the spatial sparsity relationships
within HSI, guiding the MSS-MSA to focus on reconstructing
the details and structures. Our results convincingly verify the
effectiveness of our SIC module.

3) Comparing Self-Attention Mechanisms: We also com-
pared the standard MSA with other variations of MSA tech-
niques. In terms of spectral MSA, we employed two methods,
S-MSA and SS-MSA. The results presented in Table V indicate
an enhancement of 0.49 dB in PSNR and a decrease of 0.422
in SAM with SS-MSA, accompanied by a reduction in both
parameters and computational requirements. This is attributed
to the SS-MSA which can reduce interspectral redundancy and
mask inaccuracies caused by measurement errors. To validate
the effectiveness of dynamic spectral-guided spatial sparsity, we
conducted simulations for spatial MSA using three methods:
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Reconstruction effect of DGST-S. At the top is the original RGB image, while the middle and bottom rows show the reconstructed results without and

with SCI, respectively. SCI is employed in combination with SSHE to generate a mask that guides MSSHE to pay attention to details during the reconstruction

process.

Global MSA (G-MSA), local window MSA (W-MSA), and
swin-MSA. From Table V, it can be observed that swin-MSA
outperformed the other two methods with PSNR improvements
of 0.09 and 0.12 dB, and SAM decreased by 0.072 and 0.15,
respectively. This gain is attributed to swin-MSA’s advantage in
interwindow information interaction, enhancing the network’s
ability to capture long-range dependencies.

4) Sparsity Ablation Study of SS-MSA: Due to the high sim-
ilarity between neighboring pixels, the top-k selection operation
helps to reduce irrelevant contextual information from distant
pixels. The choice of different K (top-k) values significantly
impacts model performance. To thoroughly investigate this im-
pact, we conducted multiple experiments evaluating different K
values. From Fig. 9, it can be observed that the model generally
performs poorly when K is small. And the performance will be
improved as K increases because larger K values introduce richer
spectral information. However, performance starts to decline as
K continues to increase. When we aggregate computations using
two different K values, we observe a performance improvement.
Furthermore, we observe further performance enhancement by
aggregating computations with multiple different K values, es-
pecially peaking at K values of % % %, and %. This improvement
mainly benefits from the effective integration of more global
information through the aggregation of multiple K values. How-
ever, performance declines again when too many K values are
aggregated, as excessive K values may introduce irrelevant or
unhelpful features. Therefore, based on experimental results, we
ultimately determine to aggregate four K values, setting them to
2,2, 3 and 1, to strike a balance between introducing bene-
ficial information and avoiding the introduction of unintended
information.

5) Dynamic Mask-Guided Ablation: In order to verify the
effectiveness of our proposed dynamic mask, we conducted ab-
lation experiments comparing different mask generation strate-
gies. As shown in Table VI, our dynamic mask strategy only
increased FLOPs by 0.07 G compared to the fixed mask strategy.
However, it improved PSNR and SSIM by 0.16 and 0.004 dB,
respectively. While the SAM is reduced by 0.204. This clearly
demonstrates the superiority of our dynamic mask strategy.

TABLE VI
ABLATION OF MASK GENERATION STRATEGY

Mask strategy ~ Params (M) FLOPs (G) PSNR (dB) SSIM SAM
Dynamic 1.03 10.1 35.21 0.951 5.817
Nondynamic 1.03 10.03 35.05 0.947  6.021
TABLE VII
ABLATION STUDY OF DIFFERENT SPARSITY RATE
Sparsity rate 0 0.3 0.4 0.5 0.6 0.7
Params (M) 1.03 1.03 1.03 1.03 1.03 1.03
FLOPs (G) 11.21 10.62  10.79 10.1 9.53 9.21
PSNR (dB) 3538 3532 3528 3521 3515 35.07
SSIM 0.953 0952 0951 0951 0.95 0.948
SAM 5.743 5764 5.809 5817 5876 5.988

The dynamic mask generation strategy is capable of adaptive
changes. Thus, our dynamic mask generation strategy can effi-
ciently solve this issue.

6) Sparse Rate Selection Ablation: The spatial sparsity rate
plays a crucial role in balancing the computational cost and
reconstruction performance of the HSI reconstruction models.
Excessive sparsity will result in the loss of significant image
details, while insufficient sparsity will cause an increase in
computational costs. To explore the optimal sparsity rate, we
tried a variety of solutions. Specially, we set the sparsity rates
t0 0, 0.3,0.4, 0.5, 0.6, and 0.7, respectively. Table VII gives the
HSI reconstruction performance with different sparse rates. We
can see that the computational cost of the model decreases with
an increase in sparsity rate. In this case, the PSNR and SSIM
are generally decreasing. And the SAM metric is also reducing.
Based on the above-mentioned observations, we set the sparsity
rate to 0.5 which can achieve a relatively low computational cost
while maintaining relatively high PSNR and SSIM metrics.

7) Patch Size Selection Ablation: In the field of HSI recon-
struction, the window size of attention significantly influences
the performance of transformer models. Generally speaking, the
smaller windows may constrain the model’s ability to capture
a sufficiently broad range of contextual information. While the
larger windows increase the model’s parameter count. Thus, to
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TABLE VIII
ABLATION STUDY OF DIFFERENT PATCH SIZES

Patch size 4 8 16 32
Params (M) 1.03 1.03 1.03 1.03
FLOPs (G) 10.07 10.1 10.23  10.78
PSNR (dB) 35.04 3521 35.12 35.27
SSIM 0.948  0.951 0.95 0.951
SAM 5991 5.817 5881 5.812

choose a suitable window size, we tested multiple experiments
of the patch size with 4, 8, 16, and 32. And the experiment results
are presented in Table VIII. From Table VIII, it can be seen that
the model’s computational costs will rise with the increase of
the patch size, while PSNR and SSIM are also improved. In
particular, when the patch size increased from 4 to 8, PSNR
increased by 0.07 dB, while FLOPs only increased by 0.03 G.
However, the PSNR and SSIM decreased with further increases
in patch size. Therefore, we decided to set the patch size to 8 in
our HSI reconstruction model.

V. CONCLUSION

In this article, we proposed a new HSI reconstruction model
called DGST. Our DGST model dynamically guides spatial
sparsity through spectral information and aggregates spatial and
spectral information to boost the HSI reconstruction. Specif-
ically, we propose a three-level U-Net structure composed of
DGSB modules, which utilizes SSHE and SIC as guided priors
to enable MSS-MSA well represent the spatial information of
HSI. Moreover, we model the spectral and spatial information by
aggregating this 2-D information to enhance the spatial-spectral
representation ability. Furthermore, the FFN in our model uti-
lizes dual pathways to filter out irrelevant information that can
improve the feature extraction ability. Extensive experiments
demonstrate that our proposed method outperforms other com-
parable techniques.

REFERENCES

[1]1 S.Li, W.Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson, “Deep
learning for hyperspectral image classification: An overview,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 9, pp. 6690-6709, Sep. 2019.

[2] G. Sun et al., “Large kernel spectral and spatial attention networks for
hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 61, pp. 1-15, 2023.

[3] C. Yu et al., “Hyperspectral image classification method based on CNN
architecture embedding with hashing semantic feature,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 6, pp. 18661881,
Jun. 2019.

[4] S.Ding, X. Ruan, J. Yang, J. Sun, S. Li, and J. Hu, “LSSMA: Lightweight
spectral-spatial neural architecture with multi-attention feature extraction
for hyperspectral image classification,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 17, pp. 6394-6413, 2024.

[5] R. Xu, X.-M. Dong, W. Li, J. Peng, W. Sun, and Y. Xu, “DBCTnet:
Double branch convolution-transformer network for hyperspectral image
classification,” IEEE Trans. Geosci. Remote Sens., vol. 62, pp. 1-15,2024.

[6] P. Addabbo, N. Fiscante, G. Giunta, D. Orlando, G. Ricci, and S. L. Ullo,
“Multiple sub-pixel target detection for hyperspectral imaging systems,”
IEEE Trans. Signal Process., vol. 71, pp. 1599-1611, 2023.

[71 H.Gao, Y. Zhang, Z. Chen, F. Xu, D. Hong, and B. Zhang, “Hyperspectral
target detection via spectral aggregation and separation network with target
band random mask,” IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 1-16,
2023.

15509

[8] W.Xie, X.Zhang, Y. Li, K. Wang, and Q. Du, “Background learning based
on target suppression constraint for hyperspectral target detection,” [EEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 5887-5897,
2020.

[9]1 C. He, Y. Xu, Z. Wu, and Z. Wei, “Connecting low-level and high-level
visions: A joint optimization for hyperspectral image super-resolution and
target detection,” IEEE Trans. Geosci. Remote Sens., vol. 62, pp. 1-16,
2024.

[10] Z. Li, F. Xiong, J. Zhou, J. Lu, and Y. Qian, “Learning a deep ensemble
network with band importance for hyperspectral object tracking,” IEEE
Trans. Image Process., vol. 32, pp. 2901-2914, 2023.

[11] W.Li, Z. Hou, J. Zhou, and R. Tao, “SiamBAG: Band attention grouping-
based siamese object tracking network for hyperspectral videos,” IEEE
Trans. Geosci. Remote Sens., vol. 61, pp. 1-12, 2023.

[12] Y. Wan, C. Chen, A. Ma, L. Zhang, X. Gong, and Y. Zhong, “Adaptive
multi-strategy particle swarm optimization for hyperspectral remote sens-
ing image band selection,” IEEE Trans. Geosci. Remote Sens., vol. 61,
pp. 1-15,2023.

[13] P. Duan, X. Kang, P. Ghamisi, and S. Li, “Hyperspectral remote sens-
ing benchmark database for oil spill detection with an isolation forest-
guided unsupervised detector,” IEEE Trans. Geosci. Remote Sens., vol. 61,
pp. 1-11, 2023.

[14] L. Liu, S. Lei, Z. Shi, N. Zhang, and X. Zhu, “Hyperspectral remote
sensing imagery generation from RGB images based on joint discrimi-
nation,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14,
pp. 7624-7636, 2021.

[15] L. Han et al., “Central cohesion gradual hashing for remote sens-
ing image retrieval,” IEEE Geosci. Remote Sens. Lett., vol. 20,
pp- 1-5, 2023.

[16] H. Mangotra, S. Srivastava, G. Jaiswal, R. Rani, and A. Sharma, “Hyper-
spectral imaging for early diagnosis of diseases: A review,” Expert Syst.,
vol. 20, 2023, Art. no. el13311.

[17] S.Karim, A. Qadir, U. Farooq, M. Shakir, and A. A. Laghari, “Hyperspec-
tral imaging: A review and trends towards medical imaging,” Curr. Med.
Imag., vol. 19, no. 5, pp. 417-427, 2023.

[18] H. Yin and H. Chen, “Multi-branch separable 3D convolutional neural
network for hyperspectral image denoising,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 16, pp. 8034-8048, 2023.

[19] X. Cao, H. Du, X. Tong, Q. Dai, and S. Lin, “A prism-mask system for
multispectral video acquisition,” IEEE Ttrans. Pattern Anal. Mach. Intell.,
vol. 33, no. 12, pp. 2423-2435, Dec. 2011.

[20] X. Yuan, D. J. Brady, and A. K. Katsaggelos, “Snapshot compressive
imaging: Theory, algorithms, and applications,” IEEE Signal Process.
Mag., vol. 38, no. 2, pp. 65-88, Mar. 2021.

[21] Y. Chen, Y. Wang, and H. Zhang, “Prior image guided snapshot compres-
sive spectral imaging,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45,
no. 9, pp. 11096-11107, Sep. 2023.

[22] X.Zhang, Y. Zhang, R. Xiong, Q. Sun, and J. Zhang, “HerosNet: Hyper-
spectral explicable reconstruction and optimal sampling deep network for
snapshot compressive imaging,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2022, pp. 17511-17520.

[23] Y. Dong, D. Gao, T. Qiu, Y. Li, M. Yang, and G. Shi, “Residual degra-
dation learning unfolding framework with mixing priors across spectral
and spatial for compressive spectral imaging,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2023, pp. 22262-22271.

[24] L. Li, L. Wang, W. Song, L. Zhang, Z. Xiong, and H. Huang,
“Quantization-aware deep optics for diffractive snapshot hyperspectral
imaging,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022,
pp. 19748-19757.

[25] A.Wagadarikar, R.John, R. Willett, and D. Brady, “Single disperser design
for coded aperture snapshot spectral imaging,” Appl. Opt., vol. 47, no. 10,
pp. B44-B51, 2008.

[26] D. Kittle, K. Choi, A. Wagadarikar, and D. J. Brady, “Multiframe image
estimation for coded aperture snapshot spectral imagers,” Appl. Opt.,
vol. 49, no. 36, pp. 6824-6833, 2010.

[27] N. Akhtar and A. Mian, “Hyperspectral recovery from RGB images using
Gaussian processes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42,
no. 1, pp. 100-113, Jan. 2020.

[28] X. Yuan, “Generalized alternating projection based total variation mini-
mization for compressive sensing,” in Proc. IEEE Int. Conf. Image Pro-
cess., 2016, pp. 2539-2543.

[29] S. Zhang, L. Wang, L. Zhang, and H. Huang, “Learning tensor low-rank
prior for hyperspectral image reconstruction,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2021, pp. 12001-12010.



15510

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

S. Zhang, L. Wang, Y. Fu, X. Zhong, and H. Huang, “Computa-
tional hyperspectral imaging based on dimension-discriminative low-rank
tensor recovery,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,
pp. 10182-10191.

Y. Liu, X. Yuan, J. Suo, D. J. Brady, and Q. Dai, “Rank minimization for
snapshot compressive imaging,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 41, no. 12, pp. 2990-3006, Dec. 2019.

L. Wang, Z. Xiong, G. Shi, F. Wu, and W. Zeng, “Adaptive nonlocal sparse
representation for dual-camera compressive hyperspectral imaging,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 10, pp.2104-2111,
Oct. 2017.

S. Chen, L. Zhang, and L. Zhang, “MSDformer: Multi-scale deformable
transformer for hyperspectral image super-resolution,” IEEE Trans.
Geosci. Remote Sens., vol. 61, pp. 1-14, 2023.

F. Xiong, J. Zhou, J. Zhou, J. Lu, and Y. Qian, “Multitask sparse represen-
tation model inspired network for hyperspectral image denoising,” IEEE
Trans. Geosci. Remote Sens., vol. 61, pp. 1-15, 2023.

A. Pérez-Garcia, M. E. Paoletti, J. M. Haut, and J. F. Lopez, “Novel spectral
loss function for unsupervised hyperspectral image segmentation,” /[EEE
Geosci. Remote Sens. Lett., vol. 20, pp. 1-5, 2023.

Y. Chang, L. Yan, H. Fang, S. Zhong, and W. Liao, “HSI-DeNet: Hyper-
spectral image restoration via convolutional neural network,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 2, pp. 667-682, Feb. 2019.

Y. Qian, H. Zhu, L. Chen, and J. Zhou, “Hyperspectral image restoration
with self-supervised learning: A two-stage training approach,” IEEE Trans.
Geosci. Remote Sens., vol. 60, pp. 1-17, 2022.

Y. Qu, H. Qi, and C. Kwan, “Unsupervised sparse Dirichlet-Net for
hyperspectral image super-resolution,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2018, pp. 2511-2520.

Z.Xiong, Z. Shi, H. Li, L. Wang, D. Liu, and F. Wu, “HSCNN: CNN-based
hyperspectral image recovery from spectrally undersampled projections,”
in Proc. IEEE Int. Conf. Comput. Vis. Workshops, 2017, pp. 518-525.

Z. Shi, C. Chen, Z. Xiong, D. Liu, and F. Wu, “HSCNN++: Advanced
CNN-based hyperspectral recovery from RGB images,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. Workshops, 2018, pp. 1052—-10528.
L. Wang, C. Sun, Y. Fu, M. H. Kim, and H. Huang, “Hyperspectral image
reconstruction using a deep spatial-spectral prior,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2019, pp. 8024-8033.

Y. Fu, T. Zhang, L. Wang, and H. Huang, “Coded hyperspectral image
reconstruction using deep external and internal learning,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 44, no. 7, pp. 3404-3420, Jul. 2022.

T. Liand Y. Gu, “Progressive spatial-spectral joint network for hyperspec-
tral image reconstruction,” IEEE Trans. Geosci. Remote Sens., vol. 60,
pp. 1-14, 2022.

A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” 2020, arXiv:2010.11929.

Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp. 9992-10002.

K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, “Trans-
former in transformer,” in Proc. Adv. Neural Inf. Process. Syst., 2021,
pp. 15908-15919.

K. Han et al., “A survey on vision transformer,” [EEE Trans. Pattern Anal.
Mach. Intell., vol. 45, no. 1, pp. 87-110, Jan. 2023.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S.
Zagoruyko, “End-to-end object detection with transformers,” in Proc. Eur.
Conf. Comput. Vis., Springer, 2020, pp. 213-229.

E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P.
Luo, “SegFormer: Simple and efficient design for semantic segmenta-
tion with transformers,” in Proc. Adv. Neural Inf. Process. Syst., 2021,
pp. 12077-12090.

S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M.-H.
Yang, “Restormer: Efficient transformer for high-resolution image restora-
tion,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022,
pp. 5718-5729.

C. Wang et al., “Translution-SNet: A semisupervised hyperspectral image
stripe noise removal based on transformer and CNN,” IEEE Trans. Geosci.
Remote Sens., vol. 60, pp. 1-14, 2022.

F. Wang, J. Li, Q. Yuan, and L. Zhang, “Local-global feature-aware
transformer based residual network for hyperspectral image denoising,”
IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1-19, 2022.

L.Gao,J.Li, K. Zheng, and X. Jia, “Enhanced autoencoders with attention-
embedded degradation learning for unsupervised hyperspectral image
super-resolution,” IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 1-17,
2023.

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

J. Hu, X. Jia, Y. Li, G. He, and M. Zhao, “Hyperspectral image super-
resolution via intrafusion network,” IEEE Trans. Geosci. Remote Sens.,
vol. 58, no. 10, pp. 7459-7471, Oct. 2020.

Y. Tang et al., “A CNN-transformer embedded unfolding network for
hyperspectral image super-resolution,” IEEE Trans. Geosci. Remote Sens.,
vol. 62, pp. 1-16, 2024.

W. Dong, Y. Xu, J. Qu, and S. Hou, “Learning multi-modal cross-
scale deformable transformer network for unregistered hyperspectral
image super-resolution,” in Proc. AAAI Conf. Artif. Intell., 2024,
pp. 1573-1581.

F. 1. Alam, J. Zhou, A. W. -C. Liew, X. Jia, J. Chanussot, and Y. Gao,
“Conditional random field and deep feature learning for hyperspectral
image classification,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 3,
pp. 1612-1628, Mar. 2019.

Y. Cai et al., “Mask-guided spectral-wise transformer for efficient hyper-
spectral image reconstruction,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2022, pp. 17481-17490.

Y. Cai et al., “MST++: Multi-stage spectral-wise transformer for efficient
spectral reconstruction,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2022, pp. 744-754.

Y. Cai et al., “Coarse-to-fine sparse transformer for hyperspectral im-
age reconstruction,” in Proc. Eur. Conf. Comput. Vis., Springer, 2022,
pp. 686-704.

J. Wang, K. Li, Y. Zhang, X. Yuan, and Z. Tao, “S2-transformer for mask-
aware hyperspectral image reconstruction,” 2022, arXiv:2209.12075.

Y. Cai et al., “Degradation-aware unfolding half-shuffle transformer for
spectral compressive imaging,” in Proc. Adv. Neural Inf. Process. Syst.,
2022, pp. 37749-37761.

M. Li, Y. Fu, J. Liu, and Y. Zhang, “Pixel adaptive deep unfolding
transformer for hyperspectral image reconstruction,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis., 2023, pp. 12913-12922.

Q. Yuan, Q. Zhang, J. Li, H. Shen, and L. Zhang, “Hyperspectral im-
age denoising employing a spatial-spectral deep residual convolutional
neural network,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 2,
pp. 1205-1218, Feb. 2019.

L. Zhuang, M. K. Ng, L. Gao, and Z. Wang, “Eigen-CNN: Eigenimages
plus eigennoise level maps guided network for hyperspectral image de-
noising,” IEEE Trans. Geosci. Remote Sens., vol. 62, pp. 1-18, 2024.

Y. Xu et al., “Hyperspectral image super-resolution with ConvLSTM skip-
connections,” IEEE Trans. Geosci. Remote Sens., vol. 62, pp. 1-16, 2024.
X.Miao, X. Yuan, Y. Pu, and V. Athitsos, “A-net: Reconstruct hyperspectral
images from a snapshot measurement,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2019, pp. 4058—4068.

Z. Meng, J. Ma, and X. Yuan, “End-to-end low cost compressive spectral
imaging with spatial-spectral self-attention,” in Proc. Eur. Conf. Comput.
Vis., Springer, 2020, pp. 187-204.

X. Hu et al., “HDNet: High-resolution dual-domain learning for spectral
compressive imaging,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2022, pp. 17521-17530.

Y. Chen, X. Gui, J. Zeng, X.-L. Zhao, and W. He, “Combining
low-rank and deep plug-and-play priors for snapshot compressive
imaging,” IEEE Trans. Neural Netw. Learn. Syst., to be published,
doi: 10.1109/TNNLS.2023.3294262.

L. Wang, C. Sun, M. Zhang, Y. Fu, and H. Huang, “DNU: Deep non-local
unrolling for computational spectral imaging,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 1658—1668.

T. Huang, W. Dong, X. Yuan, J. Wu, and G. Shi, “Deep Gaussian scale
mixture prior for spectral compressive imaging,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2021, pp. 16211-16220.

Z. Meng, Z. Yu, K. Xu, and X. Yuan, “Self-supervised neural networks
for spectral snapshot compressive imaging,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2021, pp. 2602-2611.

Z. Wu, R. Lu, Y. Fu, and X. Yuan, “Latent diffusion prior enhanced deep
unfolding for spectral image reconstruction,” 2023, arXiv:2311.14280.
L. Zhu, X. Wang, Z. Ke, W. Zhang, and R. W. Lau, “BiFormer: Vision
transformer with bi-level routing attention,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2023, pp. 10323-10333.

J. Zhang, Y. Zhang, J. Gu, Y. Zhang, L. Kong, and X. Yuan, “Ac-
curate image restoration with attention retractable transformer,” 2022,
arXiv:2210.01427.

J. Xue et al., “Segmentation guided sparse transformer for under-display
camera image restoration,” 2024, arXiv:2403.05906.

X. Chen, H. Li, M. Li, and J. Pan, “Learning a sparse transformer network
for effective image deraining,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2023, pp. 5896-5905.


https://dx.doi.org/10.1109/TNNLS.2023.3294262

WANG et al.: DYNAMIC SPECTRAL GUIDED SPATIAL SPARSE TRANSFORMER FOR HYPERSPECTRAL IMAGE RECONSTRUCTION 15511

(791

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

S.Liu,J. Ye, S. Ren, and X. Wang, “DynaST: Dynamic sparse transformer
for exemplar-guided image generation,” in Proc. Eur. Conf. Comput. Vis.,
Springer, 2022, pp. 72-90.

J.-I. Park, M.-H. Lee, M. D. Grossberg, and S. K. Nayar, “Multispectral
imaging using multiplexed illumination,” in Proc. IEEE 11th Int. Conf.
Comput. Vis., IEEE, 2007, pp. 1-8.

I. Choi, D. S. Jeon, G. Nam, D. Gutierrez, and M. H. Kim, “High-quality
hyperspectral reconstruction using a spectral prior,” ACM Trans. Graph.,
vol. 36, no. 6, pp. 218:1-218:13, 2017.

F. Dell’ Acqua, P. Gamba, A. Ferrari, J. A. Palmason, J. A. Benediktsson,
and K. Arnason, “Exploiting spectral and spatial information in hyper-
spectral urban data with high resolution,” IEEE Geosci. Remote Sens. Lett.,
vol. 1, no. 4, pp. 322-326, Oct. 2004.

D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts” 2016, arXiv:1608.03983.

Z. Meng, S. Jalali, and X. Yuan, “GAP-net for snapshot compressive
imaging,” 2020, arXiv:2012.08364.

J. Yang, T. Lin, F. Liu, and L. Xiao, “Learning degradation-aware deep
prior for hyperspectral image reconstruction,” I[EEE Trans. Geosci. Remote
Sens., vol. 61, pp. 1-15, 2023.

J. Ma, X.-Y. Liu, Z. Shou, and X. Yuan, “Deep tensor ADMM-Net for
snapshot compressive imaging,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis., 2019, pp. 10222-10231.

X. Qin, Y. Quan, and H. Ji, “Enhanced deep unrolling networks for
snapshot compressive hyperspectral imaging,” Neural Netw., vol. 174,
2024, Art. no. 106250.

Y. Chen, W. Lai, W. He, X.-L. Zhao, and J. Zeng, “Hyperspectral compres-
sive snapshot reconstruction via coupled low-rank subspace representation
and self-supervised deep network,” IEEE Trans. Image Process., vol. 33,
pp- 926-941, 2024.

Z. Pan, H. Zeng, J. Cao, K. Zhang, and Y. Chen, “DiffSCI: Zero-
shot snapshot compressive imaging via iterative spectral diffusion
model,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2024,
pp. 25297-25306.

Y. Cai, Y. Zheng, J. Lin, X. Yuan, Y. Zhang, and H. Wang, “Binarized
spectral compressive imaging,” in Proc. 37th Conf. Neural Inf. Process.
Syst., 2023, pp. 38335-38346.

Junyang Wang received the B.S. degree in software
engineering from the Henan University of Science
and Technology, Luoyang, China, in 2018. He is
currently working toward the master’s degree in elec-
tronic information with the Xidian University, Xi’an,
China.

His research interests include deep learning and
image processing.

Xiang Yan (Member, IEEE) received the B.S and
Ph.D. degrees in electronic science and technol-
ogy and physical electronics from Xidian University,
Xi’an, China, in 2012 and 2018, respectively.

He is currently an Associate Professor with Xi-
dian University, Xi’an, China. From 2016 to 2018,
he was a Visiting Ph.D. Student with the School of
Computer Science and Software Engineering, Uni-
versity of Western Australia, Crawley, WA, Australia,
working closely with Prof. Ajmal Mian. His research
interests include image processing, computer vision,

and deep learning.

Hanlin Qin (Member, IEEE) received the B.S and
Ph.D. degrees in electronic information engineering
and electronic science and technology from Xidian
University, Xi’an, China, in 2004 and 2010, respec-
tively.

He is currently a Full Professor with the School
of Optoelectronic Engineering, Xidian University. He
has authored or coauthored more than 100 scientific
articles. His research interests include electro-optical
cognition, advanced intelligent computing, and au-
tonomous collaboration.

Naveed Akhtar (Member, IEEE) received the mas-
ter’s degree in computer science from Hochschule
Bonn-Rhein-Sieg, Sankt Augustin, Germany, and the
Ph.D. degree in computer science from the University
of Western Australia, Crawley, WA, Australia.

He is a Senior Lecturer with the University of
Melbourne, Melbourne, VIC, Australia.

Dr. Akhtar was the recipient of the Discovery Early
Career Researcher Award from the Australian Re-
search Council. He is a Universal Scientific Education
and Research Network Laureate in formal sciences.
He was a finalist of the Western Australia’s Early Career Scientist of the Year
2021. He is an ACM Distinguished Speaker and an Associate Editor for IEEE
TRANSACTIONS NEURAL NETWORKS AND LEARNING SYSTEMS.

Shuowen Yang (Member, IEEE) received the B.S.
degree in electronic science and technology and the
Ph.D. degree in physical electronics from Xidian Uni-
versity, Xi’an, China, in 2016 and 2023, respectively.
He is currently a Postdoctoral Researcher with the
Department of Photo-Electronic Information, Xidian
University. From 2021 to 2022, during his Ph.D.
study, he visited the University of Granada, Granada,
Spain, working closely with Prof. Rafael Molina.
His research interests include computational spectral
imaging and compressive sensing reconstruction.

Ajmal Mian (Senior Member, IEEE) received the
B.S. degree in avionics from NED University,
Karachi, Pakistan, in 1993; the M.S. degree in in-
formation security from NUST, Karachi, Pakistan, in
2003; and the Ph.D. degree in computer science from
UWA, Perth, Austrian, in 2006.

He is a Professor of computer science with The
University of Western Australia, Crawley, WA, Aus-
tralia. His research interests include computer vision,
machine learning, remote sensing, and 3-D point
cloud analysis.

Dr. Mian was the recipient of several awards including the West Australian
Early Career Scientist of the Year Award 2012, the HBF Mid-Career Scientist
of the Year Award 2022, Excellence in Research Supervision Award, EH
Thompson Award, ASPIRE Professional Development Award, Vice-chancellors
Mid-career Research Award, Outstanding Young Investigator Award, and the
Australasian Distinguished Doctoral Dissertation Award, and three esteemed
national fellowships from the Australian Research Council (ARC) including the
recent Future Fellowship Award 2022. He has secured research funding from the
ARC, NHMRC, DARPA, and the Australian Department of Defence. He was a
Senior Editor for IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING
SYSTEMS and Associate Editor for [EEE TRANSACTIONS ON IMAGE PROCESSING
AND THE PATTERN RECOGNITION JOURNAL. He is a Fellow of the International
Association for Pattern Recognition.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


