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Scale-Mixing Enhancement and Dual Consistency
Guidance for End-to-End Semisupervised Ship
Detection in SAR Images

Man Chen ¥, Yuanlin He, Tianfeng Wang

Abstract—The object detection of synthetic aperture radar
(SAR) ships holds significant promise for water traffic monitoring,
ship search and rescue, and maritime warning tasks. Regrettably,
most of the existing SAR ship object detection is limited to the fully
supervised paradigm, exhibiting a firm reliance on data labels, and
inherent challenges such as multiscale ship feature disparities and
indistinct small-sized ships also make SAR ship detection difficult.
To address these, we propose a scale-mixing enhanced and dual
consistency guided semisupervised object detection (SMDC-SSOD)
method. Specifically, this method is based on the teacher-student
framework and primarily comprises three core components: cross-
scale feature mixing (CSFM) scheme, scale change consistency
guidance (SCCG) strategy, and proposal consistency guidance
(PCG) strategy, which can efficiently conduct end-to-end semisu-
pervised learning from limited data labeling, achieving low-cost
and high-performance ship perception. CSFM scheme includes
interpyramid and intrapyramid feature cross-scale mixings, which
can improve the network’s adaptability for multiscale ship char-
acteristics and increase focus on small-sized ships. SCCG strategy
leverages variations in confidence scores at different scales to select
valuable pseudolabels, providing more precise guidance for the stu-
dent network. PCG strategy further reflects the positioning quality
of pseudolabels through the proposal consistency generated by the
student network, guiding it to make high-quality predictions. The
experimental results on the publicly available HRSID, BBox-SSDD,
and SAR-Ship-Dataset demonstrate that SMDC-SSOD can accu-
rately detect SAR ships with an extremely low data annotation rate
(below 10 %) and achieve optimal detection performance compared
to state-of-the-art methods.

Index Terms—Dual consistency guidance, scale-mixing enhance-
ment, semisupervised object detection (SSOD), synthetic aperture
radar (SAR), teacher-student frame (TSF).

1. INTRODUCTION

YNTHETIC aperture radar (SAR) is an advanced active
microwave sensor that offers unique advantages, such as
independence from time, light, and weather conditions, com-
pared to other sensors such as optical, infrared, and hyper-
spectral [1]. This makes it particularly suitable for monitoring
diverse maritime environments. SAR ship detection, an essential
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component of maritime surveillance tasks, aims to accurately
perceive ship information from SAR images, aiding in water
traffic monitoring, ship search and rescue, maritime warnings,
and port scheduling, and has garnered widespread attention.

In recent years, with the advancement of deep learning (DL)
and improved computational capabilities, natural image ob-
ject detection methods have rapidly evolved, giving rise to
a variety of DL-based object detection techniques, including
Faster R-CNN [2], Cascade R-CNN [3], EfficientDet [4], and
DETR [5]. Benefiting from the development of natural image
detection methods, DL-based detection approaches have also
been extended to ship detection in SAR images. These methods
can utilize DL models to learn feature representations from
large-scale SAR ship datasets, thereby achieving the perception
of ship targets within SAR images. As research progresses, many
DL-based SAR image ship detection methods have also placed
significant emphasis on the imaging mechanisms of SAR im-
ages and the intrinsic characteristics of ships, further enhancing
detection performance [6], [7], [8], [9], [10], [11], [12].

However, current DL-based SAR ship detection methods are
predominantly based on fully supervised paradigms, relying on
many high-quality labels and imposing high manual annotation
costs. Therefore, we shift focus from fully supervised SAR
ship object detection toward semisupervised object detection
(SSOD), aiming to achieve SAR ship detection using only a
small number of labeled annotations and reduce dependence on
large-scale data labeling. As seen from the development lineage
illustrated in Fig. 1(a), this work represents a more in-depth
study compared to natural image detection and fully supervised
SAR ship detection tasks.

Compared to conventional object detection, SSOD has rela-
tively weak supervisory information, presenting challenges for
accurately perceiving targets. Existing SSOD methods primarily
rely on the teacher—student framework (TSF) [13], [14], [15],
which can utilize a teacher network to generate pseudolabels
for unlabeled data and guide the student network for compre-
hensive training, promoting precise target perception. Based on
differences in training approach, SSOD methods can be divided
into multistep training-based SSOD methods [16], [17], [18] and
end-to-end training-based SSOD methods [19], [20], [21], [22].
In multistep training-based SSOD methods, the teacher network
initially undergoes separate training on labeled data to achieve
preliminary learning and subsequently predicts unlabeled data
to generate pseudolabels for training the student network.
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Fig. 1. (a) Development lineage from natural image object detection to SAR
ship detection to semisupervised SAR ship detection. (b) Factors emphasized
in the SAR ship detection task and the proposed response approaches in this
research.

However, due to the involvement of multiple training steps, the
training process for multistep training-based SSOD methods is
intricate. Their detection performance may also be limited by
the teacher network initialized solely based on labeled data.
In contrast, end-to-end training-based SSOD methods optimize
both teacher and student networks throughout the entire training
process, resulting in a more straightforward training process and
easier attainment of effective detection performance, thus gar-
nering broader attention. In this research, we specifically focus
on end-to-end training-based SAR ship SSOD methods, aiming
to achieve efficient end-to-end semisupervised training using
a small amount of data labels, facilitating a high-performance
perception of SAR ships at low cost.

Furthermore, whether it is multistep training-based SSOD
methods or end-to-end training-based SSOD methods, pseu-
dolabels directly influence the learning quality of the student
network. High-quality pseudolabels provide accurate and com-
prehensive guidance for the student network, promoting precise
bounding box predictions. In contrast, a scarcity or poor quality
of pseudolabels leads to inadequate or inaccurate supervision
information for the student network, affecting detection perfor-
mance. Therefore, emphasizing pseudolabels is crucial in the
design of SAR ship SSOD methods. In addition, SAR ship
detection tasks pose inherent challenges compared to natural
scene object detection. On the one hand, due to the diversity
in the physical sizes of ships and the variability in SAR image
resolutions, ships in SAR images often exhibit multiscale feature
disparities, posing difficulties in ship detection [23], [24], [25].
On the other hand, due to the low proportion of pixels occupied
by small-sized ships in SAR images, they often appear indistinct
and are susceptible to interference from clutter and speckle
noise, among other distractions [26], [27], [28]. Consequently,
considering these inherent challenges in the design process of
SSOD methods for SAR ships is appropriate.

Taking into account the strong dependence on data labels, the
significant impact of pseudolabels, and inherent challenges such
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as multiscale ship feature disparities and indistinct small-sized
ships, we focus on the SSOD method for SAR ship detection,
proposing a scale-mixing enhanced and dual consistency guided
semisupervised object detection method, namely SMDC-SSOD.
Fig. 1(b) summarizes the key factors considered in the SAR
ship detection task and the approach presented in this research.
Specifically, this method, based on the TSF, primarily com-
prises three core components: the cross-scale feature mixing
(CSFM) scheme, the scale change consistency guidance (SCCG)
strategy, and the proposal consistency guidance (PCG) strategy,
which can enable efficient end-to-end semisupervised training
using a limited amount of data labels, achieving low-cost,
high-performance perception of SAR ships. The CSFM entails
interpyramid and intrapyramid feature cross-scale mixings, en-
hancing the network’s adaptability to multiscale ship feature dis-
parities and increasing its focus on small-sized ships. The SCCG
strategy utilizes changes in confidence scores across different
scales to design pseudolabel filtering criteria, aiding in selecting
more valuable pseudolabels from teacher network predictions
and providing more precise guidance for the student network.
The PCG strategy leverages the consistency of proposals gen-
erated by the student network to reflect the localization quality
of pseudolabels further, guiding the student network to make
high-quality bounding box predictions. The main contributions
can be summarized as follows.

1) We propose SMDC-SSOD based on the TSF framework,
which enables efficient end-to-end semisupervised learn-
ing using a limited amount of data labels, achieving
low-cost, high-performance perception of ships in SAR
images.

2) We construct the CSFM scheme, encompassing inter-
pyramid and intrapyramid feature cross-scale mixings,
to enhance the network’s adaptability to multiscale ship
feature disparities and increase its focus on small-sized
ships.

3) The SCCG and PCG strategies are designed to create pseu-
dolabel filtering criteria and reflect the localization quality
of pseudolabels, thus providing more precise guidance for
the student network and enabling higher quality bounding
box predictions.

4) Results from experiments conducted on the high-
resolution SAR images dataset (HRSID), bounding box
SAR ship detection dataset (BBox-SSDD), and SAR-
Ship-Dataset demonstrate that SMDC-SSOD accurately
detects ships in SAR images with annotation rates as
low as 10% outperforming state-of-the-art semisupervised
detection methods.

II. RELATED WORK
A. Object Detection

Mainstream object detection methods include two architec-
tures: convolutional neural networks (CNN) and the transformer.
Methods based on the CNN architecture can be further subdi-
vided into two-stage methods [2], [3] and one-stage detection
methods [4], [29], [30]. The most representative two-stage de-
tection method is Faster R-CNN [2], which first generates initial
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regions of interest (Rol) through a region proposal network
(RPN) and then performs specific classification and regression
predictions using head networks. Building upon Faster R-CNN,
Cascade R-CNN [3] introduces a cascading structure, employ-
ing a series of subnetworks for multistage perception, further
enhancing object detection performance. One-stage methods
directly perform dense classification and bounding box regres-
sion on input images without explicitly generating candidate
regions. EfficientDet [4] achieves improved feature representa-
tion by redesigning the feature pyramid network (FPN) [31]
and proposes a compound scaling method that unifies scale,
depth, and width simultaneously, efficiently utilizing compu-
tational resources. QGL-G [30] is a one-stage object detection
method that adapts to imbalanced positive and negative samples.
The gradient-enhanced function and quality-guided loss in this
method strengthen the utilization of positive samples, ultimately
achieving high efficiency and accuracy.

In recent years, object detection methods based on the trans-
former architecture have also garnered attention. Specifically,
DETR [5] regards the object detection task as a set predic-
tion problem, incorporating a set-based global loss to enforce
one-to-one matching and enabling direct parallel output of the
final prediction set. Based on DETR, H-DETR [32] adopts a
mixed matching scheme, combining original one-to-one match-
ing with auxiliary one-to-many matching during training to
improve detection accuracy. The aforementioned methods of
both architectures are designed for natural image applications.
Given that SAR images have unique imaging mechanisms and
the characteristics of ships differ from objects in natural images,
applying these methods to SAR ship detection tasks may be
subject to certain limitations.

B. Ship Detection in SAR Images

Early-stage SAR ship detection was primarily achieved
through handcrafted features, including the CFAR method [33],
global thresholding method [34], polarization decomposition
method [35], and visual saliency detection method [36]. The
CFAR method [33] is widely used, mainly determining an adap-
tive threshold with a constant false alarm probability based on
statistical characteristics of sea clutter, then employing a sliding
window to search for ships within the background window.
The global thresholding method [34] first establishes a global
threshold using statistical decision-making methods and then
searches bright targets across the entire SAR image to extract
Rol. The polarization decomposition method [35] detects ships
in polarimetric SAR images by exploiting the differences in
the backscattering characteristics between ship targets and sea
clutter. As for the visual saliency detection method [36], it
initially extracts salient regions from the entire scene and then
utilizes local feature relationships in space to construct the visual
saliency map further, thereby uncovering ships. The handcrafted
feature methods lack scene generalization and require complex
theoretical support and extensive human involvement.

Benefiting from the advancements in object detection meth-
ods for natural images, DL-based SAR ship detection meth-
ods have also made significant strides. These methods are
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capable of leveraging large-scale SAR ship datasets to learn
high-performance feature representations, taking into account
the imaging mechanisms of SAR images and the characteristics
of ships [6], [7], [8], [9], [10], [11], [12]. Specifically, Zhang
et al. [6], addressing scenes with clutter interference in SAR
images, proposed a frequency attention mechanism to adaptively
process frequency-domain information in SAR images adap-
tively, thus suppressing sea clutter and enhancing adaptability
to challenging scenarios. Sun et al. [7] integrated attention
feature fusion, depthwise separable convolution, interlayer con-
nections, and multiscale strategies into the network structure,
enabling the network to exhibit high precision and efficiency
while demonstrating outstanding performance in detecting small
targets within SAR images. Huang et al. [8], addressing the
inability of existing SAR ship detectors to express reliability
and interpretability, constructed a Bayesian deep detector to
quantify uncertainty and designed an occlusion-based expla-
nation method to explain SAR scattering features, promoting
the development of interpretable and trustworthy models in
the SAR domain. Wan et al. [9] achieved efficient directional
detection of ships in SAR images by improving model feature
extraction, boundary perception, and label matching. Zhou et al.
[10] introduced a novel SAR ship detection model called the
balanced feature enhanced attention model, which incorporates
the advantages of attention mechanisms and multiscale feature
fusion, demonstrating good adaptability to complex background
interference and varying ship sizes within SAR images. Building
upon a one-stage object detector, Li et al. [11] proposed a new
ship detection network in SAR images. This network robustly
extracts features using a multilevel pyramid and enhances the
network’s adaptability to ship objects by utilizing convolutional
channel attention and task decoupling operations. Overall, the
aforementioned SAR ship detection methods are mainly within
the fully supervised paradigm, exhibiting a strong dependence
on data labels, which undoubtedly requires a substantial amount
of manual annotation costs. This research shifts attention from
fully supervised SAR ship object detection to SSOD, aiming to
achieve SAR ship detection tasks using a limited number of data
labels, thereby reducing label production costs.

C. Semisupervised Object Detection

Driven by the success of semisupervised classification, SSOD
has also received preliminary research attention in recent years.
Compared to conventional object detection, the most significant
feature of SSOD is its relatively weak supervisory information,
which presents challenges for accurate target perception. There-
fore, existing SSOD methods primarily rely on the TSF [13],
[14], [15] for construction. TSF typically consists of teacher and
student networks, sharing similar structures but with different
weights. During semisupervised training, the teacher network
first generates pseudolabels for unlabeled data. These pseu-
dolabels are then used as ground truth to supervise the student
network, facilitating comprehensive training and achieving ac-
curate target perception.

Existing SSOD methods can be categorized into two types
based on their training approaches: multistep training-based
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SSOD [16], [17], [18] and end-to-end training-based SSOD
[19], [20], [21], [22]. Earlier SSOD methods primarily relied
on multistep training, where the teacher network is initially
trained separately on labeled data to achieve initial learning,
followed by predicting unlabeled data to generate pseudolabels
for training the student network. Among these, STAC [16]
enriched pseudolabel information through data augmentation
to facilitate comprehensive knowledge learning by the student
network from unlabeled images. Unbiased Teacher [17] intro-
duced exponential moving average (EMA) [37] into the training
process to enhance training stability. ASTOD [18] supplemented
an additional refining learning step, further training the student
network with labeled data after pseudolabel training to enhance
learning effectiveness. The training steps of those above mul-
tistep training-based SSOD are cumbersome, and the teacher
network is initialized solely based on labeled data, which may
limit detection performance.

In contrast to multistep training-based SSOD, end-to-end
SSOD can optimize both the teacher and student networks
throughout the training process, resulting in better learning ef-
fectiveness. Soft Teacher [19] integrated the reliability measure
of pseudolabels generated by the teacher network as classifica-
tion scores into the design process of the loss function during
end-to-end training, promoting emphasis on high-quality pseu-
dolabels. PseCo [20] learned more robust feature representations
from unlabeled data through feature-level consistency training
and improved the pseudolabel filtering strategy by exploring
more profound rules, thus enhancing detection performance.
LabelMatch [21] guided pseudolabel generation by computing
the label distribution of labeled data and further mined potential
valuable pseudolabels from dense proposals through label min-
ing to guide the student model in making more precise bounding
box predictions. A few recent works have attempted to introduce
SSOD into the domain of SAR ship perception. Specifically,
Zhou et al. [38] proposed the first end-to-end semisupervised
SAR ship detection method, which enhances model robustness
through an interference consistency learning mechanism and
incorporates background knowledge surrounding SAR ships to
calibrate pseudolabels, achieving effective detection of ships
within SAR images. Tian et al. [39] designed a hard-sigmoid
function to weigh the loss of pseudolabeled data and mitigate
the negative impact of pseudolabels on the training process and
further integrated high-quality pseudolabels into retraining by
using a subnetwork for awarding intersection over union (IoU),
thereby promoting the enhanced perception of objects within
SAR images. In this study, we further delve into the research of
SSOD methods and consider inherent challenges such as mul-
tiscale ship feature disparities and indistinct small-sized ships,
aiming to achieve cost-effective and high-quality perception of
SAR ships.

III. METHODOLOGY
A. Problem Description

This research introduces semisupervised learning into SAR
ship object detection, aiming to train the network with a small
amount of labeled data and a large amount of unlabeled data
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to detect ships in images. The training dataset D comprises
two parts: labeled data D; = {I}, L}, and unlabeled data
D, ={I 13}?21’ where N; and N, represent the image quantity
in labeled and unlabeled data, respectively. Typically, the image
quantity NV, in unlabeled data is significantly greater than the
image quantity /V; in labeled data, and it is assumed that labeled
data D; and unlabeled data D,, share the same distribution. For
an image I} in the labeled data, its corresponding annotation L}
consists of bounding box labels and class labels for the objects in
the image. For an image I? in the unlabeled data, pseudolabels
denoted as L; are generated by the teacher network for training
the student network. In summary, SAR ship SSOD trains the
model by jointly using a small amount of labeled data D; and a
large amount of unlabeled data D,, to achieve cost-effective and
high-performance SAR ship perception.

B. Overview of the Proposed SMDC-SSOD

The proposed SMDC-SSOD structure follows TSF, consist-
ing of two detectors: a teacher and student networks. The training
of SMDC-SSOD involves supervised and unsupervised learn-
ing. Fig. 2(a) and (b) represents the overall framework of these
two parts. In the supervised learning part, the student network
is trained with the labeled data D;, following the same training
approach as conventional fully supervised detectors. The unsu-
pervised learning part first subjects the unlabeled data D,, for
weak and strong data augmentation to obtain enhanced data D!,
and D!, respectively, to augment the asymmetry between the
teacher and student networks and construct effective training
signals. Subsequently, the weak enhanced data D!, and strong
enhanced data D! are individually input to the teacher and stu-
dent networks. The teacher network generates pseudolabels for
the unlabeled images, guiding the student network through these
pseudolabels to achieve high-quality ship detection. During the
training phase, the teacher network updates model weights from
the student network via EMA [37], promoting training stability.
In the training process of SMDC-SSOD, supervised and un-
supervised learning co-occur, randomly sampling labeled and
unlabeled images at a preset ratio to form a data batch, enabling
end-to-end training.

The core components of SMDC-SSOD include the CSFM
scheme, SCCG strategy, and PCG strategy. Among these, the
CSFM scheme acts on both the teacher and student networks,
comprising interpyramid feature cross-scale mixing and in-
trapyramid feature cross-scale mixing. The former enhances the
network’s adaptability to multiscale ship feature differences by
blending pyramid features from different views. At the same
time, the latter efficiently captures significant semantic infor-
mation using content-aware feature reassembly and passes it
level by level to the bottom of the pyramid, achieving a thor-
ough mixing of intrapyramid features and increasing attention
to small-sized ship features. The SCCG strategy provides a
pseudolabel filtering indicator based on variations in confidence
scores at different scales to help the teacher network filter
valuable pseudolabels from predictions of the teacher network,
thereby providing more precise guidance to the student network.
The PCG strategy further reflects the quality of pseudolabels by
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leveraging the consistency of proposals generated by the student
network, guiding the student network to make high-quality
bounding box predictions.

C. Cross-Scale Feature Mixing Scheme

Compared with object detection in natural scenes, SAR ship
detection tasks often exhibit multiscale feature differences due
to the diversity of ship physical sizes and SAR image resolutions.
Furthermore, small ships in SAR images often appear indistinct
due to their limited pixel occupancy, quickly submerging them
in sea clutter and speckle noise. To address this, we propose
the CSFM scheme to achieve CSFM from interpyramid and
intrapyramid perspectives. The interpyramid feature cross-scale
mixing constructs richer feature representations with the help
of downsampled views and achieves efficient feature interac-
tions by mixing feature pyramids in different views, improv-
ing the network’s adaptability to the differences in multiscale
ship features. Intrapyramid CSFM utilizes content-aware feature
reassembly to fully capture significant semantic information,
progressively propagating semantic information down to the
pyramid base to achieve comprehensive feature mixing, enhanc-
ing focus on small-sized ship features.

In terms of interpyramid CSFM, akin to the idea of enhancing
perceptual capabilities by incorporating additional views [22],
[40], we first downsample the input network’s image I by a factor
of 0.5 to obtain its downsampled view represented as I;. If the
input network is the teacher network, then I € D/ ; if the input
network is the student network, then I € D!. Subsequently, [
and [; are subjected to feature extraction separately to obtain
conventional-scale feature pyramid P, = {p’}%_, and small-
scale feature pyramid P = {p}%_,. Next, dynamic weighted
fusion is applied to adjacent-level features P, and P; at the same
scale in conventional-scale feature pyramid p! and small-scale
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Student network

4 i
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Overall framework of SMDC-SSOD. (a) Overall framework of the supervised learning part. (b) Overall framework of the unsupervised learning part. For

feature pyramid p’, to achieve cross-scale feature fusion, yielding
the mixed-scale feature pyramid P, = {pi,}¢_,. It is worth
noting that since feature p? at the conventional-scale feature
pyramid P, does not exist at the adjacent level at the same
scale in the small-scale feature pyramid P, feature p2, in the
mixed-scale feature pyramid P, is a direct copy of p? from
the conventional-scale feature pyramid P.. While training on
unlabeled data, the teacher network generates higher quality
pseudolabel L,, through the cross-scale mixed feature pyramid
P,,, because it contains rich multiscale information; the student
network inputs the small-scale, mixed-scale, and conventional-
scale feature pyramids P, P,,, and P,, respectively, into the
head network to obtain three-scale outputs R, R,,, and R..
Ultimately, by treating the pseudolabel L, generated by the
teacher network as ground truth, we efficiently supervise the
student network’s output predictions R, R,,, and R, achieving
multiscale training. Fig. 3 illustrates the interpyramid feature
cross-scale mixing in the CSFM scheme. The small-scale and
mixed-scale feature pyramids are only used during training to
assist the network in efficient perception. As shown by the red
curve in Fig. 3, during the testing phase, the student network
removes the small-scale and mixed-scale components, only em-
ploying the conventional-scale feature pyramid P, for prediction
and considering the prediction result R, corresponding to P, as
the final output to reduce model complexity.

In terms of intrapyramid CSFM, we efficiently capture salient
semantic information in the feature map over a sizeable recep-
tive field through content-aware feature reassembly [41] and
progressively propagate the semantic information down to the
pyramid base, achieving comprehensive feature fusion within
the pyramid and enhancing focus on small-sized ship features.
As shown in Fig. 4, content-aware feature reassembly involves
two steps: kernel prediction and feature reassembly. Taking
the spatial position | = (7, 7) in the input feature map F as
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an example, the kernel prediction process aims to generate an
adaptive feature reassembly kernel 1 for the spatial position
[ in a content-aware manner based on the k£ x k neighborhood
of the feature F; at the spatial position / in the input feature
map F. Specifically, for an input feature map F with dimen-
sions of H x W x C, a 1 x 1 convolution is first used to
compress its channel dimension, resulting in a feature map
F’ with dimensions of H x W x C’, reducing parameters and
computational load. Subsequently, the compressed feature map
I’ is encoded using a content encoding operation to obtain a
reassembly kernel with dimensions of H x W x (£2k?), where
¢ represents the upsample ratio. The content encoding operation
here is constructed through a convolution with a kernel size of &,
which can effectively leverage the content information of input
features and achieve a richer feature representation. Next, the
pixel shuffling operation [42] reshapes the reassembly kernel
to eH x eW x k2. Finally, the softmax function is applied to
normalize the reassembly kernel, obtaining the weight of each
subcontent relative to the total content and acquiring the adaptive
feature reassembly kernel W“. Therefore, for the feature F;
at the spatial position / in the input feature map F, the afore-
mentioned kernel prediction process can be represented by the
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following formula:
W = softmax(shifle( fo(f.(F7|0.)]0c))) (1

where W represents the reassembly kernel weights correspond-
ingto Fy, f.(:|6) is the content encoding operation, and f.(+|6.)
represents the channel compression operation.

Furthermore, the feature reassembly step utilizes the reassem-
bly kernel to generate the final upsampled feature map F'* from
the input feature map F, as depicted in Fig. 4. Taking the spatial
position [ = (4, j) in the input feature map F as an example,
the calculation of the output F}}* after feature reassembly is as
follows:

Flv’l = Z Z Vvll,l(’rL,7n)F(i+n7i+m) (2)

neAmeA

where [’ represents the spatial position in the upsampled fea-
ture map F'“ corresponding to the spatial position / in the
input feature map F, and A denotes the k£ x k neighborhood
around the feature Fj. By predicting feature upsampling out-
put using content-aware adaptive reassembly kernel W%, we
can efficiently focus more on significant semantic information
near the original spatial position over a larger receptive field,
thus obtaining a more vital upsampled feature map F™ than
the original feature map. We utilize those above high-quality
upsampled feature map ™ to replace the nearest-neighbor in-
terpolated output in both the conventional-scale and small-scale
feature pyramids of the teacher and student networks, facilitating
efficient propagation of strong semantic information from the top
to the bottom of the pyramid, thus achieving thorough attention
to small-sized ship features.

D. Scale Change Consistency Guidance Policy

In SSOD, the pseudolabels generated by the teacher network
directly impact the learning quality of the student network.
High-quality pseudolabels can effectively guide the student
network, improving its performance in boundary box prediction.
The insufficient quantity or poor quality of pseudolabels can
result in inadequate or inaccurate supervision for the student
network, consequently affecting the detection performance. Pre-
vious work primarily filtered the predictions of the teacher net-
work using a fixed high-confidence score threshold to generate
pseudolabels for the teacher network to learn. This approach
is overly simplistic and may lead to valuable pseudolabels
being overlooked. Inspired by [22], we introduce the SCCG
strategy, which designs pseudolabel filtering criteria based on
the consistency of confidence scores at different scales, aiding
SMDC-SSOD in selecting more valuable pseudolabels from the
predictions of the teacher network, thus providing more precise
guidance for the student network.

Specifically, existing object detectors often enhance their
ability to describe objects by assigning multiple proposals.
Therefore, we initially treat each low-quality candidate output
from the RPN in the teacher network as a bag of proposals,
denoted as () = {qi}fv:"l, where NN, represents the number of
proposals in the bag of predictions. Subsequently, taking the
Rol corresponding to proposal ¢; and the FPN as inputs to
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the classification head in the teacher network, we obtain the
confidence scores S;. and .S}, for the proposal ¢; at standard
scale and mixed scale, expressed as follows:

St = he(R(qi), Pnl6.) 4

where h.(-|0x,) denotes the classification head within the
teacher network, R(q;) represents the Rol corresponding to the
proposal g;, and P, and P, represent FPN at conventional and
mixed scales, respectively. Finally, we calculate the average con-
fidence score improvement for each proposal from conventional
scale to mixed scale, considering it as the filtering criterion for
pseudolabels, which is computed as follows:

Nq
> (Sh = Sh). )

i=1

1
AS = —

Ny

When AS is relatively high, indicating that the scale mix-
ing operation can bring substantial benefits, we consider the
prediction result valuable for enhancing the student network’s
adaptability to scale variations. Thus, prediction results with
AS more significant than the threshold ¢ is included in the
pseudolabels, providing guidance for the student network and
high-confidence prediction results, thereby facilitating better
prediction outcomes. In general, SCCG benefits from the cross-
scale feature fusion across pyramids in the CSFM scheme, and
by leveraging changes in confidence scores at different scales,
it designs filtering criteria for pseudolabels, enabling further
exploration of more valuable pseudolabels from the teacher
network predictions and providing more prosperous guidance

for the student network.

E. Proposal Consistency Guidance Policy

In the unsupervised learning component of SMDC-SSOD, the
high-score threshold and SCCG strategy can effectively extract
high-quality pseudolabels from the teacher network’s predic-
tions to provide supervisory information for the student network.
Considering that the consistency between pseudoboxes and the
corresponding proposals generated by the student network can,
to some extent, reflect the quality of the pseudoboxes [40], we
design the PCG strategy to guide the student network through
the consistency of proposals generated by the student network,
aiming to facilitate high-quality boundary box predictions and
further enhance its detection performance.

Specifically, if a pseudolabel box exhibits high consistency
with a series of proposals generated by the student network, it
indicates higher quality. Taking pseudobox b as an example, its
consistency C with proposals generated by the student network
can be calculated by the following formula:

NP
Ct =N, > g 6)
1=1

where g? represents the consistency between pseudobox b and
the ith proposal generated by the student network, and N,
denotes the number of positive samples assigned to pseudobox
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b, which acts as a normalizer. In the PCG strategy, g? is instan-
tiated as the IoU between the predicted box and the pseudobox,
providing an intuitive reflection of the consistency between the
pseudobox and the proposal, with values ranging from O to 1.
In the unsupervised learning component of SMDC-SSOD, the
consistency between pseudoboxes and a series of corresponding
proposals generated by the student network is used as instance-
wise regression loss weights, guiding the student network to
pay more attention to high-quality pseudoboxes during training,
thereby enabling higher quality boundary box predictions for
ships in SAR images.

IV. EXPERIMENT AND RESULTS
A. Dataset

1) HRSID: The dataset [43], widely utilized in SAR ship
perception tasks [44], [45], [46], [47], comprises 5604 SAR
image samples with a total of 16 951 ships, sourced from the
European Space Agency’s Sentinel-1 satellite and the German
TerraSAR-X. The images have an average size of 800 x 800
with spatial resolutions ranging from 0.5 to 3 m and polarization
modes including HH, HV, and VV. The dataset encompasses
ships in varied environmental conditions, both favorable and
adverse sea states, and complex coastal and simple offshore
scenes. In our experiments, we randomly allocated 35% of the
images to the test set (1961 images) while selecting 1%, 2%,
5%, and 10% of the remaining 65% of images (3643 images)
for training, utilizing their labels.

2) BBox-SSDD: This dataset was obtained by Zhang et al.
[48] on the early SSDD dataset initially established by Li et al.
[49], which provides 1160 SAR image samples with an average
size of 500 x 500, covering various polarization modes. This
dataset contains 2587 ships, exhibiting significant scale vari-
ations, from the smallest ship occupying only 20 pixels to the
largest ship spanning 55 440 pixels. A total of 35% of the images
are designated for the test set, while 65% comprise the training
set. During semisupervised training, we randomly obtain 1%,
2%, 5%, and 10% of the images from the training set to utilize
their labels during training.

3) SAR-Ship-Dataset: The dataset [50] is obtained through
the Gaofen-3 satellite and Sentinel-1 satellite and comprises
43 819 images, including multiple sources and modes. Each im-
age has dimensions of 256 x 256, with resolutions ranging from
3 to 25 m. Similar to the partitioning method used for HRSID and
BBox-SSDD, we also allocated 65% of the SAR-Ship-Dataset
for training, with the remainder designated for testing, where
1%, 2%, 5%, and 10% of the images in the training set were
chosen to utilize their labels in the semisupervised learning
process.

B. Implementation Details

The proposed SMDC-SSOD is implemented using PyTorch,
with the GPU being the NVIDIA Tesla A100. Both the teacher
and student networks are based on Faster R-CNN, utilizing a
pretrained ResNet-50 from ImageNet as the backbone network
and optimized using stochastic gradient descent with a learning
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TABLE I
QUALITATIVE DETECTION RESULTS OF VARIOUS SSOD METHODS ON HRSID

Percentage Method AP APs AP7s APsg APy APL
Supervised baseline 38.6 62.3 42.6 41.0 34.0 0
Unbiased Teacher [17] 39.2 73.5 37.9 433 24.0 0
Soft Teacher [19] 42.9 70.3 46.0 454 40.3 2.1
1% PseCo [20] 43.5 71.7 46.1 46.0 40.0 2.6
ASTOD [18] 422 70.1 454 45.7 38.2 23
MixTeacher [22] 43.7 73.2 459 46.1 37.8 4.0
SMDC-SSOD 44.8 74.2 50.7 46.5 43.9 2.4
Supervised baseline 42.4 66.3 47.9 453 33.1 1.2
Unbiased Teacher [17] 44.8 70.8 50.9 47.9 35.1 2.5
Soft Teacher [19] 46.4 72.2 53.8 49.4 37.1 3.7
2% PseCo [20] 46.9 71.8 53.9 50.3 38.3 3.1
ASTOD [18] 46.5 72.7 533 48.0 36.2 42
MixTeacher [22] 46.9 73.6 53.8 50.3 38.0 4.7
SMDC-SSOD 48.2 76.2 54.5 51.9 37.7 5.8
Supervised baseline 47.8 74.6 54.1 50.1 433 2.8
Unbiased Teacher [17] 48.4 74.1 55.5 50.8 444 5.0
Soft Teacher [19] 49.7 75.2 57.2 51.5 46.5 6.2
5% PseCo [20] 49.8 75.8 56.4 52.2 46.4 8.2
ASTOD [18] 49.2 75.9 56.5 51.3 46.0 5.5
MixTeacher [22] 514 78.8 58.3 53.8 46.3 7.4
SMDC-SSOD 52.3 80.0 58.2 54.9 48.2 8.9
Supervised baseline 50.1 75.9 57.5 52.2 479 4.7
Unbiased Teacher [17] 50.9 76.2 58.2 53.0 48.7 6.8
Soft Teacher [19] 51.5 76.3 58.1 53.5 48.6 10.8
10% PseCo [20] 51.7 78.7 583 533 50.2 8.0
ASTOD [18] 51.2 77.0 57.8 52.9 51.0 9.4
MixTeacher [22] 51.7 79.1 58.4 53.7 49.4 7.3
SMDC-SSOD 53.4 80.5 60.2 55.6 51.7 9.6

The bold values indicate the best performance under their corresponding label annotation percentages.

rate of 2.5e-3, momentum of 0.9, weight decay of le-4, and a
total of 18k iterations, reducing the learning rate to one-tenth
at 11k and 16k iterations. Weak and strong data augmentations
in the teacher and student networks are consistent with Soft
Teacher. The neighborhood size in the CSFM scheme is set to
5 x5, and the unsupervised learning component only involves
the intrapyramid feature cross-scale mixing. The threshold AS
for the pseudolabel screening indicator ¢ is set to 0.1. During
training, teacher network predictions with confidence scores
greater than 0.9 are directly considered pseudolabels, and pseu-
dolabels are selected using the SCCG strategy from teacher
network predictions with confidence scores ranging from 0.7
to 0.9.

C. Evaluation Metrics

This study employs the evaluation metrics from the MS-
COCO dataset [51] to validate detection performance, primarily
including AP, AP5y, AP75, APg, APy, and APy,. Here, AP is
the average of multiple average precisions under different loU
thresholds from 0.5 to 0.95 at intervals of 0.05. AP5q and AP75
represent the average precision at IoU thresholds of 0.5 and
0.75, respectively. Furthermore, APg, APy, and APy, represent
the detection performance for ships of varying sizes, where

APg applies to small ships (area < 32 x 32), APy corresponds
to medium-sized ships (32 x 32 < area < 96 x 96), and APy,
focuses on larger targets (area > 96 x 96).

D. Comparative Experimental Results

In this section, we present the detection performance of
SMDC-SSOD on the HRSID, BBox-SSDD, and SAR-Ship-
Dataset with labeled data proportions of 1%, 2%, 5%, and 10%,
comparing it against supervised baseline and various state-of-
the-art SSOD methods such as Unbiased Teacher [17], Soft
Teacher [19], PseCo [20], ASTOD [18] and MixTeacher [22]
to comprehensively validate the effectiveness of SMDC-SSOD
in detecting ships in SAR images. The network architecture of
the supervised baseline is the standard Faster R-CNN [2], com-
prising ResNet, FPN, RPN, classification head, and regression
head, and it adopts the same data augmentation methods as those
in the student network within SMDC-SSOD.

1) Experimental Results on HRSID: Table I illustrates the
detection performance of SMDC-SSOD and its comparative
methods on HRSID with labeled data proportions of 1%, 2%,
5%, and 10%. Because the supervised baseline merely utilizes
labeled data for training without effectively utilizing unlabeled
data, its overall detection performance is weaker than SSOD
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Ground truth

1%

Fig. 5.

methods. At a labeled data proportion of 1%, SMDC-SSOD
achieves acommendable performance of 44.8 AP, surpassing the
multistage trained SSOD method Unbiased Teacher and ASTOD
by 5.6 AP and 2.6 AP, respectively. It also outperforms various
end-to-end trained SSOD methods. Therefore, the proposed
SMDC-SSOD can effectively perceive ships in SAR images.
Furthermore, as the labeled data proportion gradually increases,
the detection performance of all methods also improves. At
a labeled data proportion of 5%, SMDC-SSOD achieves an
AP of 52.3, not only surpassing the six comparative methods
at the same labeled data proportion but also outperforming
the six comparative methods at a labeled data proportion of
10%, further demonstrating the outstanding performance of the
proposed method in ship detection in SAR images. Overall, our
SMDC-SSOD consistently outperforms other semisupervised
detection methods at labeled data proportions of 1%, 2%, 5%,
and 10%, demonstrating its strong ship perception capabilities
under conditions of limited labeled data.

In addition to quantitative detection results, we also visualize
the SAR ship detection results on HRSID. Fig. 5 reflects the
detection performance of SMDC-SSOD at different labeled data
proportions. It can be observed that at a labeled data proportion
of 1%, some background in the images is falsely recognized as
ships, resulting in numerous false alarms (false positives). In
addition, SMDC-SSOD exhibits a significant number of missed
detections (false negatives) for small-scale ships in the lower
portion of Fig. 5. As the labeled data proportion gradually
increases, the occurrences of false alarms and missed detec-
tions also improve. Under a labeled data proportion of 10%,
SMDC-SSOD shows no false alarms in the upper portion of
Fig. 5 and a noticeable improvement in missed detections for
the smaller ships in the lower portion of Fig. 5. Fig. 6 illustrates
the qualitative experimental results of SMDC-SSOD compared

2%

2%
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Qualitative results of SMDC-SSOD on HRSID at various labeled data proportions.

to semisupervised detection methods at a labeled data propor-
tion of 10%. Due to space constraints, we have only visual-
ized the quantitative results of the supervised baseline and the
comparative methods with good quantitative performance,
PseCo and MixTeacher, to compare them with our proposed
SMDC-SSOD qualitatively. While the supervised baseline,
PseCo, and MixTeacher can detect most ships, they exhibit a
certain degree of false alarms and missed detections, particularly
evident in the more complex scenes in the first three columns.
In comparison, although our SMDC-SSOD also shows a few
false alarms and missed detections, its detection results better
align with the ground truth in the first row, indicating that the
proposed SMDC-SSOD demonstrates stronger ship perception
capabilities in SAR images.

2) Experimental Results on BBox-SSDD: Table Il reflects the
detection performance of various methods on BBox-SSDD at
labeled data proportions of 1%, 2%, 5%, and 10%. Because
the supervised baseline only utilizes labeled data for training
without effectively using unlabeled data, when the labeled data
is at 1%, the supervised baseline achieves an AP of only 28.8,
significantly lower than the AP of SMDC-SSOD. Moreover, the
AP values of semisupervised methods such as Unbiased Teacher
and MixTeacher are also lower than that of SMDC-SSOD,
indicating the superior SAR ship detection capability of the
proposed SMDC-SSOD compared to the comparative methods.
Similar to the HRSID, the detection performance of all methods
on BBox-SSDD also improves as the proportion of labeled data
increases. When the proportion of labeled annotations reaches
10%, SMDC-SSOD achieves an AP of 61.6, which is 6.2 higher
than the supervised baseline. In addition, it surpasses the semisu-
pervised methods such as Unbiased Teacher, Soft Teacher,
PseCo, ASTOD, and MixTeacher by 5.1, 3.3, 2.1, 3.4, and 1.0,
respectively, further demonstrating the outstanding performance



15694

Ground truth

Supervised B
baseline

Fig. 6.

Qualitative results comparing various SSOD methods on HRSID.

of the proposed SMDC-SSOD in SAR ship object detection. Fur-
thermore, the fluctuation range of APL is relatively large due to
the relatively small scale of BBox-SSDD and the low proportion
of large ships (approximately 2%). The proposed SMDC-SSOD
exhibits better segmentation performance at various labeled data
proportions than the comparative methods due to its cross-scale
feature fusion scheme and two consistency-guided strategies.
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Fig. 7 also demonstrates the detection performance of
SMDC-SSOD at various labeled data proportions. At a labeled
data proportion of 1%, there are numerous false alarms in the
upper portion, incorrectly identifying objects in the background
as ships, while the lower portion exhibits a significant number of
missed detections. As the labeled data increases, the detection
performance of SMDC-SSOD gradually improves, with the
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TABLE IT
QUALITATIVE DETECTION RESULTS OF VARIOUS SSOD METHODS ON BBOX-SSDD

Percentage Method AP APs AP7s APg APym APL
Supervised baseline 28.8 57.4 22.4 38.3 8.2 0.9

Unbiased Teacher [17] 30.0 59.1 28.1 40.0 10.1 1.5

Soft Teacher [19] 30.9 58.5 29.4 39.7 13.6 9.3

1% PseCo [20] 31.7 584 29.9 40.7 12.4 4.7
ASTOD [18] 30.3 58.5 28.6 39.9 12.0 7.4

MixTeacher [22] 32.0 59.1 314 413 11.9 12.8

SMDC-SSOD 33.7 60.9 33.3 43.5 12.1 8.4

Supervised baseline 43.6 71.8 49.2 50.0 18.3 13.0

Unbiased Teacher [17] 45.4 78.6 51.7 50.4 32.8 153

Soft Teacher [19] 46.5 77.5 52.5 50.9 34.0 22.7

2% PseCo [20] 483 80.4 54.6 53.7 353 17.7
ASTOD [18] 47.0 78.2 52.6 51.5 33.7 19.4

MixTeacher [22] 49.6 82.9 55.5 54.8 36.9 94

SMDC-SSOD 50.8 82.4 57.1 55.0 39.7 25.1

Supervised baseline 49.7 83.0 54.1 54.2 394 2.3

Unbiased Teacher [17] 51.5 84.3 58.7 55.6 49.3 15.2

Soft Teacher [19] 53.6 84.1 63.4 55.0 52.0 26.8

5% PseCo [20] 55.2 854 65.7 59.7 534 20.2
ASTOD [18] 52.8 83.9 61.5 55.4 523 22.6

MixTeacher [22] 54.9 85.6 66.3 56.5 52.8 18.7

SMDC-SSOD 56.5 87.3 68.1 59.5 54.3 30.2

Supervised baseline 55.4 87.6 64.7 58.8 47.9 20.3

Unbiased Teacher [17] 56.5 88.0 68.1 60.6 48.4 8.7
Soft Teacher [19] 58.3 89.7 70.4 59.2 56.4 324

10% PseCo [20] 59.5 90.8 70.7 62.1 54.2 18.5
ASTOD [18] 58.2 89.2 69.7 61.4 52.6 26.4

MixTeacher [22] 60.6 92.5 72.0 63.2 54.1 27.3

SMDC-SSOD 61.6 93.6 73.1 64.0 58.1 31.3

The bold values indicate the best performance under their corresponding label annotation percentages.

Ground truth 1%

Fig. 7.

occurrences of false alarms and missed detections gradually
ameliorating. Fig. 8 reports the qualitative experimental results
of semisupervised methods in BBox-SSDD. In the scenes de-
picted in the first column, the supervised baseline fails to detect
ships and exhibits false alarms. Pseco also shows occurrences of
false alarms, while MixTeacher, although devoid of false alarms,
does not effectively align its detected bounding boxes with

Qualitative results of SMDC-SSOD on BBox-SSDD at various labeled data proportions.

the ground truth. In comparison, our proposed SMDC-SSOD
exhibits no false alarm occurrences and better aligns with the
ground truth in the first row. The supervised baseline shows false
alarms and missed detections in the second column, and PseCo
and MixTeacher show two false alarms. In contrast, our SMDC-
SSOD shows better performance with no missed detections
and only one false alarm. In the third column, where numerous
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Qualitative results comparing various SSOD methods on BBox-SSDD.

small targets are present, all comparative methods exhibit a
certain degree of missed detections. Our SMDC-SSOD can
detect most ships except for extremely tiny targets. In the fourth
column, the supervised baseline displays missed detections,
and PseCo and MixTeacher experience significant false alarms.
Despite misidentifying one object in the background as a
ship, our proposed SMDC-SSOD outperforms the comparative
methods. In summary, our SMDC-SSOD demonstrates a better
perception of ships for images in BBox-SSDD.

3) Experimental Results on SAR-Ship-Dataset: Table III re-
ports the quantitative detection results on the SAR-Ship-Dataset,
showcasing only the AP values to avoid excessive length. It can
be observed that as the proportion of annotated data increases,
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the overall detection performance gradually improves. Due to
the inability of the supervised baseline to effectively utilize
unlabeled data, its detection performance is weaker than that
of all SSOD methods with the same annotation ratio. At a
labeled data proportion of 1%, our proposed SMDC-SSOD
not only surpasses the supervised baseline by 4.0 in terms of
AP but also outperforms the best-performing SSOD method,
MixTeacher, by 0.8, highlighting the positive role of CSFM
and dual-consistency guidance. When the labeled data accounts
for 2%, 5%, and 10%, our SMDC-SSOD also demonstrates
satisfactory overall performance, with AP values surpassing the
supervised baseline by 3.7, 2.8, and 3.5, respectively, and out-
performing other SSOD methods at the same annotation ratios.
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TABLE III
QUALITATIVE DETECTION RESULTS OF VARIOUS SSOD METHODS ON SAR-SHIP-DATASET

Method 1% 2% 5% 10%
Supervised baseline 40.5 43.7 45.8 47.3
Unbiased Teacher [17] 423 44.2 46.5 47.6
Soft Teacher [19] 434 44.0 46.7 48.5
PseCo [20] 43.8 45.6 47.1 49.0
ASTOD [18] 429 44.9 46.9 48.2
MixTeacher [22] 43.7 46.5 474 49.4
SMDC-SSOD 44.5 47.4 48.6 50.8

The bold values indicate the best performance.

B = 3
Supervised baseline

Fig. 9.

Thus, our SMDC-SSOD showcases excellent ship perception
capabilities on the SAR-Ship-Dataset.

We also present the qualitative experimental results on the
SAR-Ship-Dataset in Fig. 9. In the first row, the supervised base-
line exhibits both missed detections and false alarms, and PseCo
shows instances of missed detections. Although MixTeacher
does not display missed detections or false alarms, its detected
bounding boxes for some ships deviate significantly from the
ground truth. Therefore, the detection of these three comparative
methods is unsatisfactory. In contrast, our SMDC-SSOD avoids
missed detections and false alarms and demonstrates a higher
degree of alignment between the detected bounding boxes and
the ground truth. In the second row with intense speckle noise,
the number of ships detected by the supervised baseline and
PseCo does not align with the ground truth. The alignment of
MixTeacher’s detected bounding boxes with the ground truth
is lower compared to our proposed SMDC-SSOD. Through the
analysis above, it is evident that our proposed SMDC-SSOD
exhibits superior detection performance.

4) Model Complexity Comparison: Table IV reports the
floating point operations per second (FLOPs) of the proposed

for -2
SMDC-SSOD

MixTeacher

Qualitative results comparing various SSOD methods on SAR-ship-dataset.

TABLE IV
MODEL COMPLEXITY COMPARISON

Method FLOPs/G
Unbiased Teacher [17] 204.1
Soft Teacher [19] 202.3
PseCo [20] 203.2
MixTeacher [22] 202.3
SMDC-SSOD 205.3

SMDC-SSOD and comparative methods to reflect the com-
plexity of each model. Since Unbiased Teacher, Soft Teacher,
PseCo, and MixTeacher are all based on the design of Faster
R-CNN, their overall structures are similar, thus resulting in
similar FLOPs (minor discrepancies might arise from specific
implementation differences). Furthermore, due to the slight
adjustments to the model structure in the intrapyramid feature
cross-scale mixing part of the CSFM scheme within SMDC-
SSOD, its FLOPs have a slightly higher value compared to
Unbiased Teacher, Soft Teacher, PseCo, and MixTeacher, but
this increase is minimal. Combined with the qualitative detection
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TABLE V
ABLATION EXPERIMENTS OF CORE COMPONENTS ON HISID

Method CSFM SVCG PCG AP AP50 AP75 APS APM APL FPS
Baseline 51.0 766 578 529 484 8.2 26.2
v 523 789 589 544  50.1 95 25.5
Components \ 517 772 583 527 495 73 26.2
P v \ 528 796 598 550 50.8 88 255
v v 530 798 596 549 509 10.0 254
SMDC-SSOD v v v 534 805 602 556 517 9.6 25.4
TABLE VI
ABLATION EXPERIMENTS OF CORE COMPONENTS ON BBOX-SSDD
Method CSFM SCCG PCG AP  APs, AP;s APs APy  AP.  FPS
Baseline 577  89.0 693 589 541 17.0 324
\ 599 916 712 618 564 267 315
Components N 586 889 707 598 544 124 323
P v v 605 923 724 629 538 205 315
v v 608 931 722 627 575 156 315
SMDC-SSOD \ \ \ 61.6 936 731 640 581 313 314
TABLE VII

results, itis evident that our SMDC-SSOD achieves high-quality
detection performance without significantly increasing com-
plexity.

E. Ablation Experiments

1) Analysis of Core Components in SMDC-SSOD: In order
to validate the contribution of the CSFM scheme, SCCG strategy,
and PCG strategy in the proposed SMDC-SSOD for SAR ship
detection, detailed ablation experiments were conducted, as
given in Tables V and VI. In the experiment, SMDC-SSOD
without the CSFM scheme, SCCG strategy, and PCG strategy
were considered the baseline, and all experiments in this section
were performed with a labeled data proportion of 10%. It can
be observed that with the introduction of the CSFM scheme,
SMDC-SSOD achieved a certain improvement in AP values on
HRSID and SSDD, indicating that cross-scale feature fusion
plays a positive role in enhancing the perception capability
of ships in SAR images. Benefiting from the SCCG strategy,
designed to filter pseudolabels based on confidence score vari-
ations at different scales, and the PCG strategy, which utilizes
the consistency of proposals generated by the student network
to reflect the quality of pseudolabels further, the detection per-
formance of SMDC-SSOD on HRSID and SSDD was enhanced
upon the introduction of the SCCG and PCG strategies. Overall,
the detection performance of SMDC-SSOD, incorporating the
CSFM scheme, SCCG strategy, and PCG strategy, reached an
optimal level, further demonstrating the positive significance of
the three designed components for SAR ship detection.

In addition to the detection performance metrics, we reported
the frames per second (FPS) in Tables V and VI to compre-
hensively reflect the model’s performance. Regarding inference
speed, introducing the CSFM scheme led to a slight decrease
in FPS for SMDC-SSOD. As the SCCG and PCG strategies are
only used during the training process, their introduction did not

ABLATION EXPERIMENTS OF CSFM IN THE CSFM SCHEME

Dataset Operation AP APsy AP;s APs APy APL
Bascline 510 766 578 520 484 82
+Inter 519 78.0 58.6 539 493 7.9
HRSID e 516 771 585 528 488 87
Al 523 789 589 544 501 9.5
Bascline 57.7 89.0 69.3 589 54.1 17.0
BBox- +Inter 59.0 905 704 60.6 55.1 162
SSDD  +Intra 585 904 703 603 550 29.1
+All 599 91.6 712 61.8 564 267

Note: "Inter" and "Intra" denote inter-pyramid and intra-pyramid feature
cross-scale mixings, respectively. "All" signifies the presence of both types of
feature cross-scale mixings, thus constituting a comprehensive CSFM scheme.

significantly alter the inference speed of SMDC-SSOD, with
only minor fluctuations in FPS. Overall, our CSFM scheme,
SCCQG strategy, and PCG strategy had minimal impact on the
model’s inference speed.

2) Analysis of Feature Cross-Scale Mixing in the CSFM
Scheme: The CSFM scheme can achieve CSFM from both inter-
pyramid and intrapyramid aspects. Further ablation experiments
were conducted on these two components of CSFM to verify
their impact on ship detection performance. The experimental
results are presented in Table VII, with the baseline identical to
that in Tables V and V1. On HRSID, the introduction of CSFM
between and within pyramids resulted in a certain improvement
in AP for SMDC-SSOD, indicating their ability to facilitate
more accurate ship detection in SAR images. In BBox-SSDD,
with the introduction of interpyramid feature cross-scale mix-
ing, SMDC-SSOD’s AP increased by 1.3. When intrapyramid
feature cross-scale mixing was added, SMDC-SSOD’s AP im-
proved by 0.8 compared to the baseline. With both introduced,
SMDC-SSOD’s AP increased by 2.2 compared to the baseline.



CHEN et al.: SCALE-MIXING ENHANCEMENT AND DUAL CONSISTENCY GUIDANCE FOR END-TO-END SEMISUPERVISED SHIP DETECTION

TABLE VIII
ABLATION EXPERIMENTS OF THE NEIGHBORHOOD SIZE IN THE CSFM SCHEME

Dataset Size AP APSO AP75 Aps APM AP]_
3x3 52.0 78.5 58.7 54.0 49.6 8.9
HRSID 5x5 523 789 589 544 50.1 95
TxT 52.2 78.7 59.1 543 499 938
BBox- 3x3 594 91.0 70.8 61.2 557 19.3
SSDD 5x5 599 916 71.2 61.8 564 26.7
7x7 60.1 914 712 61.5 56.1 30.3
TABLE IX

ABLATION EXPERIMENTS OF THE THRESHOLD FOR PSEUDOLABEL FILTERING
METRICS IN THE SCCG STRATEGY

Dataset None ¢=0.05 ¢=0.1 ¢=0.15 ¢=0.2
HRSID 523 527 53.0 52.5 52.4
BBox-SSDD 59.9 60.4 60.8 60.1 59.9

Note: "None" indicates the absence of the SCCG strategy.

Therefore, both interpyramid and intrapyramid CSFMs have a
positive impact on SAR ship detection.

3) Analysis of Neighborhood Size in the CSFM Scheme:
Since the neighborhood size in the kernel prediction of the
CSFM scheme may influence the detection performance of
the model, we conducted ablation experiments, and the results
are documented in Table VIII. It can be observed that when
the neighborhood size in the CSFM scheme is set to 3 x
3, the AP values on HRSID and BBox-SSDD are 52.0 and
59.4, respectively, which are lower compared to the detection
performance when the neighborhood size is setto 5 x 5and 7 x
7. When the neighborhood size is 5 x 5 and 7 x 7, the proposed
method achieves an AP of 52.3 and 52.2 on HRSID, respectively,
with a minimal difference. For BBox-SSDD, the detection per-
formance is also quite similar when the neighborhood size is
5 x 5and 7 x 7. Considering that a larger neighborhood size
would increase computational complexity, we choose 5 x 5 as
the default setting.

4) Threshold Analysis of Pseudolabel Filtering Metrics in the
SCCG Strategy: Considering that the threshold of pseudolabel
filtering metrics in the SCCG strategy may affect pseudolabel
filtering, we conducted ablation experiments for it, as given in
Table IX. It is evident that without the SCCG strategy, SMDC-
SSOD exhibited the poorest detection performance. When the
threshold value was set at 0.1, SMDC-SSOD achieved the
best detection performance on HRSID and BBox-SSDD, with
AP values of 53.0 and 60.8, respectively, indicating that this
threshold effectively distinguished valuable predictions for the
teacher network, thereby guiding the student network to obtain
better predictions. Setting the threshold at 0.15 and 0.2 led to
overly stringent filtering by the teacher network, suppressing
valuable predictions, thus yielding less noticeable improvements
in SMDC-SSOD’s detection performance. Overall, a threshold
of 0.1 for the pseudolabel filtering metric in the SCCG strategy
yielded the best perception of ships in SAR images by SMDC-
SSOD, leading us to set this threshold at 0.1 in our study.
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V. DISCUSSION

In this study, we focused on the strong dependence on data
labels, the significant impact of pseudolabels, and inherent chal-
lenges, such as multiscale ship feature disparities and indistinct
small-sized ships in SAR ship detection tasks, proposing the
SAR ship SSOD method, SMDC-SSOD. This method is pri-
marily based on TSF, encompassing three core components:
the CSFM scheme, SCCG strategy, and PCG strategy, enabling
end-to-end semisupervised learning from limited annotated data
and achieving better SAR ship detection performance compared
to state-of-the-art SSOD methods. This work provides a low-cost
and high-performance solution for ship detection tasks in SAR
images.

While our method has demonstrated favorable results, it also
possesses certain limitations. First, although our method sig-
nificantly reduces dependence on data labeling, its detection
performance is not ideal when faced with minimal annotated data
(e.g., 1% labeled data). Second, our method can only achieve
bounding box-level ship detection and cannot achieve more
fine-grained pixel-level perception. Finally, this study primarily
focuses on addressing the dependence on data labels. However,
it does not emphasize model complexity and inference speed, so
the proposed method does not present significant advantages in
complexity and inference speed, potentially limiting its applica-
tion in scenarios requiring real-time SAR ship detection.

In future research, we aim to further explore SAR ship detec-
tion methods in scenarios with minimal annotated data, consider-
ing the introduction of self-supervised learning or transfer learn-
ing to enhance detection performance under extremely limited
annotated data conditions. We will also focus on semisupervised
segmentation methods for SAR detection to achieve low-cost
and fine-grained perception of SAR ship targets. Furthermore,
we aim to explore SSOD methods for SAR ship detection with
lower complexity and faster detection speeds to better adapt
to real-time requirements and enhance its practical value. In
addition, we are considering researching noncomputer vision
SAR ship detection methods to provide further support for
practical applications in real-world scenarios.

VI. CONCLUSION

In this article, the SMDC-SSOD method is proposed. This
method primarily encompasses three core components: the
CSFM scheme, the SCCG strategy, and the PCG strategy. The
CSFM scheme enhances the network’s adaptability to scale vari-
ations and indistinct small-sized ships by leveraging interpyra-
mid and intrapyramid feature cross-scale mixings. The SCCG
strategy utilizes variations in confidence scores at different
scales to design pseudolabel filtering metrics, aiding the teacher
network in filtering more valuable pseudolabels in predictions
and providing more precise guidance to the student network. The
PCG strategy reflects the localization quality of pseudolabels
based on the consistency of proposals generated by the student
network, guiding the student network to make high-quality
boundary predictions. Experimental results on HRSID, BBox-
SSDD, and SAR-Ship-Dataset demonstrate that SMDC-SSOD
significantly reduces the dependence on data labels for SAR ship
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detection. It achieves optimal SAR ship detection performance
across different labeled data proportions (i.e., 1%, 2%, 5%, and
10%) compared to state-of-the-art SSOD methods. Ablation
studies further validate the effectiveness of each component in
the proposed method.
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