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Abstract—Understanding soil moisture (SM) at high spatio-
temporal resolution provides crucial insights across various societal
disciplines due to its direct impact on environmental and natural
disaster monitoring, weather forecasting, agricultural productivity,
and water resource management. In recent decades, a variety of
algorithms have been developed to improve the spatial resolution
of SM maps from passive sensors (∼40 km); however, the result-
ing maps, often with resolutions around 1 km or even hundreds
of meters, still lack the necessary resolution for detailed local
analysis. This study addresses this gap by presenting a machine
learning methodology aimed at estimating SM at 60-m spatial
resolution. A feedforward neural network is employed to capture
the relationships among 14 different predictors, including several
spectral bands and indices from Sentinel-2, land surface temper-
ature from moderate-resolution spectroradiometer, elevation and
slope from shuttle radar topography mission, precipitation from
the fifth generation of the European Center for Medium-Range
Weather Forecasts Reanalysis for Land, and the sand fraction
from SoilGrids250m, with European Space Agency (ESA) Climate
Change Initiative (CCI) SM serving as the target variable. The
model is trained and applied over the central part of the Iberian
Peninsula (38.9 °N–42.5 °N and 3.5 °W–7.2 °W) from 2019 to 2021.
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At 60-m resolution, the SM maps effectively capture the spatial
heterogeneity of the terrain. The temporal analysis demonstrates
that high-resolution SM maps preserve virtually the same sensi-
tivity as those from the ESA CCI, with a correlation of 0.66, a
bias of 0.095 m3/m3, and an unbiased root-mean-square error of
0.044 m3/m3 on average.

Index Terms—Climate change initiative (CCI), feedforward
neural network (FNN), high-resolution, Sentinel-2, soil moisture
(SM), spectral analysis.

I. INTRODUCTION

C LIMATE change has been the subject of study for several
decades. Arrhenius [1] quantified and analyzed the effect

of increasing the concentration of carbon dioxide in the atmo-
sphere and its contribution to the greenhouse effect. Around
the 1960s, D. Keeling, motivated by previous studies from S.
Arrhenius, began measuring the atmospheric carbon dioxide
(CO2). He observed two trends in the CO2 variations, the first
one with a seasonal oscillation due to the plant growth cycles,
and a second one continuing an increasing trend over the time
principally due to the effect of human activities (burning of fossil
fuels). These two trends were captured in what is known as the
“Keeling curve,” representing the impact of human beings on the
environment and the influence of fossil fuels on climate change
[2]. From that period onwards, the consciousness about climate
change has been growing ever since. Therefore, scientific re-
search on understanding the impact of its effects on the Earth’s
ecosystem and human societies is the central task.

In 2010, the international organization Global Climate Ob-
serving System defined a group of physical, chemical, and bio-
logical variables, known as essential climate variables (ECVs).
These ECVs were selected due to their capability of provid-
ing crucial information about climatic status, dynamics, and
progress for decision-making in the environmental field [3], [4].
Among these ECVs, soil moisture (SM) was tagged as highly
relevant, due to its crucial role in linking the Earth’s water, car-
bon, and energy cycles. Moreover, its variation directly impacts
the climate, as well as other societal core areas, including water,
agriculture, biodiversity, ecosystems, weather, disasters, energy,
and health.

European Space Agency (ESA) and the National Aeronau-
tics and Space Administration (NASA) have developed specific
missions to estimate SM at a global scale. Within the spectral
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range of microwaves, L-band frequencies are the most suitable to
estimate SM at a global scale, including passive and active acqui-
sition techniques [5]. Passive microwave radiometers are char-
acterized by their high radiometric sensitivity (∼0.04 m3/m3)
and high revisit frequency (∼1–3 days) but low spatial res-
olution (∼40 km). In contrast, active microwave radars, with
their backscatter measurements, provide spatial resolutions that
usually range from a few meters to decameters, but in some
cases, the temporal resolution can exceed a week. In addition,
they are more susceptible to surface geometry influences, such
as soil roughness and vegetation structure, compared to pas-
sive microwave measurements. At present, two L-band satellite
missions are operational for measuring SM: the Soil Moisture
and Ocean Salinity (SMOS) [6] and the Soil Moisture Active
Passive (SMAP) [7], launched by ESA in 2009 and NASA in
2015, respectively.

The native spatial resolution of the SM maps provided by
these missions is suitable for a variety of applications and
large-scale studies, such as global climate change monitoring
[8], and providing input for early warning systems [9]. However,
to meet the needs of local (small-scale) applications, or simply
to develop applications requiring finer level of detail regarding
the terrain heterogeneity, maps with higher spatial resolution
are required. According to a report presented by the United
Nations Educational, Scientific and Cultural Organization in
2023 [10], globally, 72% of freshwater withdrawals are done
by the agricultural sector. Therefore, these high-resolution SM
maps may, for example, assist in achieving more detailed control
over water resource management in agriculture on the field level,
which is crucial in the current context of climate change, with
severe droughts affecting agricultural production hotspots in
different parts of the world [11].

Over the last decade, various techniques have been proposed
to enhance the resolution of the SM maps provided by satellite
missions [12], [13]. There are several ways of classifying these
subpixel disaggregation techniques, such as according to the
nature of the model used to link the input parameters with
the SM, i.e., physically-based [14], [15], semiempirical [16],
[17], and data-based models [18], [19]. While physically-based
models approximate the processes involved in the dynamics of
the SM and may not fully encapsulate the complexity of the
system due to model abstraction, data-based models directly
learn from data. These machine learning (ML) algorithms allow
to capture nonlinear relationships between input variables and
SM without relying on predefined assumptions or prior system
knowledge. Conversely, ML training requires a large number
of high-quality samples representative of the area of interest to
enable accurate and effective generalization of the model.

Although the concept of ML has its roots dating back to the
1950s [20], [21], it was not until recent decades that it became
widely popular. This surge in popularity can be attributed to
several factors: the availability of vast amounts of data, enabling
the development of more complex and accurate models; the in-
crease in computational power, particularly the development of
graphical processing units, which allow for training of complex
models within a reasonable timeframe; and the development
of new algorithm and techniques, facilitating efficient model
training [22], [23].

In the realm of high-resolution SM estimation, numerous
studies have emerged, wherein the core [24], [25], [26], [27]
or significant components [28] of the disaggregation process
are based on ML techniques to generate SM at scales of a
few tens of meters. Chaudhary et al. [24] utilized 12 statis-
tical and ML algorithms for SM estimation, leveraging radar
backscatter data from Sentinel-1 and in situ measurements
over wheat crops for model training. The study concluded that
subtractive clustering exhibits superior performance in terms
of bias, Pearson’s correlation coefficient (R), and root-mean-
square error (RMSE), while also being less computationally
expensive than the other methodologies tested. A similar anal-
ysis was conducted by Singh and Gaurav [26], but instead of
exclusively using Sentinel-1 data, the study also incorporates
Sentinel-2 information and Shuttle Radar Topography Mission
(SRTM) data to obtain an SM product at a spatial resolution
of 60 m and a temporal resolution of six days. Among other
ML algorithms, a fully connected feedforward neural network
(FNN) resulted in the best performance but also the highest time
complexity.

Remote sensing data from autonomous aerial vehicles may
offer higher spatio-temporal resolution than sensors onboard
satellites. Zhang et al. [27] utilized red-green-blue (RGB), Mul-
tiSpectraL (MSL), and Thermal InfraRed (TIR) data acquired
by an autonomous aerial vehicle to monitor SM in areas with
varying levels of irrigation. Their findings indicated that Random
Forest (RF) was the most accurate model among the three pro-
posed for estimating SM. Similarly, Salunke et al. [25] utilized
RGB bands acquired from an autonomous aerial vehicle to
estimate SM, with eXtreme Gradient Boosting (XGB) emerging
as the most accurate algorithm for SM prediction among the
three models tested.

ML is also commonly used to downscale the coarse resolution
SM maps obtained with satellite sensors, such as those pro-
vided by the SMOS, SMAP, or Advanced Microwave Scanning
Radiometer for Earth observing system (AMSR-E) missions.
In [18], the SMOS SM maps were downscaled using the own
information from SMOS, integrated with moderate-resolution
imaging spectroradiometer (MODIS) land surface temperature
(LST) data, with artificial neural networks (ANN) outperform-
ing other ML algorithms. Im et al. [29] also studied the use
of MODIS data, including surface albedo, LST, normalized
difference vegetation index (NDVI), enhanced vegetation index
(EVI), and evapotranspiration, to disaggregate the AMSR-E
data, used as reference by the model, from 25 to 1 km. The
RF approach was statistically superior to other ML algorithms.
A disaggregation method for SMAP SM was proposed by Xu
et al. [30] to achieve a spatial resolution of 1 km from the
original 36 km using a wide and deep learning method. SM
superresolution (3 m) maps were obtained by Du et al. [19], using
several regression-tree methods including RF, gradient boosting
regression (GBR), and Light GBR. These models integrated
information from SMAP and high-resolution information from
Planet SuperDove.

This work proposes a methodology to estimate SM at a
spatial resolution of 60 m using an ML model to capture re-
lationships among various predictors. These predictors include
Sentienl-2 MSL data (several bands and vegetation/soil indices),
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Fig. 1. (a) Land cover map of the Iberian Peninsula, including 11 land cover classes: Tree cover (TC); Shrubland (SH); Grassland (GR); Cropland (CR); Built-up
(BU); Bare/sparse vegetation (BS); Snow and Ice (SI); Permanent water bodies (PW); Herbaceous Wetland (HW); Mangrove (MA); and Moss and lichen (ML).
The black square in (a) indicates the entire study area, which was used to train the algorithm. (b) Zoom-in view of the training area. The black square in (b) denotes
the validation area (REMEDHUS). (c) Zoom-in view of the REMEDHUS area where triangular markers indicate the location of all the in situ SM stations.

MODIS TIR data (LST), SRTM topographic data (elevation
and slope), reanalysis information (precipitation) from the fifth
generation of the European Center for Medium-Range Weather
Forecasts (ECMWF) Re-Analysis for Land (ERA5-Land), and
SoilGrids250m soil texture data [sand fraction (SF)], with ESA
Climate Change Initiative (CCI) SM as the target variable.

For this study, an FNN with a tabular approach for the datasets
has been used. This allows us to handle information gaps in
the input data, such as those from Sentinel-2, whose data can
be masked by atmospheric effects. While more complex ANN,
such as transformers, are effective in constructing sequential
images and capturing long-range dependencies [31], and CNNs
excel at capturing spatial features [32], their implementation
might be limited by spatial and temporal gaps in the input data.
In addition, FNNs are relatively straightforward to implement,
facilitating reproducibility, and have shown excellent results in
high-resolution SM estimation, sometimes outperforming other
models [18], [26].

The rest of the article is organized as follows. The study
area along with all included variables is presented in Section II.
Section III describes the processing applied to the data, how
the predictors used by the model are selected, how the model
is implemented, and how the results are validated. The study
results are shown in Section IV. Section V develops a discussion
of the most relevant results, justifying the findings and proposing
potential improvements. Finally, Section VI provides the main
conclusions.

II. TEST AREA AND DATA DESCRIPTION

A. Study Area

The area selected for this study covers the central part of
the Iberian Peninsula, spanning latitudinally from 38.9 °N to
42.5 °N, and longitudinally from 3.5 °W to 7.2 °W, which cor-
responds to an extension of 131 250 km2. This inner peninsular
region (see Fig. 1), located apart from the thermal stability
typically found in coastal areas, experiences cold winters and

hot summers. Specifically, it is characterized by a continental
Mediterranean climate with cold winters in the north, a sub-
humid continental Mediterranean and mountainous climate in
the central part, a warm inland Mediterranean climate in the
southwest, and a continental Mediterranean climate with warm
summers in the southeast [33]. The study period encompasses
three years, from 2019 to 2021. During this period, the annual
mean precipitation, within the main land Spain, was below what
was measured during the reference period (1981–2010), with
a gradual downward trend. In addition, these three years were
regarded as extremely warm. The specific values of precipitation
(and air temperature) were 628 mm (and 15.9 °C) [34], 606 mm
(and 14.7 °C) [35], and 569 mm (and 14.2 °C) [36], for the years
2019, 2020, and 2021, respectively.

B. In Situ Data

The Soil Moisture Measurements Stations Network of the
University of Salamanca (REMEDHUS) is an SM network
located in the northwest of Spain, between the provinces of
Zamora, Valladolid, and Salamanca [37]. This region is pre-
dominantly flat and characterized by a continental semiarid
Mediterranean climate. The land is primarily used for rain-fed
cereal cultivation, although other areas with less representative
land uses, such as irrigated crops, fallow areas, vineyards, or
forest-pasture, can also be found. REMEDHUS has been op-
erational since 1999 and consists of 19 stations (during the
study period from 2019 to 2021), which provide hourly SM
measurements at various depth levels, ranging from 0 to 10 cm.
In addition, the REMEDHUS area contains four meteorological
stations that measure solar radiation, relative humidity, wind
speed, precipitation, air temperature, and reference and potential
evapotranspiration. REMEDHUS is part of the International Soil
Moisture Network [38], from which the information has been
accessed. For this study, the SM corresponding to a depth of
5 cm and the daily precipitation data from the weather stations
are utilized.
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TABLE I
SENTINEL-2 BANDS

C. Remote Sensing Data

This section outlines the data used in this study, obtained from
remote sensing sensors, while also detailing the key character-
istics of the space missions that enabled their acquisition.

1) Stand-Alone Products: In the following sections, we de-
tailed the products that are obtained from sensors onboard a
single satellite.

a) Sentinel-2: Sentinel-2 mission is a collaborative ef-
fort between ESA and the European Commission within the
framework of the Copernicus Program [39]. It consists of a
constellation of two satellites: Sentinel-2A and Sentinel-2B,
which were launched in June 2015 and March 2017, respectively.
These satellites are phased 180° in the same sun-synchronous
low-Earth orbit, enabling a joint revisit frequency of five days.
They observe the Earth’s surface at an incidence angle close to
nadir (±10.3°). The multispectral images acquired by Sentinel-2
encompass 13 bands, ranging from the visible to the short-wave
infrared, with resolutions of 10, 20, and 60 m, depending on
the band. The high-resolution, multifrequency data provided
by Sentinel-2, along with its regular revisit frequency, make
it highly relevant for several applications related to vegetation
monitoring, detecting changes in the Earth’s surface, assessing
water quality, and monitoring natural disasters, among others.
Clouds and cloud shadows are masked out in Sentinel-2 surface
reflectances [40], and then the resulting values are filtered to
exclude those lower than 3e-4 or higher than 1.

For this study, Sentinel-2 Level-2A orthorectified atmo-
spherically corrected surface reflectance data are utilized, ob-
tained from the Google Earth Engine online platform [41]. Ten
Sentinel-2 bands are considered (see Table I): B2, B3, B4, B5,
B6, B7, B8, B8A, B11, and B12. The B1, B9, and B10 bands,
mainly used for atmospheric correction, altitude thresholding,
and cloud masking, are excluded from the analysis. From the
selected bands, ten vegetation and soil indices are computed,
including the NDVI [42], Normalized Difference Red Edge
Index (NDRE) [43], EVI [42], Green Normalized Difference
Vegetation Index (GNDVI) [44], Soil Adjusted Vegetation Index
(SAVI) [45], Normalized Difference Moisture Index (NDMI)

[46], Moisture Stress Index (MSI) [47], Normalized Burn Ratio
Index (NBRI) [48], Bare Soil Index (BSI) [49], and Normalized
Difference Water Index (NDWI) [46].

b) MODIS: NASA MODIS is carried onboard Terra and
Aqua polar, sun-synchronous, and low-Earth orbiting satellites,
launched in December 1999 and May 2002, respectively [50].
MODIS captures images with 36 spectral bands, ranging from
the visible to the TIR, at a moderate spatial resolution. It is
capable of providing details of the Earth’s surface with spatial
resolutions of 250 m, 500 m, and 1 km. This spatial resolution,
combined with daily global coverage of the Earth’s surface,
makes MODIS data crucial for various applications, including
vegetation, ice, and snow monitoring, forest fire detection, soil
temperature analysis, air quality assessment, and cloud detec-
tion, among others. For this study, LST data are obtained from
Aqua (MYD11A1 version 6.1) at a spatial resolution of 1 km.
These data are accessed through the Application for Extracting
and Exploring Analysis Ready Samples[51]. LST values equal
to or less than 274 K are filtered out to avoid using information
from frozen areas or those close to the freezing point.

c) SRTM: The SRTM was jointly conducted by NASA and
the National Geospatial-Intelligence Agency with the objective
of creating a comprehensive, high-resolution digital topographic
database of the Earth’s surface [52]. The mission lasted for
11 days, during which the Endeavour completed 176 orbits. The
primary instrument used for this mission was the spaceborne
imaging radar (SIR), along with an X-band synthetic aperture
radar (SAR) known as SIR-C/X-SAR. The SIR-C/X-SAR con-
sisted of an L- and C-band fully polarimetric radar combined
with an X-band single-polarization radar, working as transmitter
and receiver antennas. An additional receive-only antenna was
mounted at the end of a 60-m mast to allow single-pass interfer-
ometry tasks. The SRTM mission achieved a coverage of 80% of
the Earth, from 56 °S to 60 °N, with a spatial resolution of 30 m
for the acquired data. For this study, the SRTM 1 Arc-Second
Global [53] elevation data are utilized, which provide worldwide
coverage of void-filled data at a spatial resolution 30 m. These
data are accessed from the United States Geological Survey
EarthExplorer. Subsequently, the slope parameter is derived
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from the digital elevation model (DEM) using quantum geo-
graphic information systems software.

2) Combined Products: In the following, we detailed the
products obtained by merging information acquired from var-
ious satellites.

a) CCI SM: The ESA CCI project was initiated in 2010
with the goal of producing yearly updated products for the most
relevant components of the climate system, known as ECVs.
The objective of this project is to provide the most comprehen-
sive and longest data record possible, currently spanning from
1978 to the present. SM is one of these ECVs, and the ESA
distributes this product under the name ESA CCI SM in three
harmonized datasets, including: 1) the active product, which is
created by merging scatterometer SM products, derived from
the advanced scatterometer and Active Microwave Instrument –
WindScat instruments; the passive product, created by merging
data provided by the SMOS, SMAP, scanning multichannel
microwave radiometer, special sensor microwave imager, trop-
ical rainfall measuring mission microwave imager, AMSR-E,
WindSat, FengYun (FY)-3B, FY-3C, FY3D, AMSR2, and global
precipitation measurement mission instruments; and the com-
bined active/passive product, which includes all the satellite
instruments mentioned above [54]. For this study, the combined
product is used owing to its greater temporal and spatial cover-
age, as well as its superior performance during validation using
globally distributed in situ stations, in contrast to both passive
and active products. This product provides global coverage SM
maps with a spatial resolution of 0.25° (corresponding to a
resolution of about 25 km for the study area presented in this
analysis) and one-day sampling interval. The most restrictive
quality flag available within the files are applied to the data,
meaning that only data with no detected inconsistencies are used.
Furthermore, values above 0.7 are also filtered out to exclude
saturated values from the analysis.

b) WorldCover: The WorldCover dataset is a global land
cover product with a spatial resolution of 10 m, derived from
data obtained by the Sentinel-1 and Sentinel-2 constellations.
The product’s legend contains 11 land cover classes, namely:
“Tree cover,” “Shrubland,” “Grassland,” “Cropland,” “Built-up,”
“Bare/sparse vegetation,” “Snow and Ice,” “Permanent water
bodies,” “Herbaceous Wetland,” “Mangrove,” and “Moss and
lichen.” The most recent version of WorldCover, representing
the year 2021, was released on 28 October 2022, with an
overall accuracy of approximately 77% [55]. In this study, the
WorldCover product is utilized at its maximum resolution of
10 m to filter out areas classified as build-up, snow and ice, and
permanent water bodies.

c) SoilGrids250m: SoilGrids provides global predictions
for various soil properties, including organic carbon, bulk den-
sity, cation exchange capacity, pH, soil texture fractions, and
coarse fragments, at several depth levels (ranging from 0 to
20 cm), as well as predictions for depth to bedrock and the
distribution of soil classes [56]. These predictions are based on
a diverse set of soil profiles and various soil variables (primarily
derived from MODIS land products and SRTM derivatives,
among others), which were used to train an ensemble of ML

methods. This study specifically considers the SoilGrids250m
clay fraction (CF) [57] and SF [58] at 250-m resolution.

d) ERA5-land: ERA5-Land [59] dataset is derived from
the ECMWF dataset known as ERA5, which provides estimates
of numerous atmospheric, land, and oceanic variables at a spatial
resolution of 30 km. However, ERA5-Land specifically focuses
on land components, excluding information related to sea ice and
ocean available within the ERA5 dataset. It is a global reanalysis
dataset that combines a numerical weather prediction model
with observational data to generate a complete and consistent
representation of the Earth’s climate system. ERA5-Land en-
compasses 53 variables related to the water and energy cycles
over land, providing global coverage at a spatial resolution
of 9 km. The dataset offers hourly information from 1981 to
the present. For this study, the ERA5-Land total precipitation
is used. Hourly maps are used to compute the accumulated
precipitation for 3 and 15 days by calculating the sum from
the corresponding day backward.

Relevant information regarding all data products used in this
study is summarized in Table II.

III. METHODOLOGY

This section describes the data processing applied, how the
predictors used by the model are selected, how the model is
implemented, and how the results are validated. The initial data
processing includes filtering and mapping the data to a reference
grid. The variable selection process facilitates the exclusion of
less pertinent variables. Then, the ML model and target variable
used are specified, along with the procedure followed to train
the model and estimate the SM at high resolution. Finally, the
resulting SM maps are validated at both high and low resolutions,
spatially and temporally.

A. Data Processing

The most constrained variable in terms of temporal and spatial
coverage is the Sentinel-2 data. Sentinel-2 provides observations
with a revisit time of five days, accounting for both Sentinel-2A
and Sentinel-2B. Although it provides global coverage, the pres-
ence of clouds and other atmospheric effects limit the availability
of ground information data. Therefore, all the predictors are
resampled to match the 60-m grid resolution of Sentinel-2 using
nearest-neighbor interpolation [60]. Then, any areas without
Sentinel-2 data are filtered out from all the features. In addition,
the WorldCover map [55] is utilized to exclude water bodies,
built-up areas, as well as snow and ice regions.

After the data filtering, the variables are prepared for aggrega-
tion to the required resolution, ensuring that this procedure is car-
ried out using the same number of samples for all features. The
aggregation process involved calculating the average value of all
pixels in the source grid that corresponds to the same pixel in the
low-resolution (0.25°) target grid. Only high-resolution pixel ag-
gregations, conducted with a minimum coverage of 70% relative
to the low-resolution pixel of the target grid, are considered.

Fig. 2 illustrates an example of the filtering and aggregation
procedure applied to the CF map, which is initially at a 250 m
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TABLE II
SUMMARY OF ALL THE VARIABLES CONSIDERED IN THE STUDY

Fig. 2. (a) Native CF map at 250-m resolution. (b) Interpolated and filtered CF map at 60-m resolution. (c) Aggregated CF map at a 0.25° grid. (d) Pixel coverage
map.

resolution [see Fig. 2(a)]. It is subsequently interpolated and
filtered to a 60-m resolution [see Fig. 2(b)] and finally aggregated
to 0.25° [see Fig. 2(c)] but considering only pixels with high
coverage [see Fig. 2(d)].

This study utilizes multiple variables characterized by di-
verse dynamic ranges. To ensure a homogeneous dynamic range
across all variables, their distributions are standardized to attain
a mean of zero and a standard deviation (std) of one. This
standardization is applied using the Z-score methodology, which
entails subtracting the dataset’s mean and dividing it by the
std [61]

z =
x− x̄√

1
n

∑n
i=1 (xi − x̄)2

(1)

where xi is the ith element of the vector x, x̄ is the mean of the
vector, and n is the total number of samples in the vector.

B. Feature Selection

The variables selected as potential predictors in the FNN
model include 3- and 15-days accumulated precipitation from
ERA5-Land, sand, and CFs from SoilGrids250m, DEM, and
slope from SRTM, MODIS LST, and various Sentinel-2 bands
(B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12), along
with specific spectral indices (NDVI, NDRE, EVI, GNDVI,
SAVI, NDMI, MSI, NBRI, BSI, NDWI). Only variables that

significantly improve the model without introducing excessive
redundancy are considered.

Both 3-days and 15-days accumulated precipitation products
are included due to their low correlation (R ≤ 0.4) with all the
other variables. Although the CF and SF exhibit a low correlation
(R≤ 0.4) with the others, they are nearly complementary to each
other. Therefore, only the SF is included. DEM and slope show
a relatively low correlation (R ≤ 0.5) with the other products,
warranting their inclusion. The MODIS LST, with an R ≤ 0.6
with other variables, is also included.

Regarding Sentinel-2 bands and indices, some exhibit high
correlations with each other. The following methodology has
been used for their selection.

1) Entropy is computed for all Sentinel-2 variables, and the
one with the highest entropy is selected for application in
the model.

2) For the selection of all subsequent variables, not only the
entropy of each individual one is considered but also its
correlation with the previously selected features. The one
with the highest score is chosen. The score is defined as

sj = hj ·
M∏

m=1

(1−Rj,m) (2)

where j represents the index of the variable under evaluation
and M is the number of variables already selected. h is the
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Fig. 3. Flowchart for SM estimation at 60 m. The brown boxes represent the processing applied to the data before being utilized by the model, the green
box corresponds to the ESA CCI SM at a resolution of 0.25°, and the blue box corresponds to the resulting SM estimated at 60 m. The two main steps of the
disaggregation model consist of: 1) training the model using all variables at a 0.25° resolution, and 2) utilizing the trained model along with the variables on the
60-m grid to estimate the final SM at high resolution.

vector containing the entropies of all the variables, with hj

denoting the jth element of h. R is the matrix containing
the correlations between all variables, where Rj,m denotes the
correlation coefficient between the evaluated variable j and the
selected variable m. Step two can be repeated as many times as
necessary to sequentially select variables.

Following this methodology, the finally selected Sentinel-2
bands are B5, B6, B8A, and B11, while the included spectral
indices are NDVI, EVI, GNDVI, and MSI. Taking into account
the aforementioned variables included (3-days and 15-days ac-
cumulated precipitation, SF, DEM, slope, and LST), the total
number of predictors used to build the FNN model is 14. The
inclusion of the remaining variables results in only a marginal
improvement of 1% in the explained variance, with the RMSE
decreasing by 5.5%.

C. Model Implementation

An FNN is a type of ANN in which the connections between
the neurons do not form cycles but data flow from input to
output. It is a supervised learning model, requiring a set of
inputs (predictors) and a reference variable (target) for training.
The intermediate or hidden layers enable the network to learn
complex representations of the data [62]. The method proposed
in this study for obtaining high-resolution SM based on FNN
networks is summarized as follows (see Fig. 3).

1) Training at 0.25° Resolution: The model is trained using
the CCI SM data at a 0.25° resolution as the target variable. To
ensure that all the variables are within the same grid, the proce-
dure detailed in Section III-A is applied to filter and aggregate
the 14 predictors selected in Section III-B, all aligned to the 0.25°
grid of the target variable. A total of 21 354 instances, comprising
both training and test data, are fed into the FNN model. The
FNN models used in this study are implemented through Py-
Torch, an open-source deep learning library available in Python
[63]. Some of the most relevant hyperparameters are adjusted
according to the values presented in Table III. For the analysis

TABLE III
CONFIGURATION OF THE HYPERPARAMETERS USED BY THE ML MODEL

of the model performance, the following metrics are calculated:
the losses, using the RMSE; the accuracy, which is defined as
the number of times per epoch that the difference between the
original and the estimated SM is lower than 0.03 m3/m3, with the
estimated SM within the range 0 ≤ x̄ ≤ 0.7m3/m3; and the ex-
plained variance. The data are split using the scikit-learn library
in Python [64] with the proportion 80/20 (training/testing). To
mitigate the impact of the random initialization of weights on
the resulting SM maps, five models are trained using the same
train/test split. The final SM product is the ensemble of the five
models, which helps reduce variability and provides more stable
and reliable results.

2) Estimation at 60 m: In this step, all the variables are used
at a resolution of 60 m. Certain variables are already at this grid
resolution, such as the Sentinel-2 spectral bands and indices,
DEM, and slope. However, the rest of the variables undergo a
grid transformation using the nearest-neighbor interpolation.
These predictors at 60-m grid are fed into the previously trained
ML model to estimate the SM at high resolution.
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Fig. 4. (a) Losses (or RMSE), (b) accuracy, and (c) explained variance across different epochs for the testing data (blue line) and the training data (orange line).
The dark purple marker indicates the final score obtained after passing all data through the pre-trained model: RMSE = 0.02 m3/m3, accuracy = 0.89, and R2=
0.88.

Fig. 5. Kernel density estimate of the distribution of the SM data computed for both the original ESA CCI SM (green) and the estimated SM at 0.25° (orange).
They are obtained for (a) all available data, (b) SM associated with the training data, and (c) SM associated with the testing data.

D. Analysis of the Results

This section outlines the methodology employed to obtain
the results presented in Section IV. It comprises three sections:
the first focuses on model evaluation to ensure proper training,
followed by spatial analysis techniques applied at both low and
high resolutions. The final section delves into the methodology
used for temporal analyses.

1) Model Evaluation: In the training phase of the model,
the progression of error (RMSE), accuracy (as referred to in
Section III-C1), and the explained variance are examined over
successive epochs (see Fig. 4). Upon completion of training, it
is ensured that the general distribution of SM samples remains
consistent with the original dataset (see Fig. 5). Subsequently,
the estimated SM undergoes statistical analysis in relation to the
original data, employing metrics such as R2, MAE, and RMSE
for this purpose (see Fig. 6).

2) Spatial Evaluation: Continuing with the spatial evalua-
tion at low resolution, daily SM maps corresponding to each
of the five training models are derived and averaged on a daily
basis to obtain at most one map per day. These computed maps
undergo an error analysis, initially conducted through direct
samplewise computation by subtracting the reference SM value
from the estimated SM. This approach allows for an examination

of the error characteristics via histogram distribution. Subse-
quently, the MAE is computed for every pixel within the study
area, affording an investigation into the spatial distribution of
errors (see Fig. 7). Furthermore, illustrative maps displaying
estimated SM at low resolution are presented alongside the
original ESA CCI SM maps, accompanied by the associated
error, for selected days (see Fig. 8).

The trained ML model, in conjunction with the high-
resolution input variables, facilitates the generation of 60-m
resolution SM maps, which are computed on a daily basis. An
analysis of the power density spectrum (PDS) is conducted to
evaluate the effective spatial resolution of the resulting SM maps
at 60 m [65] (see Fig. 9). The principal steps involved in deriving
the PDS include the following.

1) Calculation of the autocovariance of the map for various
spatial displacements, in steps of one pixel, conducted
separately in both the zonal (longitudinal) and meridional
(latitudinal) directions. All the pixel pairs with valid data
in the original and in the shifted map are considered. This
process is applied to both the ESA CCI SM at 0.25° and
the 60-m resolution maps.

2) Computation of the Fourier transform applied to the au-
tocovariance function, facilitating the conversion from
spatial to frequency domain.
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Fig. 6. Scatter plot depicting the correlation between the original ESA CCI SM dataset and the estimated SM values, employing (a) all available instances,
(b) training dataset, and (c) testing dataset.

Fig. 7. Error in the estimation of SM at low resolution. (a) Histogram illustrating the distribution of the errors (estimated SM minus the original ESA CCI SM),
which is centered around 0 with an std of 0.018 m3/m3. (b) MAE obtained per pixel, where lighter shades of red denote lower error values and darker shades
indicate higher errors. (c) Temporal evolution of the absolute error, with colors also indicating the MAE for each specific pixel location.

3) Determination of power spectra, which depict the energy
distribution of different spatial frequencies present in the
data map. Since the spatial derivatives have been computed
(as finite differences), the spectra were corrected by a
factor of k-2, where k is the spatial frequency depending
on the wavelength λ (k = 1/λ).

In addition, an assessment of information preservation is
presented by aggregating the 60-m resolution SM maps to
the original 0.25° grid on a daily basis, juxtaposed with the
original ESA CCI SM maps and the estimated SM map at 0.25°
(see Fig. 10). Finally, selected instances for specific days are
showcased, encompassing both the original study area (span-
ning from 38.9 °N to 42.5 °N, and from 7.2 °W to 3.5 °W)
and the REMEDHUS validation site (ranging from 41.1 °N
to 41.5 °N, and from 5.5 °W to 5.1 °W), nested within the
original study area and hosting in situ SM stations. Detailed
enlargements of areas surrounding specific in situ stations are
provided, facilitating the analysis of SM patterns at a 60-m
resolution. Over these magnified regions, RGB maps are also

depicted, derived from Sentinel-2 bands B2 (Blue), B3 (Green),
and B4 (Red) at a 10-m resolution, helping in the identifi-
cation of distinct land features or variations in terrain (see
Figs. 11–14).

3) Temporal Evaluation: The measurements of the REMED-
HUS SM network are employed to examine the temporal be-
havior of the time series derived from the original ESA CCI
SM dataset, as well as the SM estimates at 0.25° and 60-
m resolutions. Despite REMEDHUS providing hourly in situ
measurements, a daily average is utilized to ensure consistent
data availability. This daily average is computed exclusively
from measurements labeled as “Good,” indicating that they
are obtained without encountering technical or climatic issues.
An exhaustive statistical analysis of the estimated SM for all
available stations within the REMEDHUS network is presented
in tabular format in Section IV. In addition, an exemplary time
series from three of these stations is provided (see Fig. 15).
All statistical metrics utilized in the subsequent sections are
summarized in Table IV.
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Fig. 8. (a) ESA CCI SM, (b) estimated SM at 0.25°, and (c) error maps, depicting data for 26 February 2019 (first row); 20 June 2020 (second row); and
8 October 2021 (third row).

IV. RESULTS

The results section comprises the most pertinent findings of
this research study, encompassing the performance of the ML
model, as well as a spatial and temporal analysis of the estimated
SM maps at 0.25° and 60-m resolution.

A. Model Evaluation

Fig. 4 depicts the evolution of losses computed using
the RMSE, accuracy, and explained variance across different
epochs. The blue line represents the training phase, while the
orange signifies the testing phase. Although the model manages
to stabilize these statistics around epoch 200, training continues

for additional epochs until a significant reduction in error is no
longer achieved. This stabilization occurs around epoch 800,
with the RMSE plateauing at approximately 0.02 m3/m3, and
the accuracy and the explained variance reaching a value slightly
below 0.9.

Fig. 5 portrays the distribution of SM, delineating the original
ESA CCI SM and the estimated SM at 0.25°. A consistent
distribution is observed across the entire dataset [see Fig. 5(a)],
the training dataset [see Fig. 5(b)], and the dataset allocated
for testing purposes [see Fig. 5(c)]. Predominantly, samples are
clustered within two ranges: one slightly below 0.15 m3/m3

and the other around 0.25 m3/m3, with a higher number of
counts observed for the clusters of low values. SM values
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Fig. 9. Power density spectra computed for the entire study region using data derived from the ESA CCI SM maps (blue line) and the estimated SM at 60-m
resolution (red line) for (a) longitudinal and (b) latitudinal directions. This analysis was conducted based on observations spanning 13 specific days in 2019:
7 January, 11 February, 28 March, 27 April, 12 May, 1 June, 1 July, 5 August, 15 August, 4 September, 9 October, 18 November, and 23 November.

Fig. 10. Information preservation analysis. (a) MAE obtained between the aggregated 60-m resolution SM maps and the original ESA CCI SM. (b) MAE obtained
between the aggregated 60-m resolution SM maps and the estimated SM at 0.25° resolution. (c) Histogram of errors.

falling below 0.1 m3/m3 or above 0.3 m3/m3 constitute 4.5%
of the total dataset. This pattern is further illustrated in Fig. 6,
which presents scatter plots correlating the original ESA CCI
SM data with the estimated SM at low resolution, alongside
relevant statistical measures, including R2, MAE, and RMSE.
In all instances, the data closely align with the 1:1 line. The
statistical parameters acquired in the final epoch for the testing
data encompass R2 = 0.86, MAE = 0.016 m3/m3, and RMSE =
0.021 m3/m3. Notably, these metrics exhibit minimal deviation
from those derived for the training data: ΔR2 = 0.03, ΔMAE
= 0.001 m3/m3, and ΔRMSE = 0.002 m3/m3.

The aforementioned results correspond to Case A in
Table V. This table contains the statistical outcomes for the test-
ing dataset, resulting from training five models independently.
The results are highly similar, with an R2 of 0.86, an MAE of
0.016 m3/m3, and an RMSE of 0.021 m3/m3, on average.

B. Spatial Analysis of the Low-Resolution SM Maps

The disparity between the estimated SM values and those from
the ESA CCI is portrayed via the histogram in Fig. 7(a), show-
casing a Gaussian distribution centered around zero, with a std
of 0.018 m3/m3. Fig. 7(b) displays the MAE computed per pixel
over the entire study period. The distribution of errors appears
largely uniform across the study region, with the exception of a
specific pixel located at coordinates 39.85 °N–5.4 °W. This par-
ticular pixel corresponds to an area characterized by relatively
low SM values compared to its surroundings, while maintaining
similar terrain conditions. This observation is further supported
by Fig. 7(c), which depicts the temporal progression of errors
for each pixel within the study area. The darker marker denotes
the pixel exhibiting the highest MAE value, demonstrating
a consistent trend of elevated error compared to the MAE
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Fig. 11. Estimated SM for 26 February 2019 at resolutions of (a) 0.25° and (b) 60 m for the entire study region. The black square indicates the location of
REMEDHUS. (c) Zoom of estimated SM at 60 m over the REMEDHUS area, with solid black triangles indicating the position of three in situ stations: “Cañizal,”
“Las Eritas,” and “El Tomillar.” Close-up views of the areas around these stations are depicted in (d), (e), and (f), respectively. In addition, RGB images at 10 m
acquired by Sentinel-2 are shown in (g), (h), and (i), respectively.

calculated across the entire study region and period
(0.015 m3/m3), particularly notable during the year 2021.

Fig. 8 presents a comparative analysis between the ESA CCI
SM dataset [see Fig. 8(a)] and the estimated SM [see Fig. 8(b)] at
a spatial resolution of 0.25° for three distinct dates, spread across
varied seasons over the three-year study period: 26 February
2019 (winter); 20 June 2020 (summer); and 8 October 2021
(autumn). It is noteworthy that despite the comparatively lower
sample count in the Sentinel-2 dataset as compared to the ESA

CCI, owing to its revisit time or atmospheric effects, situations
akin to the scenario depicted in Fig. 8 (first row) may arise, where
ESA CCI SM data are largely unavailable, particularly during
winter. Nonetheless, the utilization of optical data (Sentinel-2
and MODIS) facilitates the estimation of SM across nearly the
entire study region. In the instance corresponding to 26 February
2019, the lower sample count results in errors slightly skewed
towards negative value, with a mean error of −0.008 m3/m3,
whereas for the remaining examples, the mean error
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TABLE IV
STATISTICAL METRICS, WITH xi AND yi BEING THE EVALUATED SAMPLES, x̄ AND ȳ THE MEANS, x̂i THE ESTIMATION OF xi,

AND n THE TOTAL NUMBER OF SAMPLES

TABLE V
STATISTICAL METRICS CORRESPONDING TO THE FIVE INDEPENDENT TESTING

RUNS, INCLUDING R2, MAE, AND RMSE, COMPUTED ON THE TEST DATASET

approximates zero. In any case, the highest positive error
recorded is 0.054 m3/m3, while the most negative error is
−0.05 m3/m3.

C. Spatial Analysis of the High-Resolution SM Maps

Fig. 9 illustrates the PDS computed for the original ESA CCI
SM maps (solid blue line) and the SM target maps estimated at
60 m (solid red line), separately analyzed in both the zonal [see
Fig. 9(a)] and meridional [see Fig. 9(b)] directions. In addition,
the fitting lines of the power spectra, represented by dashed lines,
are depicted along with their respective slopes. These slopes are
determined to be−1.22 for the ESA CCI and−1.14 for the 60-m
SM maps in the zonal analysis and −1.08 for the ESA CCI and
−1.06 for the 60-m SM maps in the meridional analysis. Notably,

a discernible bias is observed between the power spectra lines
corresponding to the ESA CCI and the 60-m SM maps in both
analyses.

Fig. 10 depicts the MAE [see Fig. 10(a) and (b)] and the
error [see Fig. 10(c)] calculated between the SM maps obtained
at a 60-m resolution, aggregated to 0.25°, and the maps at
low resolution, encompassing both the original ESA CCI maps
and the estimated ones at 0.25° resolution. The discrepancies
are slightly more pronounced when contrasting the aggregated
high-resolution maps with the original ESA CCI maps than
with the maps of SM estimated at 0.25°, with a mean MAE
of 0.023 m3/m3 compared to 0.017 m3/m3, respectively. Spa-
tial error patterns exhibit consistency across both comparisons.
Notably, the MAE map generated when contrasting with CCI
SM (characterized by higher errors) reveals three discernible
patterns: 1) localized areas (4 pixels) exhibiting MAE value sur-
passing 0.088 m3/m3 (39.85 °N–5.4 °W and 41.36 °N–4.35 °W);
2) larger continuous regions (50 pixels) spanning the center,
northwest, and southeast of the study area, exhibiting a mean
MAE of 0.032 m3/m3; and 3) the remaining expanse of the study
area (154 pixels) with a mean MAE of 0.018 m3/m3.

Upon direct comparison between the aggregated 60-m SM
maps and the ESA CCI SM maps or those estimated at 0.25°
[see Fig. 10(c)], the error distribution is centered around zero
in both instances. Consequently, the std is marginally higher for
the comparison with the ESA CCI maps (Δstd = 0.008 m3/m3).

The primary objective of Figs. 11–13 is to present examples
of high-resolution SM maps for three distinct days spread across
different seasons: 26 February 2019; 20 June 2021; and 10
October 2021. The initial depiction showcases the estimated
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Fig. 12. Estimated SM for 20 June 2020 at resolutions of (a) 0.25° and (b) 60 m for the entire study region. The black square indicates the location of REMEDHUS.
(c) Zoom of estimated SM at 60 m over the REMEDHUS area, with solid black triangles indicating the position of three in situ stations: “Cañizal,” “Las Eritas,”
and “El Tomillar.” Close-up views of the areas around these stations are depicted in (d), (e), and (f), respectively. In addition, RGB images at 10 m acquired by
Sentinel-2 are shown in (g), (h), and (i), respectively.

SM at low resolution for the entire study region [see Figs. 11(a),
12(a), and 13(a)], serving as the mean SM reference level. The
following images portray the SM map at 60-m resolution for the
same geographical extension [see Figs. 11(b), 12(b), and 13(b)].
A subsequent examination zooms into the area that contains the
REMEDHUS SM network [see Figs. 11(c), 12(c), and 13(c)], ex-
tending approximately 44× 50 km2. Discernible spatial patterns
emerge that would otherwise remain imperceptible at the 0.25°
resolution of the ESA CCI SM maps. This phenomenon becomes

more evident in Figs. 11–13, where the SM maps undergo further
magnification to highlight exclusively three regions, each of
them measuring 2.2× 2.2 km2, corresponding to the locations of
three REMEDHUS in situ stations. Spatial patterns in SM man-
ifest certain correlations with the spatial patterns depicted in the
10-m resolution RGB maps of the same area (see Figs. 11–13).
A particular evident example is elucidated in Figs. 11(d), 12(d),
and 13(d), where a circular shaped field undergoes partitioning
into two semicircular zones cultivated intermittently over the
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Fig. 13. Estimated SM for 10 October 2021 at resolutions of (a) 0.25° and (b) 60 m for the entire study region. The black square indicates the location of
REMEDHUS. (c) Zoom of estimated SM at 60 m over the REMEDHUS area, with solid black triangles indicating the position of three in situ stations: “Cañizal,”
“Las Eritas,” and “El Tomillar.” Close-up views of the areas around these stations are depicted in (d), (e), and (f), respectively. In addition, RGB images at 10 m
acquired by Sentinel-2 are shown in (g), (h), and (i), respectively.

years. This phenomenon is mirrored in the SM maps at 60-m
resolution.

In Fig. 14, the average SM for each season is depicted sepa-
rately for the years 2019 [see Fig. 14(a)], 2020 [see Fig. 14(b)],
and 2021 [see Fig. 14(c)]. This figure facilitates the observation
of SM behavior variations contingent upon geographical loca-
tion and the season of the year. Certain areas consistently main-
tain relatively high SM values throughout the year, primarily
corresponding to mountainous systems known as the “Sistema
Central,” “Montes de Toledo,” and “Montes de León.” The

remaining areas demonstrate greater SM variation throughout
the year, particularly in the southern half of the study region,
where relatively extensive regions with the lowest SM values
are observed during summer.

D. Temporal Analysis of the SM Products at High
and Low Resolution

The statistical analysis, including the number of samples
(N), R, bias, and uRMSE, are presented in Table VI. These



15558 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 14. Daily average of the high-resolution estimated SM maps for the following seasonal periods. (a) December, January, and February (DJF). (b) March,
April, and May (MAM). (c) June, July, and August (JJA). (d) September, October, and November (SON). The columns correspond to the years 2019, 2020, and
2021.
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TABLE VI
STATISTICAL COMPARISON CONDUCTED BETWEEN THE IN SITU MEASUREMENTS AND THE ESA CCI SM, AS WELL

AS THE ESTIMATED SM AT 0.25° AND 60-M RESOLUTIONS

metrics are derived from the comparison between the in situ
measurements and the ESA CCI SM, and the estimated SM at
different resolutions. The number of samples for the estimated
SM represents approximately 10% of those available for the
ESA CCI SM. The mean R has slightly decreased from 0.74 to
0.63 and 0.66 for the ESA CCI SM, the estimated SM at 0.25°,
and the estimated SM at 60 m, respectively. The mean uRMSE
ranges from 0.047 m3/m3 for the ESA CCI to 0.044 m3/m3 for
the estimated high-resolution SM, which is close to the target
error of 0.04 m3/m3 for the SMOS and SMAP missions. The
mean absolute bias remains consistent for all three products at
approximately 0.1 m3/m3. This temporal analysis demonstrates
that high-resolution SM maps preserve virtually the same sen-
sitivity as those from the ESA CCI.

Fig. 15 displays the time series of the in situ SM measurements
alongside the ESA CCI SM, the estimated SM at 0.25°, and
the estimated SM at 60 m corresponding to the three stations:
“Cañizal” [see Fig. 15(a)], “Las Eritas” [see Fig. 15(b)], and “El
Tomillar” [see Fig. 15(c)]. All datasets effectively capture typical
seasonal trends in the study area, characterized by relatively drier
conditions during springs and summers as compared to autumn
and winters. While they may exhibit limitations in precisely
tracking or reaching the most extreme levels of SM observed
during specific events, such as the drought peaks in the spring
of 2021 in “Cañizal” or the summer SM peak of 2021 in “Las
Eritas,” they nonetheless offer valuable insights. However, for
certain stations, neither the ESA CCI SM nor the estimated SM,

at either high or low resolutions, accurately captures the mean
SM value.

V. DISCUSSION

A. ML Model and Low-Resolution SM Maps

The presented methodology to estimate SM has demonstrated
a robust generalization to unseen data during the training phase,
yielding average values (across the five trained models) of R2

= 0.86, MAE = 0.016 m3/m3, and RMSE = 0.021 m3/m3.
However, the ESA CCI SM exhibits a constrained dynamic
range, likely due to the limitations inherent to the selected study
area and period, as well as to the product itself. Consequently, a
risk exists that the model may not generalize effectively beyond
the study area.

Fig. 16 presents histograms of SM for ESA CCI, BEC SMOS
L3 at 25 km [66] and SMAP L3 at 36 km [67], illustrating
their distribution and dynamic ranges within the temporal and
geographical scope analyzed in this study. The 5th and 95th per-
centiles stand at 0.11 m3/m3 and 0.3 m3/m3, 0 and 0.27 m3/m3,
and 0.06 m3/m3 and 0.33 m3/m3, respectively. Notably, ESA
CCI exhibits the highest mean SM value of 0.21 m3/m3, com-
pared to 0.17 m3/m3 for SMAP and 0.10 m3/m3 for SMOS. It
demonstrates that the dynamic range is narrower for ESA CCI,
with mean SM values slightly surpassing those of SMOS and
SMAP.
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Fig. 15. Time series of the in situ SM measurements (black line), the ESA CCI SM (green dots), the estimated SM at 0.25° (orange dots), and the estimated SM
at 60 m (blue dots) at three stations: (a) “Cañizal,” (b) “Las Eritas,” and (c) “El Tomillar.” The plots also incorporate daily precipitation data (gray line).

Furthermore, the significant disparity in spatial scale between
the low-resolution (0.25°) data provided by the ESA CCI and
the estimated SM at high resolution (60 m) introduces potential
challenges. Certain conditions at high resolution, including
those related to climate, terrain, and human influence, among
others, may not be captured at the lower resolution and thus may
not have been fully considered during model training. As a result,
there is a potential for diminished accuracy in SM estimation at
higher resolutions. One possible mitigation strategy to address
this challenge involves expanding the study area, thereby
encompassing information that more comprehensively captures
the inherent heterogeneity observed at higher resolutions.

The training process and subsequent estimation of high- and
low-resolution SM maps presented in this study utilize Sentinel-
2 reflectances in conjunction with spectral indices derived from
them, thus incorporating information ranging from the optical
range to the shortwave infrared. In addition, the process involves
MODIS LST calculated from the TIR band, ERA5-Land reanal-
ysis data, topography data (DEM and slope), and data related
to soil properties (SF). Microwave sensor data, either active or
passive, have not been used as predictors, as was done in previous
studies [17], [30], [68], [69]. The main reason for not incor-
porating passive microwave data is that using predictors with
very different spatial scales, such as Sentinel-2 imagery, with
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Fig. 16. Histograms of SM for ESA CCI in blue, BEC SMOS L3 at 25 km [66] in green, and SMAP L3 at 36 km [67] in red, obtained utilizing (a) ante meridiem
acquisitions (SMOS ascending and SMAP descending orbits) and (b) post meridiem acquisitions (SMOS descending and SMAP ascending). All available samples
during the study period have been used, resulting after applying the most restrictive quality flags for all three datasets.

resolutions ranging from 10 to 60 m depending on the band, and
information from passive microwave sensors with resolutions
around 40 km, can lead to a boxing effect or reduction in the
effective spatial resolution of the resulting high-resolution SM
maps. Moreover, the temporal desynchronization of variables
must be considered. If the sensed data on a given day are intended
to represent a variable on that particular day and not on another
day close in time, the revisit time of the inputs is crucial for
the number of available samples. For example, the difference
in revisit time between Sentinel-1 (six days considering both
satellites) and Sentinel-2 (five days considering both satellites)
could lead to a considerable reduction in samples available for
training the model, following the methodology outlined in this
study. Hence, there is a mismatch that can be reflected in the
performance of the high-resolution SM estimation.

B. High-Resolution SM Maps: Spatial Analysis

It has been observed that high-resolution SM maps preserve
the original information for most of the region (see Fig. 10).
This means that when they are aggregated to low resolution
and compared with the ESA CCI SM maps, the discrepancies
are relatively low (with a mean MAE of 0.023 m3/m3). Larger
differences occur in regions where the original ESA CCI maps
display extreme values compared to the surrounding pixels [see
Fig. 17(a)] or in areas with complicated topography or steeper
slopes [see Fig. 17(b)]. This effect is clearly visible in Figs. 12(a)
and (b) or in 13(a) and (b), particularly over the mountainous
areas located in the northwest, denoted as the “Montes de León;
the central part, identified as the “Sistema Central”; and the
southern region, recognized as the “Montes de Toledo.”

Validating the spatial patterns of 60-m SM maps with in situ
observations is challenging due to the absence of SM networks
with adequate density (i.e., with an enough number of stations
homogeneously distributed over the region) to reproduce these
patterns. However, high-resolution estimated SM maps (see
Figs. 11–13) have been depicted alongside RGB maps (see
Figs. 11–13), effectively illustrating the heterogeneity of soil

Fig. 17. (a) Average SM map for the entire study period and (b) terrain slope
map, both at a resolution of 0.25°.

coverage. Validation of high-resolution estimates is comple-
mented by spectral analysis of the maps and by conducting time
series evaluations.

In examining the spatial spectra along the zonal and merid-
ional axes (see Fig. 9), it is observed that the slopes of the fitting
lines fall within the expected range, as the PDS tends to conform
to the power-law wavelength (k) such that |S(k)|2 ∼ kβ , where
the slope β typically ranges between −1 and −2 [70]. At high
resolution (red line in Fig. 9), the slope remains practically
constant throughout the entire range of wavelengths (until k ∼
8.3e-3 m-1). Since the spectrum has a positive and a negative
part, the effective spatial resolution can be defined as reff = λ/2
= 1/(2k), indicating that an effective resolution of 60 m has been
achieved. The PSD might have exhibited other behaviors indi-
cating that the desired effective resolution is not being attained.
These behaviors could include the energy of the spectrum, and
thus its slope, beginning to level off. This phenomenon would
primarily occur in the presence of white noise, where the spec-
trum would behave as |S(k)|2 ∼ kβ + η, and consequently, for
short wavelength, |S(k)|2 would tend toward a constant value of
η, indicating a measurement predominantly dominated by noise
[65]. Alternatively, a significant drop in the PDS curve would
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Fig. 18. (a) Total number of samples originally available for the entire study
period for the ESA CCI SM, and (b) number of samples ultimately used after
applying filtering based on the remaining input parameters.

suggest an effective data resolution lower than the data grid,
akin to the effect of a low-pass filter at higher frequencies [71].
However, neither of these two effects is observed in Fig. 9.

Furthermore, a difference in energy is observed between the
curve representing low-resolution SM maps and the one repre-
senting high-resolution maps (see Fig. 9). Enhancing the spatial
resolution of the SM maps enables the assessment of finer details
and structures at higher scales, thereby increasing the spatial
variability within the maps. Consequently, this manifests as an
increased concentration of energy within the autocovariance
spectrum, leading to a higher PSD. This phenomenon explains
the offset observed between the two curves.

C. High-Resolution SM Maps: Temporal Analysis

The statistical findings derived from the REMEDHUS SM
network and various SM products, encompassing the ESA CCI
SM, the estimated SM at 0.25°, and the estimated SM at 60 m,
demonstrate significant similarities, as illustrated in Table VI.
The primary distinction lies in a number of available samples
for the entire study period, with 894 samples for ESA CCI, 86 for
the estimated SM at 0.25°, and 97 for the estimated SM at 60 m.
This decrease in the number of samples primarily arises from the
five-day revisit interval of Sentinel-2 (in contrast to the one-day
revisit interval for ESA CCI), leading to an approximate 89%
reduction in samples across the entire study area, as depicted
in Fig. 18. In addition, Table VI underscores a positive bias
(SM above in situ) for both low and high-resolution estimated
products, influenced by the ESA CCI SM product employed as
the target for model training.

For certain REMEDHUS stations, notable differences are ob-
served between the measurements obtained by the in situ sensors
and the estimated values. This discrepancy may arise from most
stations being positioned in areas where they do not interfere
with agricultural activities, often at field ends or borders (refer to
Figs. 11–13). Consequently, SM pixels containing these stations,
even at the highest resolution, may encompass information not
only from their respective fields but also from neighboring
fields or pathways, potentially exhibiting significantly different
SM conditions. This effect is less pronounced for time series

corresponding to stations located over representative land uses
within the REMEDHUS area, such as rain-fed areas [refer to
Fig. 15(b)], where the likelihood of including surrounding field
information altering the time series behavior is diminished, as
these areas are also likely classified as rain-fed [72]. Conversely,
stations situated in vineyard areas with sandy soils as “El
Tomillar” [refer to Fig. 15(c)], where water filters swiftly into
deeper strata, may not be entirely captured by in situ sensors at
a 5-cm depth, yet remote sensing microwave data might obtain
information from deeper soil layers [73].

VI. CONCLUSION

This study presents a multisensor FNN-based methodology
for the estimation of SM at both low (0.25°) and high (60 m)
resolutions. A total of 14 predictors are utilized for this purpose,
including reflectances (B5, B6, B8A, and B11) and spectral
indices (NDVI, EVI, GNDVI, and MSI) from Sentinel-2, LST
from MODIS, precipitation from ERA5-Land, elevation and
slope from SRTM, and SF from SoilGrids250m. The ESA CCI
SM serves as the target variable. To estimate the high-resolution
SM, a two-step methodology is employed (see Fig. 3).

1) Training at low resolution: The predictors are aggregated
from their original resolution to the 0.25° grid of the target
variable. The model is then trained using this information,
employing an FNN designed according to the character-
istics detailed in Table III.

2) Estimation at high resolution: All predictors are applied
at 60 m, being interpolated to this grid size if necessary.
Subsequently, they are used in conjunction with the model
previously trained in the first step, ultimately facilitating
the estimation of SM at a 60-m resolution.

At low resolution, it has been demonstrated that the trained
model is capable of accurately estimating the ESA CCI SM,
yielding average values (across the five trained models) of R2

= 0.86, MAE = 0.016 m3/m3, and RMSE = 0.021 m3/m3. The
error, quantified as the difference between the estimated SM at
0.25° and the ESA CCI SM, conforms to a normal distribution
[see Fig. 7(a)], centered in zero with a std of 0.018 m3/m3.
Furthermore, the distribution of the MAE remains relatively
consistent across the entire study region [see Fig. 7(b)].

Validation of the spatial patterns at high resolution is complex
due to the lack of sufficiently dense in situ data within the study
region to allow for a comparison of the spatial distribution of
SM. Nevertheless, the resulting high-resolution SM maps have
demonstrated the ability to capture the spatial heterogeneity of
the terrain at 60 m (see Figs. 11–13), preserving the information
of the low-resolution SM for most of the region (see Fig. 10)
while also adding relevant information at high resolution. The
spectral analysis also confirms an effective spatial resolution of
approximately 60 m for the SM maps (see Fig. 9).

Temporal analysis has revealed that the estimated SM at
60 m accurately captures seasonal SM trends but may exhibit
limitations in tracking finer variations or reaching extreme
levels of SM observed during specific events (see Fig. 15).
In addition, the statistical results obtained from the resulting
high-resolution product (R = 0.66, bias = 0.095 m3/m3, and
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uRMSE = 0.044 m3/m3 on average) closely align with those
obtained from the original ESA CCI product (see Table VI).

The presented methodology exhibits some limitations.
1) The model has been trained within a specific study area and

time period, with ESA CCI-based SM values that mostly
range between 0.1 and 0.3 m3/m3 (see Fig. 6). Therefore,
there may be a risk that the model may not generalize well
outside of this range.

2) Certain conditions that occur at high resolution—related to
climate, terrain, or human influence, among others—may
not be well represented within the 0.25° pixels and, thus,
may not be captured at low resolution, due to not being
considered during training.

3) The use of Sentinel-2 with a five-day revisit time, com-
bined with potential atmospheric effects on optical data,
limits the number of available samples (see Fig. 18).
These limitations could likely be addressed by including
new study areas and time periods to extend the dynamic
range of ESA CCI SM values beyond the current range,
incorporating additional information that more compre-
hensively captures the inherent heterogeneity observed
at high resolution. In addition, Sentinel-2 data could be
complemented with Landsat information [74] to increase
the number of available samples.

The SM estimation method proposed in this research study is
relevant for the development of a high-resolution SM product
that can be extended beyond the lifetime of operational missions
for SM estimation, such as SMOS and SMAP. These missions,
initially planned with a 3-year lifespan, are currently in their
15th and 9th years, respectively. In addition, the model can be
adapted to incorporate information from upcoming satellite mis-
sions, such as the Copernicus Imaging Microwave Radiometer
mission. The resulting high-resolution SM maps can be relevant
in a variety of applications, encompassing precision agriculture,
water resource management, environmental monitoring, and the
prevention and monitoring of natural disasters, among others.
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