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DE-Net: A Dual-Encoder Network for Local and
Long-Distance Context Information Extraction in

Semantic Segmentation of Large-Scale Scene
Point Clouds

Zhipeng He , Jing Liu , and Shuai Yang

Abstract—Semantic segmentation of large-scale point clouds is
essential for applications such as autonomous driving and high-
definition mapping. However, this task remains challenging due
to the imbalanced distribution of categories in large-scale point
cloud data and the similarity in local geometric structures. Most
current deep learning–based methods concentrate on designing
local feature extraction modules while neglecting the significance
of long-distance contextual information. Nevertheless, this contex-
tual information is crucial for accurate object segmentation in
large-scale scenes. To address this limitation, we propose a dual-
encoder segmentation network called DE-Net. DE-Net effectively
learns both the local and long-distance contextual information
for each point to achieve accurate point segmentation. DE-Net
consists of two main components: dual-encoder modules (DEMs)
and gradient-aware pooling modules (GAPM). DEMs extract lo-
cal geometry and long-distance contextual information for each
point using positional and trigonometric encoding to distinguish
complex geometric features. GAPMs aggregate global informa-
tion effectively using dual-distance and xy gradient information.
In addition, a prediction jitter module was introduced during
training to address the issue of class imbalance and improve the
network’s prediction results. The experimental results on three
public benchmarks demonstrate that DE-Net outperforms existing
state-of-the-art methods, achieving mean intersection over union
scores of 83.5%, 61.8%, and 63.9% on Toronto-3D, WHU-MLS,
and S3DIS datasets, respectively.

Index Terms—Deep learning, dual-encoder, semantic segmenta-
tion, 3-D point cloud.

I. INTRODUCTION

W ITH the rapid development of LiDAR sensors, point
cloud data processing has received extensive attention.

As a fundamental task of point cloud processing, semantic
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segmentation has been widely used in the fields of autonomous
driving [1], [2], scene-level understanding [3], and robotics [4].
Unfortunately, the disorder, irregularity, and class imbalance of
large-scale point clouds have posed challenges for algorithm
design.

Existing research methods can be divided into projection-
based, voxel-based, and point-based according to their princi-
ples. Among them, the projection-based method converts the
point cloud into a 2-D image (such as multiview projection
[5], spherical projection [6], and bird’s eye view projection
[7]. Afterward, pixel features were extracted by convolutional
neural networks. However, occlusion and pixel distortion of the
projected image limit the further development of this method.
The voxel-based approach first voxelised the point cloud and
further processed it through 3-D convolutional neural networks
[8], [9], [10]. This method can solve the disorder of point
clouds. However, the low resolution of voxels can result in a
loss of details for small objects. High voxel resolution increases
memory consumption and computational costs. Different from
these methods, point-based methods are able to work directly
with point clouds. As a pioneering work, PointNet [11] generates
an alignment matrix of point clouds and features through the
T-Net network. It uses the multilayer perceptrons (MLP) to learn
the features of points and finally adopts maximum pooling to ag-
gregate global features. However, this method does not consider
the extraction of local features of point clouds. To effectively
extract the local features of point clouds, some studies use the
K-nearest neighbors algorithm to construct neighbors to express
local context information [12], [13], such as RandLA-Net [14],
SCF-Net [15], and Stratified Transformer [16]. RandLA-Net
uses random sampling to downsample point clouds, thus signifi-
cantly reducing computational costs and memory consumption.
In addition, they designed the local spatial encoding module
to effectively preserve the useful features of the neighborhood.
SCF-Net [15] constructs a Z-axis rotation invariance in the polar
coordinate system to represent the point cloud and learns the lo-
cal context features. At the same time, the neighborhood location
and volume ratio are used to learn the global context information
of the point cloud. Stratified Transformer [16] confines the Point
Cloud Transformer within a nonoverlapping local window and
effectively uses the Transformer for feature extraction. The

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0008-5465-3468
https://orcid.org/0000-0001-5207-7614
mailto:211345011@njnu.edu.cn
mailto:jingliugeo@njnu.edu.cn
mailto:yangshuai1984726@163.com


HE et al.: DE-NET: A DUAL-ENCODER NETWORK FOR LOCAL AND LONG-DISTANCE CONTEXT INFORMATION EXTRACTION 15915

excellent results of these methods show that efficient local
feature extraction and global context aggregation play a crucial
role in point cloud semantic segmentation [17]. However, there
are still some challenges to existing methods.

First, most algorithms do not consider the similarity of local
features in large-scale scenes, such as poles, tree trunks, fences,
walls, and grounds. Nevertheless, the similarities in the local
geometry of different classes of objects are not rare. Therefore,
the local similarity in the local features of learning may lead to
the misclassification of different categories. A simple solution
is to introduce more fine-grained local information [15], such as
distance and gradient information in the xy plane, which can aid
in complex feature discrimination. However, for objects such
as poles and tree trunks, the feature and gradient information
provided by the xy plane is limited. It is worth noting that the
long distance of contextual information is beneficial for feature
discrimination. This observation motivates us to add an attention
mechanism to the local feature extraction process. At present,
the popular Transformer mechanism can well represent the long-
distance context information of point clouds [18], [19], [20].
Nevertheless, memory consumption and computational costs
grow exponentially when directly applying the Transformer
mechanism to large-scale scene point clouds.

Second, existing methods of global information aggregation
are subject to information loss and boundary points. Previous
studies [12], [21] use max pooling or mean pooling to forcibly
aggregate global information, resulting in the loss of a portion
of the information. This is because the max pooling highlights
the foreground features and loses the background information,
whereas the mean pooling retains the overall information but
ignores the feature differences. On the other hand, the literature
[14], [22] uses an attention mechanism to aggregate global infor-
mation, which can preserve the overall information and feature
differences. Yet, the attention mechanism still has some limi-
tations and it is easily affected by boundary points. Especially
in the first few point cloud downsampling stages, the abnormal
boundary points in the small neighborhood will seriously affect
the output of the convolutional layer.

Third, the semantic segmentation of point clouds in large-
scale scenes is usually affected by the long-tail distribution. This
is because the frequency and size of objects in each category in
the scene are inconsistent, resulting in an inconsistent number of
points for each category. This issue is also present with widely
used point cloud benchmark datasets, such as Toronto-3D [23],
WHU-MLS [24], and S3DIS [25]. This brings challenges to the
semantic segmentation of point clouds in large-scale scenarios.
Common methods to address this challenge are oversampling the
tail category and downsampling the head category, or balancing
the importance of the sample (using a weighted loss function that
imposes a greater penalty on the class with a smaller sample size)
[26], [27]. However, with the current state-of-the-art technology,
a drop in performance can still be observed in the tail category.

In this article, we focus on solving the problems mentioned
above. First, to solve the problem of local feature similarity, we
propose a dual-encoder module (DEM). This is a novel point
local feature coding module, which can effectively combine
local neighborhood and long-distance context information, thus

improving the robustness of the network to local feature simi-
larity. In particular, for each 3-D point, we explicitly express the
local geometry through position encoding and introduce trigono-
metric functions to encode long-distance contextual information
to help discriminate complex similar local geometry. Second,
to improve the aggregation ability of global information, we
propose a gradient attention pooling module (GAPM) to mitigate
the impact of boundary points, which is a novel attention pooling
module that aggregates contextual information by introducing
double-distance and xy gradient information. Third, to overcome
the category imbalance and overfitting of the head class, we
introduce the prediction jitter module (PJM) in the training phase
to make the network generate more robust prediction results.
This jitter is dependent on the number of points in each category.
This is manifested in the fact that a smaller jitter is assigned to the
tail category and a larger jitter is assigned to the head category.
In this way, the feature region differences between categories are
narrowed down, resulting in a more balanced representation. In
summary, our main contributions are as follows.

1) We proposed a novel DEM that can learn the local feature
representation and the long-distance context information
representation of each 3-D point. Unlike previous meth-
ods, we encode point clouds in two different forms.

2) We proposed a GAPM that enhances the capacity of the
global context information for each 3-D point by exploit-
ing relative distances, surface distances in the xy plane,
and xy gradient information.

3) We have introduced the PJM during the training phase,
which enables the mitigation of feature discrepancies be-
tween different classes.

4) Comprehensive experiments on three benchmarks show
that we proposed that DE-Net can be used for semantic
segmentation of large point clouds with limited memory,
and we have achieved excellent segmentation results.

II. RELATED WORKS

A. 3-D Point Cloud Descriptors

The 3-D point cloud descriptor encodes characteristic in-
formation such as coordinates, color, and intensity, making it
the most successful method for representing 3-D point clouds.
Existing literature categorizes 3-D point cloud descriptors into
local-based, global-based, and hybrid-based descriptors. The
local feature descriptor is constructed by selecting the center
point to create a local reference. The point cloud is then divided
into multiple local areas, and the relationship between the points
in each area is encoded [12], [21]. For instance, RandLA-Net
[14] introduces a local spatial coding unit to represent and
convey the local geometry. This method describes the geometric
features of a point based on its positional relationship with
adjacent points. On the other hand, global-based feature descrip-
tors encode geometric information across the entire point cloud
[19], [20], [28]. The point cloud is first divided into voxels or
individual cells. Then, the features of each unit are accumulated
to form feature descriptors. These descriptors are mainly used
for tasks, such as point cloud classification and shape detection.
PCT [29] is inspired by the Transformer in natural language



15916 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

processing, which puts the coordinates of each point and the
corresponding features into a coordinate-based coding module
and uses the attention mechanism to extract the global features
of the point cloud. Hybrid-based descriptors are used to fuse
local and global feature coding information for a comprehensive
representation of point cloud features. DS-Net [30] recently
proposed a dual-path architecture for encoding local and global
information, sequentially separating and fusing the two forms
of expression to achieve sufficient cross-scale interaction. In
point cloud processing, PVCNN [31] uses two modes of points
and voxels to encode the original points, and the relationship
between points is modeled through 3-D convolution. Different
from these methods, we construct two encoding methods for
each 3-D point to achieve effective extraction of local features
and long-distance contexts.

B. Point Feature Aggregation

Point cloud local feature aggregation plays a crucial role
in the semantic segmentation of point clouds in large-scale
scenes. [12], [14], [15], [22] achieves accurate point cloud un-
derstanding through efficient local feature extraction and global
feature aggregation. Therefore, many subsequent works have
been carried out from multiple perspectives, and different local
space coding modules have been designed to effectively obtain
local space information. For example, Li et al. [32] designed a
multiscale convolutional kernel point module to extract initial
geometric features from coarse to fine. Xiang et al. [33] added
relative angle features and other features as inputs to the model to
effectively extract geometric information from the point cloud.
Li et al. [34] deeply integrated fine-grained point features and
coarse-grained voxel features to enhance feature representation.
However, a single pooling method may result in the loss of
foreground or background feature information. To solve this
problem [12], [21], Qiu et al. [22] proposed a hybrid local
feature aggregation method, which combines the salient features
obtained by the maximum pooling and the detailed information
of the average pooling. In addition, Zhang et al. [35] calculated
the relative distance based on the geometric distance and Z
coordinate for the point product and concatenated it with features
to calculate the attention weight for feature aggregation. Xu et
al. [17] designed an adaptive connection unit to connect features
in series according to the feature volume ratio as a weight and
weighted the updated features to enhance feature perception.

C. Class Imbalance

The long-tail distribution of point cloud data is a common
problem. This makes it difficult for the model to learn the
features of the tail class, which leads to the deterioration of
the segmentation performance of the tail class [36]. Previous
studies can be categorized into two methods: data augmenta-
tion and weighted loss function. The data-augmentation-based
approach [26], [37], [38] increases the number of unbalanced
class samples in the training data. This allows the model to
have more frequent tail class samples during training, resulting
in a more balanced class distribution. Although this approach
works well for small datasets, it is likely to overfit the model to

the tail class. The method based on the weighted loss function
[12], [39] is to set the category weights according to the inverse
proportion of the sample size and give a greater penalty to the
tail category. For example, Lin et al. [40] proposed the focal loss.
An additional factor is introduced on top of the cross-entropy
loss function. Its role is to adjust the weights based on the size
of the category sample. The weight is reduced for categories
with a large sample size, whereas increased for categories with
a small sample size. Lee and Kim [26] balanced the class losses
by dynamically weighting the loss values and mixed the methods
of data augmentation.

III. METHODOLOGY

In this section, we first present the problem statement. We
then discuss our proposed DE-Net and its three key modules:
the dual-encoder module (DEM), the gradient-aware pooling
module (GAPM), and the PJM.

Problem statement: Given a point cloud P = {(Pi)}Ni=1

with N points Pi = (Xi, Yi, Zi) ∈ R3, the goal is to predict
the semantic label L = {(li)}Ni=1 for each point. We train
a deep learning model, denoted as DE-Net, with parameters
h = h(·|θ), by minimizing the disparity between the predicted
semantic labels for point coordinates and the ground truth.

A. Network Architecture

Our DE-Net follows the network architecture of RandLA-Net
[14], as shown in Fig. 1. In the encoding layers, the DEM,
GAPM, and random subsampling are stacked between layers. In
the decoding layers, we use an oversampling approach for each
encoding layer, facilitating the propagation of features between
encoding and decoding layers through skip connections. Finally,
the softmax function is used to generate predicted probabilities
for each class at each point. It is worth noting that our baseline
framework is the same as RandLA-Net, except that it is based
on a Pytorch reimplementation instead of TensorFlow. The fol-
lowing sections will provide further information on the specifics
of the DE-Net structure.

B. Dual-Encoder Module

The key idea of the method is to use two branches to encode
the point cloud in parallel. The positional encoding expresses
the local features of the point cloud through absolute posi-
tion, relative position, relative distance, xy plane distance, and
xy gradient information. The trigonometric encoding is used
to extract long-distance contextual features from global point
clouds. Each point is embedded in a high dimension to enrich
the input features and the K-nearest neighbors are utilized to
reflect the overall picture of each local community. Exponential
transformations are applied to assess feature similarity, and
long-distance contextual features are then propagated between
points via a shared MLP. We describe the dual-coding module
in detail in the following paragraphs.

1) Positional Encoding Branch: We adopt the local spatial
encoding from RandLA-Net to explore point features in the
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Fig. 1. Overall structure of DE-Net.

Fig. 2. Dual-encoder module.

local space. The local spatial encoding consists of four compo-
nents: point coordinates, relative point coordinates, coordinates
of K-nearest neighbors, and relative distances. To enhance the
expressive power of local point features, we introduced more
fine-grained geometric information between the central point
and its neighbors based on the local spatial encoding. This
includes xy plane distance features and xy gradient information
features, as shown in Fig. 2.

The feature of xy plane distance refers to the distance between
two points projected onto the xy horizontal plane. It is acquired
by utilizing the coordinates of the central point and its K-nearest
neighbors, which can be denoted as follows:

XYdis =

√(
Xc −Xk

i

)2
+
(
Yc − Y k

i

)2
(1)

where (Xc, Yc) are the coordinates of the central point Pk, and
(Xk

i , Y
k
i ) are the coordinates of the K-nearest neighbor point

Pk.

The xy gradient information feature is acquired by calculating
the relative distance between the central point and the K-nearest
neighbor points, alongside the distance on the xy plane, which
can be denoted as follows:

∇xy =
Zk
i

diski
· X

k
i + Y k

i

XYdis
(2)

where ∇xy is the xy gradient, (Xk
i , Y

k
i , Zk

i ) are the coordinate
values of the K-nearest neighbor points Pk, diski are the relative
distance between the central point and its K-nearest neighbors,
andXYdis are the xy plane distance between the central point and
its K-nearest neighbor points. Finally, we extract local spatial
features, which can be denoted as follows:

F g
i = MLP

(
Pi ⊕ P k

i ⊕ (Pi − P k
i

)⊕ ‖Pi

−P k
i ‖ ⊕XYdis ⊕∇xy

)
(3)

where F g
i represents the local neighborhood features obtained

by position encoding, Pi and P k
i are the absolute x-y-z posi-

tions of points, (Pi − P k
i ) is the relative position of the point

coordinates, ‖Pi − P k
i ‖ is the relative distance of the point coor-

dinates,⊕ is the concatenation operation, and MLP is multilayer
perceptron.

2) Trigonometric Encoding Branch: To capture the global
features of the input point cloud, we use trigonometric functions
to encode point coordinates and extract long-distance context in-
formation through a weight-shared MLP. Specifically, each point
is mapped to a smooth range using trigonometric functions, and
the features encoded with sine functions and cosine functions
are stacked, increasing the point feature dimension from 3 to
C (where C = 24) to enrich the input features. Subsequently,
relative features between the central point and points in its neigh-
borhood are computed using K-nearest neighbors. Exponential
transformation is applied to assess feature similarity. Smaller
feature differences are mapped to exponential values close to
1, whereas larger differences are mapped to values close to 0.
Finally, further processing is conducted through a weight-shared
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MLP. Our triangulation encodes point clouds in the same way
as Point-NN [41], which can be denoted as follows:

F xyz
i (2J) = sin

(
β · xyz
α6J/C

)
(4)

F xyz
i (2J + 1) = cos

(
β · xyz
α6J/C

)
(5)

where β and α control the magnitude and wavelengths, C
represents the output feature dimension, and here we setC = 24.
J represents the feature channel index, xyz represents the input
point coordinates, and F xyz

i represent the high-dimensional fea-
tures of the trigonometric function of each point i. Then, for each
point i, the relative feature distance within its local neighborhood
is calculated, and an exponential transformation is applied to the
relative feature distance to evaluate the feature similarity, which
can be denoted as follows:

dki = e
−
(∣∣∣Fxyz

i −(Fxyz
i )

k
∣∣∣

mean

)
(6)

where F xyz
i represents the high-dimensional characteris-

tics of the trigonometric function of each point i, and
(F xyz

i )
krepresents the high-dimensional characteristics of the

trigonometric function of each point i in the K neighborhood
of point i. dki represents the relative characteristics between the
central point i and the point k in the neighborhood. Then, a
weight-shared MLP is applied to the calculated dki to automati-
cally learn long-distance contextual information

F k
iG = MLP

(
dki
)

(7)

where F k
iG represents the long-distance context information

learned by the MLP.

C. Gradient Attention Pooling Module

The previous method [14] performs softmax on the input
feature map to calculate the attention weight and multiplies
the attention weight and the feature map to obtain the global
context information, which is easily affected by boundary points.
GAM [42] adds gradient information to the extraction of local
neighborhood features, which significantly improves the ability
of local feature extraction. In particular, inspired by Hu et al.
[42], a GAPM was designed to aggregate global contextual
information in our study. Unlike them, we believe that distance
is a better representation of the correlation between points. So,
we constrain the influence of boundary points by double distance
and xy gradient information, rather than relative position vectors,
as shown in Fig. 3.

We use the GAPM during the coding phase. The xy plane
distance, relative distance, and xy gradient information used here
are obtained from the center point and the nearest neighbor point
during the position encoding process. Specifically, we stack xy
plane distances, relative distances, xy gradient information, and
input feature maps in feature channels. Then, 1 × 1 convolution
is used for secondary feature extraction to realize the constraints
of xy gradient and distance information on feature aggregation.
Finally, the attention weights are calculated by softmax and

Fig. 3. Gradient attention pooling module.

multiplied by the input feature map. The details are as follows:

Fi = F g
i ⊕ F k

iG ⊕ F k
i (8)

Awi = softmax (Conv2d (Fi ⊕ distance ⊕XYdis ⊕∇xy))
(9)

fi = MLP

(
K∑

k = 1

(Fi �Awi)

)
(10)

where F k
i are the features for each point, such as RGB. F g

i

represents the local neighborhood features obtained by position
encoding, F k

iG represents the long-distance context information
obtained by trigonometric function encoding, and Fi represents
the local features of each point after the concatenation of local
features, long-distance context information, and color features.
Awi represents the attention weight of each point obtained by
the convolutional layer and softmax function, fi represents the
global feature description of the point cloud, ⊕ is the element
concatenation, and � is the element product.

D. Prediction Jitter Module

The DEM and the GAPM can help the network to fully learn
the fine-grained features of the point cloud. However, due to the
category imbalance in the number of samples of each category
in large-scale scenes, the network may overfit the features of
the head category and compress the features of the tail category
in a narrow region, resulting in overconfidence in the prediction
results of the head category. Inspired by BLV [43], we introduced
the PJM in the training phase to narrow the gap between the
feature regions of different classes and prevent the network
from overfitting the head class. Fig. 4 shows a more intuitive
understanding of the PJM.

Specifically, in the training phase, we obtained the number
of points for each category based on the training data, and
calculated a vector Q with the same shape as the predicted value
using the following equation:

Qk = log

∑C−1
i = 0 qi
qk

. (11)

The value of each category in the vector Q is inversely propor-
tional to the scale of the number of category points. However,
simply scaling the prediction probability based on a fixed class
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Fig. 4. Prediction jitter module.

frequency can lead to overfitting. Therefore, we take a jitter with
a mean of 0 and a variance of four for a fixed class frequency, and
add the result of the jitter and the predicted probability, which
can be denoted as follows:

PJk =
Qk

maxC−1
i=0 Qi

· |δ (σ)| (12)

where qk is the number of points for class k, Qk indicates an
inverse change in the number of category points, and δ(σ) is
a Gaussian distribution with a mean of 0 and a variance of σ.
Finally, we add the jittered result to the predicted probabilities,
which can be denoted as follows:

predi
k = predi

k + PJk (13)

where predi
k is the predicted probability for each class in each

point and PJk are the predicted jitter for each class. By adding
this jitter, we aim to achieve a feature representation space that
is balanced across classes. It is worth noting that the PJM is
discarded during the inference phase to assist the network in
obtaining more robust predictions.

IV. EXPERIMENTS AND ANALYSIS

We evaluated the performance of our proposed DE-Net on
three large-scale point cloud datasets including Toronto-3D,
WHU-MLS, and S3DIS. In addition, we analyzed the three pro-
posed modules and hyperparameters to verify the effectiveness
of the designed modules.

A. Description of Datasets

1) Toronto-3D Dataset: Toronto-3D [23] is a street-level
point cloud dataset collected by 32-line LiDAR. It was collected
from the streets of Toronto, with a total length of about 1 km,
and provides nine semantic annotations. It contains 78.2 million
points, with an average density of 1000 points per square meter.
Each point contains coordinates, color, and intensity informa-
tion. In the experiment, we used only the coordinates and color
information. The data are divided into four parts: L001, L002,
L003, and L004. We follow the official recommendation to train
DE-Net with L001, L003, and L004 as the training set, and report
the test results on L002.

2) WHU-MLS Dataset: WHU-MLS [24] is a point cloud
dataset of the outdoor environment of an urban environment,
which is collected by mobile LiDAR. It contains more than 200

million points and more than 5000 instance objects, covering
categories such as ground, dynamic targets, vegetation, and
poles. The dataset has a total of 38 scenarios, of which 28 are
used for training and 10 are used for testing. According to the
existing research [24], the point cloud segmentation is divided
into 17 classes. The coordinates, normal vectors, and intensity
information of each point are used as the input of the network.

3) S3DIS Dataset: S3DIS [25] is a large-scale indoor scene
dataset collected through Matterport. It consists of 272 rooms
(e.g., halls, meeting rooms, classrooms, etc.) in six large-scale
areas. Each point contains coordinates and color information.
There are 13 semantic categories. We used areas 1–4 and area 6
as training and tested on area 5.

B. Implementation Details and Metrics

In our experiments with the three datasets, we used a grid
of rules for the first layer of downsampling. For the Toronto-3D
dataset, the first grid size was set to 0.06 m, the hyperparameters
were set to 500 iterations, training, batch size was 4, validation
batch size was set to 16, and epochs 100. For the WHU-MLS
dataset, the first grid size was set to 0.16 m due to its large
outdoor scene. For the S3DSI dataset, the first grid size was set
to 0.04 m with similar hyperparameters. The initial learning rate
for the three datasets was 0.01. This experiment was based on
the Pytorch framework and used a Tesla V100 GPU (16GB) to
train and update the weights of the network with the help of the
Adam optimization algorithm.

To evaluate the segmentation results, we adopted the intersec-
tion over union (IoU), mean IoU (mIoU), and overall accuracy
(OA) as evaluation metrics. The mathematical formulas of IoU,
mIoU, and OA can be expressed as follows:

IoU =
TP

TP + FP + FN
(14)

mIoU =
1

C

C−1∑
i = 0

IoUi (15)

OA =
1

N

∑
i

TPi (16)

where N is the total number of points, C is the number of
segmentation classes, TP is a true positive, FP is a false positive,
and FN is a false negative.

C. Experiment Results and Analysis

1) Evaluation on Toronto-3D: Table I shows the quantitative
results of DE-Net and other state-of-the-art networks on L002.
Experimental results show that DE-Net is superior to all other
networks. Notably, DE-Net OA is 3.2% higher than RandLA-
Net, and mIoU is 1.7% higher. In addition, DE-Net excelled
in specific categories, ranking first in the road mark, car, and
fence categories. In addition, DE-Net achieved the top three
positions in seven out of eight categories, further validating DE-
Net’s superior performance.

Fig. 5 shows a visual comparison of DE-Net and RandLA-Net
on Toronto-3D. The purple box indicates the difference between
RandLA-Net and DE-Net. From the visualization results, the
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TABLE I
QUANTITATIVE RESULTS OF DIFFERENT APPROACHES ON TORONTO-3D (L002)

TABLE II
QUANTITATIVE RESULTS OF DIFFERENT APPROACHES ON WHU-MLS

segmentation effect of DE-Net on road, road mark, pole, car,
and fence is better than that of RandLA-Net, especially the
segmentation effect of road mark, car, and fence. This is be-
cause the dual-coding module can combine local features and
long-distance context information to distinguish regions with
similar local structures.

2) Evaluation on WHU-MLS: Table II shows the quantitative
results of DE-Net and other networks on the dataset on WHU-
MLS. Experimental results show that the mIoU of DE-Net is
3.2% higher than that of baseline. In addition, DE-Net ranked
first in 9 out of 17 categories, further demonstrating DE-Net’s
superior performance in complex segmentation tasks.

Fig. 6 shows a visual comparison of DE-Net and RandLA-Net
on WHU-MLS. For better visualizing differences, we select
some categories for visualization. The black box indicates the
difference between baseline and DE-Net. From the visualization
results, DE-Net has a good effect on wire, low vegetation, road

mark, board, and Nd. way category. This is because the Baseline
only makes use of local features and is susceptible to local
similarities and boundary points. However, DE-Net improves
the segmentation accuracy of these categories through the DEM
and the GAPM.

3) Evaluation on S3DIS: Table III shows the quantitative
results of DE-Net in S3DIS area 5. It can be seen that DE-Net
obtained a better mIoU of 63.9% compared to other methods.
The most significant improvement is in the sofa category, which
is 15.1% higher than RandLA-Net. Experimental results show
that the segmented IoU for similar objects (such as tables and
chairs) is increased by 6.6% and 3.4%, respectively, compared
to the baseline.

Fig. 7 shows a visual comparison of DE-Net and RandLA-
Net on semantic segmentation of the S3DIS dataset. The black
circles represent the difference between the different networks
and the ground truth. From the visualization results, DE-Net
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Fig. 5. Comparison of visualization results on the Toronto-3D dataset.

TABLE III
QUANTITATIVE RESULTS OF DIFFERENT APPROACHES ON S3DIS
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Fig. 6. Comparison of visualization results on the WHU-MLS dataset.

TABLE IV
QUANTITATIVE RESULTS OF DIFFERENT POINT CLOUD CODING MODULES ON TORONTO-3D

has a better effect on chair, sofa, table, and floor segmentation
than RandLA-Net. This indicates that DE-Net also has good
robustness to point cloud semantic segmentation in large-scale
indoor scenes.

D. Ablation Experiments

To further verify the effectiveness of the DE-Net proposed
in this article, we designed an ablation experiment to analyze
the impact of each module in the DE-Net on the network

performance. All of the following experiments were performed
on the Toronto-3D (RGB) dataset.

1) Branch Ablations: We first compared the positional cod-
ing branch (P-branch), the triangular coding branch (T-branch),
and the dual-coding module (P+T). In these three experiments,
we replaced the encoder part of the baseline network with three
branches to prevent the influence of other modules. As shown in
Table IV, the OA, mIoU, and most types of IoU of dual-encoded
modules are superior to single-branch networks. It is worth
noting that the DEM reduces the segmentation accuracy of the
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Fig. 7. Comparison of visualization results on the S3DIS dataset.

TABLE V
ABLATION STUDY FOR MAIN COMPONENTS OF DE-NET

Road mark. This is because there is an overfit. The dual-encoding
module improves the feature extraction ability of the network
and is overconfident in the prediction results, so we improve this
problem with the PJM. Second, due to the problem of category
imbalance in the dataset, road marks only account for 2.3% of
the total number of points. The misclassification of a few points
will cause a large difference in IoU.

2) Core Module Ablations: We compared the impact of the
three core modules (DEM, GAPM, and PJM) on network per-
formance. As shown in Table V, from B0 to B1, OA increased
by 0.3%, and mIoU increased by 0.5%. We observed an im-
provement in the segmentation performance for tail categories
(road mark, util line, pole, and car) with a low number of points,
which is consistent with our hypothesis. It is worth noting that

the segmentation performance of the fence category decreases.
This is because they resemble the walls of buildings. This shows
that the PJM module can improve the category imbalance but it
is still affected by the local spatial similarity. From B1 to B2, the
network performance is improved, with OA increasing by 1.1%
and mIoU increasing by 1.3%. We noticed a 13.7% increase
in IoU for the road mark. This is mainly because the weights
are directly calculated on the feature map, and the obtained
feature information is isolated, whereas the introduction of
distance and xy gradient information can improve the network’s
understanding of the context information and make the boundary
segmentation of the road mark more accurate. Therefore, the
introduction of distance and xy gradient information is crucial
to improve the prediction ability of boundary points. From B2 to
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Fig. 8. Effect of different K values on the segmentation result.

Fig. 9. IoU of each category with different K values.

DE-Net, OA increased by 0.9% and mIoU increased by 2.2%. In
particular, the IoU of the fence category was increased by 20.4%,
indicating that the dual-encoding module helps to distinguish
between two classes of objects with similar characteristics, fence
and building. In addition, with the help of the PJM, the robustness
of the network is improved, so that the IoU of the Road mark
only shows a slight difference.

3) Effectiveness of the Number of Nearest Neighbors: The
DEM uses the K-nearest neighbors algorithm to encode the
features of the local neighborhood and the long-distance context
information. The size of the parameter K determines the size of
the local neighborhood, which directly affects the segmentation
performance of the network. In Figs. 8 and 9, we explore
the effect of different K values on the segmentation results.
The results were obtained by DE-Net in the L002 scene of
Toronto3D. We take K = 16 as the baseline, and when the K
value decreases, the local spatial geometry cannot be accurately
captured due to the decrease in the number of local points,
leading to reduced mIoU by 1.1%–1.4%. However, when the
K value increases, the number of local points increases, and
it is easy to introduce a variety of different types of points

TABLE VI
DIFFERENT VARIANCES ON THE EXPERIMENTAL RESULTS

TABLE VII
COMPARISON OF DIFFERENT MODEL SIZE AND EFFICIENCY

during local feature extraction, resulting in a decrease of 2.1%
in mIoU. It is worth noting that when the K value changes
from 12 to 8, the mIoU increases by 0.3%. This is because
DEM effectively aggregates local features and long-distance
contextual information. In addition, this also shows that our
DEM is robust to the selection of hyperparameters.

4) Exploration of Variance in PJM Modules: Since the PJM
has a unique hyperparameter variance σ, we further explore the
optimal variance σ to generalize it to other tasks. Table VI shows
the effects of different variance σ on the experimental results of
baseline and DE-Net in the Toronto-3D dataset. PJM improved
baseline by +1.3% when σ = 6 and DE-Net by +1.0% when σ
= 6. Although the choice of σ is different, its impact on the final
performance is quite small (the difference between maximum
and minimum mIoU is within +1%), indicating that our PJM is
somewhat robust to hyperparameter choice.

E. Model Complexity and Accuracy Analysis

To analyze the efficiency and computational requirements of
DE-Net, we calculated the number and complexity of parameters
that can be trained by the network. In addition, we compared the
inference time and accuracy on Toronto-3D with some networks.
As can be seen from Table VII, the number of parameters of
DE-Net is only a quarter of that of KPConv, but it has large
FLOPs. We believe that the reason for the large FLOPs of
DE-Net is that it involves high-dimensional embedding and
exponential transform operations, resulting in a large amount of
computation. In contrast, we recommend that DE-Net consume
a certain amount of computational resources to achieve optimal
segmentation performance.

V. DISCUSSION

Our DE-Net has achieved good results in some challeng-
ing categories. For example, the road mark, car, and fence in
Toronto-3D. Through detailed ablation experiments, we believe
that this can be attributed to the similarity between the road mark
and the road, fence, and building walls. Although RandLA-Net
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has a local spatial coding module to achieve efficient point
cloud segmentation and satisfactory segmentation results, it
still lacks the aggregation of local features and long-distance
context information, and cannot produce accurate and complete
segmentation results. In contrast, DE-Net has developed an
efficient dual-encoding module that can effectively aggregate
point-by-point local and long-distance discriminative features
from the input point cloud. This enables the network to ex-
tract complete object structure features in complex large-scale
scenes and produce accurate segmentation results with local
similarities.

In addition, the light and trff. light categories in the WHU-
MLS dataset have achieved good segmentation results. This is
due to the fact that both light and trff. light belongs to poles
and ancillary structures with similar local geometries. DE-Net
uses a DEM to perceive the pole and its ancillary structure as
a whole, enabling efficient segmentation. However, RandLA-
Net uses only the local space encoder module to extract local
features, which can easily lead to confusion.

Unlike outdoor scenes, in S3DIS indoor scenes, the table and
chair may overlap in the horizontal direction when projected. In
DE-Net, there are not only xy plane distances as features, but
also a combination of absolute coordinates, relative distances,
gradients, and other features, which are fused to overcome
the limitations that a single feature may bring. For example,
Z-axis information for coordinates can help distinguish the
height of tables and chairs and xy gradient information can help
distinguish whether the surface of a table and chair is flat or
curved.

In addition, through ablation experiments of the DEM,
GAPM, and PJM modules, we found that the DEM and GAPM
modules required approximately 2 GB of additional computa-
tional resources during the training phase, whereas the PJM
model required approximately 3 GB of additional computational
resources. However, the PJM modules can be discarded during
the prediction phase, so the PJM modules can help train models
with better performance and do not require excessive computing
resources once deployed. It is important to note that a necessary
condition for PJM is that the number of points in each category is
known. In the unsupervised point cloud semantic segmentation
task, this requirement is difficult to meet. Therefore, it is worth
exploring to design of a PJM suitable for unsupervised point
cloud semantic segmentation tasks.

VI. CONCLUSION

In this study, we find that the local geometric space similarity
in large-scale scenes and the boundary points in the process of
global feature aggregation of point clouds are the key factors
affecting the accurate segmentation of point clouds. Therefore,
we propose a point cloud semantic segmentation method DE-Net
for large-scale scenes. The point features are extracted in par-
allel through positional coding and trigonometric coding. The
influence of outliers in feature aggregation is constrained by xy
gradient and distance information. The data feature differences
are balanced by jitter to the prediction results during training.
The mIoU of DE-Net in three benchmark datasets including
Toronto-3D, WHU-MLS, and S3DIS were 83.5%, 61.8%, and

63.9%, respectively. Ablation experiments and comparisons
with state-of-the-art methods show that our proposed network
has clear advantages.
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