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Transformer With Feature Interaction and Fusion for
Remote Sensing Image Change Detection
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Abstract—With the rapid development of deep learning (DL),
change detection (CD) in remote sensing (RS) image has achieved
remarkable success. Nevertheless, as the image resolution im-
proves, the visual features extracted by current methods have
limited expression ability, and the networks generally suffer from
spatial degradation, both of which lead to incomplete boundary
detection and the undetection problem of small changed areas. At
the same time, the registration errors in image pairs make remote
sensing image change detection (RSCD) more challenging. To alle-
viate the aforementioned issues, this article proposes a transformer
with feature interaction and fusion network (TFIFNet) for CD. To
be specific, the proposed network utilizes the advantages of trans-
former in long-range dependence modeling first, which can learn
feature representations with spatial-temporal information from a
global perspective. Then, to alleviate the irrelevant changes caused
by image registration errors, the bitemporal feature interaction
module (BFIM) is proposed, which utilizes an attention mechanism
to learn the bitemporal background distribution. Subsequently,
an intertemporal joint-attention (JointAtt) is introduced to learn
the consistency of bitemporal features for further refinement. Fi-
nally, to address the issue caused by spatial degradation during
the process of network training, a triple feature fusion module
(TFFM) is proposed. This module can learn spatial information
from adjacent layer’s features as additional spatial information.
Extensive experimental studies show that the proposed network
achieves the most advanced results on two CD benchmark datasets.

Index Terms—Attention mechanism, change detection (CD),
deep learning (DL), remote sensing (RS), transformer.
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I. INTRODUCTION

R EMOTE sensing image change detection (RSCD) is the
process of comparing and recognizing the differences

of the same location at different times, which is the key to
understanding land surface change and land surface activity
detection [1]. As one of the key research topics in the field
of computer vision (CV), it has been widely used in urban
planning [2], disaster management [3], land use [4], and en-
vironmental monitoring [5]. With the rapid development of
sensors, the massive high-resolution RS data urgently require
highly automated CD methods to reduce the cost of manual
interpretation. As a result, automatic CD has gradually emerged
in the field of RSCD and become an important research topic
due to its high efficiency and accuracy, which provides strong
support for land surface CD.

In the early phases of RSCD, traditional image processing
technologies, such as principal component analysis (PCA) [6],
change vector analysis (CVA) [7], were widely introduced.
However, the methods based on traditional technologies have
a significant disadvantage, that is, their performance depends
heavily on the selection of thresholds. Then, machine learning-
based methods have garnered considerable attention, methods
such as support vector machine (SVM) [8] and random forest [9]
have begun to be introduced. However, as image resolution
gradually improved, machine learning-based methods generally
exhibit poor generalization in complex scenarios.

Deep learning (DL)-based models, which possess nonlinear
mapping capabilities that enable them to capture intricate im-
age details and complex texture features, have already made
significant achievements in fields such as image analysis [10],
[11], [12], natural language processing (NLP) [13], [14], [15],
image scene classification [16], [17], [18]. Convolutional neural
network (CNN) has attracted particular attention due to its
functionality of automatically capturing complex and nonlin-
ear features, and has made outstanding achievements in object
detection [19], [20], image classification [21], [22], semantic
segmentation [23], [24], face recognition [25], [26], and other
fields. Following this trend, CD in RS image has developed
rapidly. Numerous outstanding CD networks based on CNN
have been proposed [27], [28], [29]. For example, Zhan et al. [27]
introduced the Siamese convolutional network into CD tasks
to efficiently process bitemporal images simultaneously for the
first time. Daudt et al. [28] proposed Siamese architecture for
end-to-end training of RSCD. Daudt et al. [29] later proposed
three well-known CD networks that based on fully convolutional
neural networks (FCNs).
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Although CNN-based models have achieved promising re-
sults, these models are inherently constrained by the size of
receptive fields [30], which extremely hinders their abilities
to effectively extract global spatial-temporal information that
is crucial for recognizing changes in RSCD [31]. To address
this issue, several approaches have been explored and adopted,
including stacking convolutional layers [32], [33] to deepen the
architecture of networks, using dilated convolution [34] and
using attention mechanisms [35], [36]. Although these methods
have indeed broadened the receptive field of CD networks to
some degree, simply using attention mechanism to fuse or
weight features in the spatial or channel dimensions fails to
capture long-range dependencies effectively.

Transformer [37] was proposed in 2017 and originally applied
to NLP tasks. Compared with traditional CNN, transformer
overcomes the limitation of receptive fields, providing a novel
solution for CV tasks. Therefore, scholars began to introduce
transformer into CV tasks, and remarkable performance has
been achieved in tasks such as object detection [38], [39],
semantic segmentation [40], [41], and image classification [42],
[43]. With the development of DL, some excellent transformer
architectures have emerged, including Vision Transformer [44],
SegFormer [40], and Swin Transformer [45]. These transformers
can further provide more powerful context modeling capabil-
ities than CNN. However, in the specific field of RSCD, the
transformer is often used as a part of feature processing [1],
[31], [46], [47], and such methods have not yet fully leverage
the advantages of transformer in global feature learning and
spatial-temporal modeling.

Although current models have made notable advancements
in the field of RSCD, there are still some issues to be solved.
First, the time span of RS image sampling is generally large,
and the positions during sensor sampling are uncertain, which
often results in spatial, illumination, and seasonal differences
between images sampled at the same location but at different
times. This objective difference, that is, registration error, makes
the model prone to false detection easily. Second, in the forward
processing of the model, the features become more and more
abstract. Although the semantic information of the features is
richer, a lot of detailed information is lost, which often makes
the model confused when locating the boundary, resulting in
missed detection, especially for small changed regions. Finally,
the feature fusion method adopted by most of the current
methods ignores the semantic gap between low-level features
and high-level features, which makes it easy to confuse the
network. These issues mentioned above have seriously hindered
the further development of RSCD.

In order to alleviate the problems mentioned above, we pro-
pose a transformer with feature interaction and fusion network
(TFIFNet) for CD. Following the current trends in the CD field,
TFIFNet adopts the Siamese architecture and uses pretrained
Swin transformer as the backbone. First, the multilevel features
of bitemporal images are extracted. Then, aiming at distin-
guishing relevant changes from irrelevant changes caused by
registration errors to obtain more discriminative features, the
bitemporal feature interaction module (BFIM) is introduced to
realize feature interaction between bitemporal images. Finally,

to improve boundary integrity and alleviate the problem of
missed detection in small changed area, a triple feature fusion
module (TFFM) integrated with intertemporal joint-attention
(JointAtt) is proposed, which can further suppress irrelevant
changes and mitigate the impact of semantic gap while reducing
the problem of spatial information loss. The key contributions
of this work are presented below.

1) An innovative network named TFIFNet is proposed for
RSCD, which includes two main components, namely,
BFIM and TFFM. It can significantly reduce the false
detection caused by registration errors, effectively alle-
viate the problem of information loss in the network’s
feed-forward process, which leads the detection accuracy
and stability of the network.

2) The BFIM employees spatial attention to obtain the spa-
tial distribution, and then accurately captures the spatial
context by learning the background distribution in the
bitemporal images to obtain more discriminative features,
thereby improving the robustness of the network against
registration errors.

3) The TFFM is designed to address the issue of information
loss and avoid the impact of semantic gap, as it inte-
grates the bitemporal features of adjacent layer serving as
complementary spatial information rather than multilevel
features.

4) Experimental results on two widely used RSCD bench-
marks have confirmed the effectiveness of the proposed
network TFIFNet.

The rest of this article is organized as follows. Works related
to this research are described in Section II. The details of the
proposed TFIFNet are described in Section III. The comprehen-
sive experimental evaluation is carried out in Section IV. Finally,
Section V concludes the article.

II. RELATED WORK

A. Feature Interaction-Based Methods

Feature interaction is mainly used in machine learning and
data analysis, which can capture the complex relationships in
data. Unlike other dense prediction tasks, the interaction be-
tween bitemporal features is a worthwhile factor to consider
in CD tasks. Based on this consideration, Fang et al. [48]
proposed a general architecture for CD named MetaChanger,
which incorporates a sequence of optional interaction layers in
its feature extractor. They also defined the concept of feature
interaction in CD as the correlation or communication among
homo/heterogeneous features during the extraction phase prior
to fusion. Subsequently, Liu et al. [31] introduced the parameter
and computation-free operations in MetaChanger to make the
distributions between dual branches more similar by exchang-
ing bitemporal features, thus helping the model to bridge the
domain gaps. There are also many other models based on feature
interaction in the field of RSCD as well, for instance, Song
et al. [1] proposed the dual-feature mixed attention module for
the first time, a novel approach that leverages distinct coarse-
grained features for information interaction to strike a balance
between the neglect caused by excessive deep sampling and the
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blurred edges resulting from insufficient shallow sampling. Lu
et al. [49] used relational cross-attention to acquire bitemporal
relationship-aware features, thereby acquiring pixel embeddings
with rich global information.

Based on the idea of feature interaction, the mentioned models
above mine the internal relationship between features, which
effectively improves the performance of CD models. However,
most of these models rely heavily on hybrid attention, which
will increase the computational complexity significantly. The
feature interaction method proposed by Fang et al. [48] that
exchanged some bitemporal features in the channel or spatial
dimension may lose some important information, resulting in
incomplete features and subsequently affecting the performance
of the model. To mitigate such issue, we only exchange the back-
ground distribution based on spatial attention map to maintain
the integrity of features, rather than exchanging the bitemporal
features.

B. Feature Fusion-Based Methods

Feature fusion is crucial to the success of DL-based mod-
els, as it can produce more discriminative representations by
combining features from multiple layers or different source
data [50]. In current DL-based methods, most of them regard the
fusion of multilevel features as an important way to improve the
performance of models or networks, since multilevel integration
enables the aggregation of both spatial details and semantic
information. The field of RSCD also continues this trend. For
example, Bandara et al. [51] achieved the integration of different
features across various scales through cascades and multilayer
perceptrons (MLP). Liu et al. [31] used elementwise summation
to achieve dual-branch multilevel feature fusion. Fang et al. [33]
used dense skip connections to achieve multilevel feature fusion
in the decoder stage. Zhang et al. [32] used channel and spatial
attention to integrate difference features and bitemporal features
for change map reconstruction. Xu et al. [52] utilized MLP
and other techniques to fuse features extracted from CNN and
Transformer branches in the decoder stage.

The methods mentioned above have achieved good results
through the feature fusion, but the semantic discrepancy be-
tween low-level and high-level features is ignored, which will
introduce discrepancies and confusion into the networks when
these features are fused directly [53]. It is also worth noting that
most models directly fuse multiscale bitemporal features [49],
[54], [55]. However, due to registration errors, when fusing
bitemporal features, the change features within one temporal
may become contaminated by background features at the same
spatial location in another time series, resulting in poorer net-
work performance [56]. Overcoming these potential issues is
crucial for enhancing the performance of CD models. Inspired
by Ye et al. [53], we incorporate features from adjacent layer into
the fusion process of each layer instead of multiscale features.

C. Transformer-Based Methods

Transformer was proposed in 2017, and it has garnered
remarkable results in NLP. With the successful application
of transformer in image classification [43], [57], semantic

segmentation [40], [41], object detection [38], [39], and other
CV fields, transformer has gradually become one of the main-
stream methods for CV tasks. The amazing performance of
transformer in both NLP and CV tasks has attracted the inter-
est of the RS community, thus, researchers begin to introduce
transformer into RSCD. For example, Song et al. [1] optimized
the extracted semantic tokens using transformer and fed them
back into the original features to reconstruct the pixel space.
Jiang et al. [46] leveraged transformer to mine the relationships
between tokens representing invariant backgrounds, providing
clues for learning the consistency of bitemporal images. Li
et al. [58] made the first attempt to combine transformer and
UNet, and used transformer to learn the global context to
further enhance the representation ability of features extracted
by CNN. Liu et al. [31] also employed transformer later to
effectively model the contextual information of bitemporal fea-
tures extracted by CNN. Lu et al. [49] utilized transformer to
explore the long-range contextual information and correspon-
dence of bitemporal features. The methods mentioned above
have achieved good results by introducing transformer, but they
still exhibit the following shortcoming. Specifically, they fail
to fully leverage the transformer’s capabilities in multilevel
feature learning and instead treat it merely as a tool to enrich
the contextual information of bitemporal features.

Different from most of the existing transformer-based CD
networks, the proposed network utilizes transformer for global
feature extraction rather than as a feature processing tool.
TFIFNet also mines the background distribution of bitemporal
images through feature interaction, but retains the integrity of
the features. It is also worth noting that this network adopts a dif-
ferent fusion strategy, which uses adjacent layer features to fuse
with other features of the current layer to alleviate the impact of
the semantic gap and alleviate the spatial degradation problem.

III. METHODOLOGY

A. Overview

The architecture of the proposed TFIFNet is illustrated in
Fig. 1, which provides a new and effective solution for the
RSCD tasks by interactively learning the background distri-
bution through bitemporal features. TFIFNet mainly contains
three parts: the BFIM, the JointAtt, and the TFFM, where
the JointAtt is integrated in the TFFM. For any input image
pairs, multilevel bitemporal visual features are first extracted
from a global perspective in parallel through two shared Swin
transformer branches. Subsequently, the BFIM is employed to
learn the background distribution of bitemporal features within
the deep encoder, which can guide the two branches to learn the
consistency of the background in bitemporal images, thereby
suppressing the impact of irrelevant changes caused by registra-
tion errors. Then, the global feature distribution of each input is
guided by JointAtt to further suppress irrelevant changes so as
to better capture the change features, and the refined bitemporal
features are sent to the TFFM. In TFFM, the adjacent layer’s
features, the refined bitemporal features, and the difference
features are fused through concatenation along the channel di-
mension. This fusion process not only compensates for the issue
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Fig. 1. Architecture of the proposed TFIFNet. The pretrained Swin Transformers are first used to extract the bitemporal features, and the BFIM is used to
suppress irrelevant changes. Then, the intertemporal JointAtt module is used to further refine the bitemporal features, and finally, the TFFM is used to fusion
features, including bitemporal features, difference features, and adjacent features.

of network space degradation but also corrects the difference
features. TFIFNet emphasizes highlighting the changed regions
through the distribution of background information to achieve
precise CD results, rather than relying directly on bitemporal
features or difference features.

B. Bitemporal Feature Interaction Module

By observing the relevant datasets and papers, we find that the
proportion of background is often higher than that of changed
regions in the bitemporal images. Unfortunately, most of the
current networks mainly focus on refining the change features or
refining the difference features to obtain better detection results,
ignoring the mining of rich background information in bitempo-
ral images. Learning the background information is beneficial
for CD tasks, because the inconsistent imaging conditions of
RS sensors will lead to the differences in angle and illumination
intensity during sampling, and such differences may lead to
occlusion of true changes, which is also a great challenge for
current CD tasks. Jiang et al. [46] have confirmed that mining
the common background information carefully can serve as a
crucial cue for learning consistent representations between the
two images. Meanwhile, the essence of CD is to locate changes
by comparing semantic differences. But the semantic differences
in unchanged areas are often small, the semantic differences in
changed areas are often large, and the location of the changed
areas is also uncertain.

Based on the aforementioned two facts, we have the intuition
that the distribution of background information in the bitemporal
images should be similar, and by learning the consistency of the
background in the bitemporal images, the changed regions can
be easily represented, and the irrelevant changes can be ignored
as well. Influenced by the feature interaction concept of Fang

Fig. 2. Illustration of the BFIM.

et al. [48], we propose BFIM. But unlike Fang et al. [48], we
preserve the integrity of bitemporal features just by exchanging
the background distributions of bitemporal images. To avoid
the impact of irrelevant information in the background, we also
leverage residual learning to ensure that the network is robust
against such variations. The detailed architecture of BFIM is
depicted in Fig. 2.

Specifically, the input bitemporal images T1 ∈ RH×W×C and
T2 ∈ RH×W×C are fed into the weight shared encoder to obtain
bitemporal features Fi

1 and Fi
2 first, where i denotes the index

of each layer in encoder. To effectively learn the background
distribution in bitemporal features to better distinguish the back-
ground from the foreground, and alleviate the impact of irrele-
vant changes caused by registration errors, the BFIM is inserted
before the third and fourth layers, respectively. We designed it
this way because the features extracted in the very shallow layer
are relatively simple, which cannot accurately reflect the com-
plex relationship between the background and the foreground.
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Algorithm 1: BFIM, PyTorchlike Code.

The features in the very deep layer are highly abstract and the
degradation of spatial information is serious. To guarantee the
efficacy of the extracted background information and make sure
it still retains part of the spatial information, we choose to insert
the modules in the middle layer, and experiment in Section IV,
Table V also proves that this is beneficial. For bitemporal feature
pair (Fi

1,F
i
2), the spatial attention mechanism is first used to ob-

tain the attention maps mapi1 and mapi2. Then, low_weightij of
the region with weights below the average weights avg_weightij
are calculated in mapi1 and mapi2, respectively, to obtain the
background distribution. The procedure can be written as

low_weightij = mapij < avg_weightij, j = 1, 2. (1)

After obtaining the regions low_weightij, we obtain the atten-
tion map cmapij that includes another temporal’s background
distribution by exchanging the weights of the corresponding
index representation. In order to avoid the background informa-
tion being polluted by irrelevant factors, cmapij and mapij are
added with residuals, followed by elementwise multiplication
with the raw features Fi

j. Finally, the refined bitemporal feature

pairs (Fi′
1,F

i′
2) are obtained. The pseudocode of BFIM is in

Algorithm 1.

C. Intertemporal JointAtt

As the essence of CD tasks lies in comparing bitemporal infor-
mation, it is inherently driven by cross-attention [49]. Based on
this concept, we adopt the intertemporal JointAtt module (Feng
et al. [59]), which integrates self-attention and cross-attention
into one module to guide the overall feature distribution for each
input, so as to further suppress the impact of irrelevant changes

Fig. 3. Illustration of the JointAtt module.

in the bitemporal features and better capture the changed regions.
The JoinAtt is shown in Fig. 3. Specifically, in order to combine
the information of bitemporal features and accurately capture
the semantic differences between different temporal to suppress
irrelevant changes, JointAtt integrates the partial representation
of another temporal while retaining the feature information of
the current branch.

It is worth noting that due to the relatively high computational
complexity of self-attention and cross-attention, the traditional
convolution mapping method used in the original JointAtt will
further increase the complexity of the network. To address
this challenge, we introduce model compression techniques to
replace traditional convolutions in JointAtt with ghost convolu-
tions [60]. It is also worth noting that Feng et al. [59] integrated
the JointAtt in the encoder stage, while we integrated JointAtt
in the decoder stage, because our ultimate goal is to correct the
difference feature through the refined bitemporal features, since
the difference features lack the temporal information, irrelevant
changes that are amplified during the process of obtaining
the difference features may affect the localization of changed
regions.

More precisely, the bitemporal features Fi
1 and Fi

2 are first
mapped via a 1x1 Ghost convolution layer and subsequently
reshaped into embeddings that encompass query Qi

j, key Ki
j,

and value Vi
j. Then, Qi

1 and Qi
2 are concatenated along the

channel dimension into Qi
cat, which contains two temporal’s

information. Next, the similarity between Qi
cat and Ki

1 or Ki
2

can be obtained through a sequential process involving mul-
tiplication and Softmax operations. Next, the attention map is
obtained by weighted summation with Vi

j using the similarity.
Finally, the original inputFi

j is integrated via a skip connection to
obtain further rectified features Fgij. Mathematically, the overall
process can be formulated as follows:

Fgij = JointAtt
({Qi

1,Q
i
2}, {Ki

j,V
i
j}
)

= Softmax(Concat
(
Qi

1,Q
i
2

) ·Ki
j) ·Vi

j + Fi
j

= Softmax
(
Qi

cat,K
i
j

) ·Vi
j + Fi

j (2)
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Fig. 4. Illustration of the TFFM.

where i = 1, 2, 3, 4, notes the encoder stage, and j = 1, 2,
represents the serial number of different temporal. By preserving
its own features while introducing representations from another
input, JointAtt effectively utilizes spatial-temporal contextual
features, further enhancing the global attention to focus more
on the true regions of changes.

D. Triple Feature Fusion Module

To achieve optimal detection results, the current CD tasks
mainly focus on extracting fine-grained bitemporal features to
obtain difference features that can accurately locate the changed
regions. However, during the extraction of bitemporal features,
these methods often prioritize the extraction of deep semantic
features while neglecting the high-resolution and fine-grained
shallow information, leading to uncertainties in the edge pixels
of the changed regions and the absence of identification for
small targets in the extracted features. To address these issues,
a straightforward approach is to directly fuse features from
different levels. Nevertheless, due to the semantic discrepancy
between high-level and low-level features, direct fusion can
introduce discrepancies and confusion in the networks. Fur-
thermore, as the difference features do not contain bitemporal
information, they are susceptible to irrelevant variations.

To mitigate these challenges, we propose TFFM, as depicted
in Fig. 4. This module compensates for the absence of bitempo-
ral information in difference features by leveraging bitemporal
features and alleviates the impact of the semantic gap through the
fusion of adjacent layer’s features. This fusion approach fully
utilizes bitemporal features, difference features, and adjacent
features, providing a novel fusion strategy for enhancing the
performance of CD networks.

Specifically, the bitemporal feature pair (Fi
1,F

i
2) is first fed

into the JointAtt module to acquire the enhanced feature pair
(Fgi1,Fg

i
2), followed by the elementwise addition to get EFi.

Next, the difference feature Di is obtained by direct subtraction
of raw bitemporal feature pairs. The reason why we perform
direct subtraction operations on the original features rather than
on the refined bitemporal features is that the refined features tend

to pay more attention to the areas of changes, rather than global
information. Then, we incorporate the features from the previous
layer, that is the adjacent layer’s feature pair (Fi−1

1 ,Fi−1
2 ), as

supplementary spatial information. Subsequently, an element-
wise addition is performed as well to get feature Fi−1. Then,
downsampling is applied to Fi−1. After getting these three
features, the feature fusion is achieved by concatenating along
the channel dimension. The fusion process can be formulated as

Fusei = Concate
(
EFi,Di,DownSample

(
Fi−1

))
. (3)

It is noteworthy to mention that, as the fusion method of
adjacent layer features is adopted, only the bitemporal features
and the corresponding difference features are fused in the final
stage of the decoder.

E. Loss Function

To enhance the performance of our proposed TFIFNet, we
adopt the loss function in [61], which is the sum of weighted
binary cross-entropy loss, structural similarity loss, and soft
intersection over union loss. The overall loss is expressed in
(4). The Lwbce can effectively addresses the imbalance issue
associated with change pixels, the Lssim emphasizes the local
structure of change boundaries, and the Lsiou pays more atten-
tion to the changed regions.

L =

S∑

s=1

Lwbces + Lssims + Lsious (4)

where S denotes the total layer of the encoder, in our work, the
total number of layers is 4, i.e., S = 4. By paying more attention
to the changed regions, TFIFNet can achieve more precise CD
results when optimizing the aforementioned loss.

IV. EXPERIMENTS

A. Datasets

We use two CD datasets to thoroughly validate the effective-
ness of the proposed network TFIFNet, they are CLCD [62],
SYSU-CD [63].

CropLand Change Detection [62] contains 600 pairs of farm-
land change sample images, 320 pairs are used for training,
120 pairs are used for validation, and 120 pairs are used for
testing. The bitemporal images of CLCD were captured by the
Gaofen-2 satellite in Guangdong Province, China, in 2017 and
2019, respectively, possessing a spatial resolution ranging from
0.5 to 2 m. Each set of samples is composed of two images of
512 × 512 pixels and the corresponding binary change labels.
The main types of changes noted in the CLCD include buildings,
roads, lakes, and bare soil land. We cut the images along the
center with nonoverlapping to the size of 224 × 224, and
obtain 1440/480/480 samples for train/val/test for these images,
respectively.

The SYSU-CD [63] dataset contains 20 000 pairs of aerial
images captured in Hong Kong from 2007 to 2014 with a
resolution of 0.5 m and a size of 256 × 256. Among these
images, 12 000 pairs for training, 4000 pairs for validation, and
another 4000 pairs for testing. The primary types of changes
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annotated in this dataset include: 1) newly constructed urban
buildings; 2) suburban expansion; 3) preparatory work before
construction; 4) vegetation changes; 5) road expansions; and 6)
maritime constructions. We performed nonoverlapping cutting
along the center of each image pair, resulting in image pairs
with a size of 224 × 224, 20 000/4000/4000 for train/val/test,
respectively.

B. Implementation Details

The proposed network TFIFNet was implemented within the
PyTorch framework and trained in an environment powered by
the Ubuntu operating system, with acceleration provided by
GeForce RTX 3090. We utilized the mini-batch SGD algorithm
to train the network, with an initial learning rate of 0.001,
momentum of 0.9, and weight decay of 0.0005. Due to the
significant disparity in the number of samples across the two
datasets, we established distinct batch sizes for the two datasets,
respectively, which is 6 for the CLCD dataset and 10 for the
SYSU-CD dataset. For the backbone of the Siamese network,
we utilized the Swin transformer that had been pretrained on the
ImageNet-22k classification task [64]. For the remaining layers,
we initialized them randomly and assigned a learning rate 10
times higher than the original one. The network was trained
for 80 epochs. The learning rate decreases to 1/10 of the initial
learning rate every 20 epochs.

C. Evaluation Criteria

To assess the performance of our proposed network, we
employ the F1 score and the intersection over union ratio (IoU)
as the primary evaluation metrics. And the precision, recall, and
overall precision (OA) are used as auxiliary metrics. Among the
evaluation metrics, F1-score, IoU, and OA serve as comprehen-
sive indicators, and larger values indicate better prediction. Each
metric is defined as follows:

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F1 = 2 · Precision · Recall/(Precision + Recall)

IoU = TP/(TP + FN+ FP)

OA = (TP + TN)/(TP + FN+ FP + TN) (5)

where TP, FP, FN, and TN are the numbers of true positives,
false positives, false negatives, and true negatives, respectively.

D. Comparison to State of the Art

We have compared TFIFNet with several excellent methods,
they are FC-Siam-conc [29], FC-Siam-diff [29], DMINet [59],
SEIFNet [65], VcT [46], FTN [61], ChangeFormer [51],
BIT [47], and ICIFNet [30]. A brief introduction to these models
is listed below.

1) FC-Siam-conc [29]: It is a Siamese network, and the
encoder consists of two FCN for extracting features in
parallel. The bitemporal information is fused through fea-
ture cascade within the decoder.

TABLE I
COMPARISON RESULTS ON CLCD DATASET

2) FC-Siam-diff [29]: It is a U-shaped structure, just like
FC-Siam-conc. The key difference lies in the fact that FC-
Siam-diff integrates the bitemporal characteristics through
absolute difference approach.

3) DMINet [59]: It is a Siamese network, which uses
self-attention and cross-attention to suppress irrelevant
changes in CNN extracted features, and captures differ-
ence features from two branches of pixel-level subtraction
and channel-level connection.

4) SEIFNet [65]: It is a CNN-based Siamese network that
aims to alleviate the problems of pseudo changes and
scale variations through spatiotemporal enhancement and
interlevel fusion.

5) VcT [46]: It leverages both intra-image and inter-image
cues by effectively capturing the dependencies among
reliable tokens present in the dual images, and it is a
transformer-based Siamese network.

6) FTN [61]: It is a transformer-based Siamese framework,
which utilizes a variant of transformer, Swin transformer,
to extract features from a global perspective. Meanwhile,
FTN employs both feature summation and difference to
enhance the feature.

7) ChangeFormer [51]: It is also a transformer-based
Siamese network structure that integrates an MLP decoder
with a hierarchically structured transformer encoder, aim-
ing to provide accurate change information.

8) BIT [47]: It is a CNN-transformer-based Siamese net-
work, which leverages the transformer to enrich the con-
textual information of ConvNet features through semantic
tokens, followed by a feature differencing process to de-
rive the change map.

9) ICIFNet [30]: It is also a CNN-transformer-based net-
work, the two branches are composed of CNN and trans-
former, respectively, in order to comprehensively aggre-
gate both local and global features. It utilizes intrascale
cross interaction and interscale feature fusion.

We have implemented the aforementioned CD networks us-
ing their publicly available codes with default hyperparameters.

E. Results and Analysis on CLCD

1) Quantitative Analysis on CLCD: As evident from Table I,
our network TFIFNet significantly surpasses other SOTA
networks on the CLCD dataset in terms of precision,
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Fig. 5. Change detection results on CLCD.

recall, F1, IoU, and OA. Specifically, the optimal values
of TFIFNet are 90.47%, 83.95%, 86.86%, 78.55%, and
96.55% respectively, which are 1.33%, 1.77%, 1.61%,
2.1%, and 0.39% higher than the suboptimal model FTN
in various evaluation indicators. This may be because
both the BFIM and the JointAtt effectively correct the
localization of the changed regions, thus, improving the
detection confidence of these regions. In addition, as the
samples in CLCD dataset are farmland with relatively
small intraclass differences, TFIFNet mines the potential
intraclass relationships based on feature interaction, thus
leading to the outstanding results. Although both TFIFNet
and FTN prioritize the detection of changed areas, FTN
adopts a fusion strategy that fuses multilevel visual fea-
tures and ignores the impact of the semantic gap. TFIFNet
adopts an adjacent layer feature fusion approach, which
effectively mitigates the influence of the semantic gap on
the network’s performance. For other comparison meth-
ods, CLCD is a challenging dataset because its sample
time span is wide, and the frequent seasonal changes
and illumination variations lead to the existence of many
spurious variables.

2) Visualization Analysis on CLCD: For the CLCD dataset,
cropland with small intra-class differences is the main
cause of changes. Since TFIFNet uses feature interactions
twice to better mine the intraclass differences between
samples, it can better divide the boundary of the changed
region. For example, in Fig. 5(a), when there are many
changed areas and the scale is generally small, TFIFNet
can achieve better positioning and boundary division,
while other SOTA models generally have the problems
of boundary confusion and wrong positioning. When the
change area is relatively large, as shown in Fig. 5(b) and (i),
black holes or sawteeth generally exist in the SOTA model,
while TFIFNet can identify relatively accurate boundaries.
From the visualization results, we can see that TFIFNet
can detect changes more effectively.

F. Results and Analysis on SYSU-CD

1) Quantitative Analysis on SYSU-CD: The experimental
results on the SYSU-CD dataset are shown in Table II.
As can be seen from Table II, the performance of the
proposed TFIFNet in precision, recall, F1 score, IoU, and
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TABLE II
COMPARISON RESULTS ON SYSU-CD DATASET

OA is similar to that of the CLCD dataset, which shows
obvious superiority in all SOTA networks. We attribute
this superior performance to our innovative fusion strategy
that regards the adjacent layer’s features as additional
spatial information. With this strategy, TFIFNet achieves
the best values in precision, recall, and IoU value, reach-
ing 90.87%, 87.08%, and 80.39%, respectively. It also
achieves the best F1 score and OA, which are 88.77%
and 80.39%, respectively. TFIFNet outperforms the sec-
ond best model FTN by 0.55%, 0.77%, 0.69%, 1.05%,
0.45% on all evaluation metrics. We think that this may
be attributed to the fact that SYSU-CD contains more
regions of large-scale variation and needs to make full
use of the bitemporal information, which is ignored by
most of the SOTA models. In the process of comparing the
SOTA networks, we find that models that obtain the differ-
ence features by refining the bitemporal features, such as
DMINet, FTN, and BIT, will have better detection results.
We think this phenomenon benefits from the approach of
obtaining difference features through refined bitemporal
features, which helps to further mine and extract useful
information from images, capture more details and con-
textual information, thereby improving the performance
of CD.

2) Visualization Analysis on SYSU-CD: Compared with the
CLCD dataset, the SYSU-CD dataset contains more large-
scale change regions. Regarding the small change areas
depicted in Fig. 6(e), most SOTA models exhibit signifi-
cant limitations in the localization of changed areas, result-
ing in a higher misdetection rate. However, our network
TFIFNet demonstrates superior accuracy in pinpointing
these subtle changes. Furthermore, in Fig. 6(c), (h), and
(i), where the change regions cover a substantial area,
numerous SOTA models fail to effectively recognize the
changes. Notably in Fig. 6(i), these models erroneously
identify the change as encompassing the entire image
scope. By comparing these visualization results, we can
clearly see that TFIFNet is able to get closer to the real
situation and provide more accurate detection results.

G. Ablation Analysis

To validate the efficacy of each component in the proposed
network, we perform ablation experiments using Pure as a

TABLE III
ABLATION EXPERIMENTS OF TWO IMPORTANT MODULES ON THE

CLCD DATASET

TABLE IV
ABLATION ANALYSIS ON THE NUMBER OF BFIM IN CLCD DATASET

TABLE V
ABLATION ANALYSIS ON THE INSERTION POSITION OF BFIM ON

CLCD DATASET

baseline. Pure is a network of TFIFNet that removes BFIM and
TFFM. All ablation experiments are performed on the CLCD
dataset, and the performance trend is similar on the SYSU-CD
dataset.

1) Effect of BFIM: Feature interactions can help to learn
similar background distributions between the two branches and
achieve domain adaptation between the two branches to some
extent. The BFIM exchanges background distribution weights
through spatial attention between the two branches of the pro-
posed TFIFNet to ensure the reliability of changed regions.
Table III shows that the BFIM module can improve precision,
recall, F1, IoU, and OA by 2.15%, 0.46%, 1.06%, 1.28%, and
0.34%, respectively. Table III also demonstrated that feature in-
teraction can improve the network’s representation performance
for changed features.

Furthermore, we also explored the impact of the number
and the location of BFIM, the experimental results are shown in
Tables IV and V, respectively. From Table IV, we can see that
when the number of BFIM is 2, the performance of the network
is optimal, and this is also the reference we adopted in this article.
When the number is 3 or 4, the network’s performance is worse
than when the number of modules is 2 or 1. However, when the
number of BFIM is 1, the second best result is achieved. We
think that it may be because when the number of BFIM is large,
the model pays more attention to the local invariant background
information and ignores the global information, which leads to
the model being unable to better locate the overall background
distribution. From Table V, we can see that the performance is
worse when the module insertion position is shallower, which
we think may be because the shallow features contain mostly
detailed information such as texture, which is distributed against
the background.

2) Effect of TFFM: TFFM can make up for the loss of
spatial information in the forward propagation process of the
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Fig. 6. Change detection results on SYSU-CD.

TABLE VI
ABLATION ANALYSIS OF THE FUSION STRATEGY AND COMPONENTS FOR THE

TFFM ON THE CLCD DATASET

network. Table III shows that triple feature fusion can improve
the precision, recall, F1, IoU, and OA of the network by 2.05%,
3.66%, 3.10%, 3.76%, and 1.14%, respectively. The experimen-
tal results demonstrate that the triple feature fusion is the key of
the proposed network TFIFNet.

In addition, to verify the effectiveness of the feature fusion
strategy of the TFFM and the JointAtt component, we conducted
experiments using the control variable method. The experimen-
tal results are shown in Table VI. When the simple addition
method is used to achieve feature fusion and the adjacent layer
features are used as additional spatial information, the overall
performance of the network is poor. We believe that this is

because direct addition can introduce noise, while concatenation
can increase the nonlinear expression of features, thus making
the features richer. When the adjacent layer’s features are no
longer used as additional spatial information, the performance of
TFIFNet degrades significantly, with each indicator decreasing
by 2.65%, 1.29%, 1.85%, 2.43%, and 0.54%, respectively. The
experimental results in Table VI demonstrate that concatenating
features along the channel dimension to achieve feature fusion
and using adjacent layer features as additional spatial informa-
tion are feasible and effective. When the JointAtt component
is removed, the network’s performance decreases by 0.17%,
0.28%, 0.23%, 0.31%, and 0.06%, respectively. This may be
due to the fact that the BFIM module inserted into the deep
layer of the encoder has already suppressed irrelevant variations
to a large extent. Although it may be constrained by other
components, the contribution of the JointAtt to the model’s
performance cannot be ignored.

H. Model Complexity

Apart from numerical and visual results, to make better
understand the efficiency of our network, we also report the
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TABLE VII
COMPARISON OF MODEL EFFICIENCY

parameter size (Param), floating-point-operations (FLOPs),
train time (TrT), inference time (InT) as well as frames per
second (FPS) of inference of our network and nine other SOTA
methods, respectively. The results are shown in Table VII.
From the table, we can see that CNN-based methods generally
have a smaller number of Param, a generally lower FLOPs,
and a shorter training and inference time. On the other hand,
transformer-based and CNN-transformer-based methods gen-
erally have larger Param, higher FLOPs, and longer training
and inference time, especially FTN and the proposed network
TFIFNet, as they both use Swin transformer as encoder and
decoder, while other methods generally use more traditional
decoders. TFIFNet also introduced the attention mechanism in
BFIM and JointAtt, resulting in the highest number of Param and
FLOPs. However, the learning ability and the ability to capture
complex features of the network are significantly improved,
as it shows obvious advantages in five evaluation indicators.
In practical applications, the deployment of complex models
requires more resources, so how to make a tradeoff between
performance and efficiency is also one of our future research
directions.

V. CONCLUSION

To take advantage of the proportion of invariant background in
bitemporal images, we proposed a network called TFIFNet that
is based on background distribution for CD. TFIFNet mainly
consists of two components, namely BFIM and TFFM. The
backbone is shared across both input images and used to extract
bitemporal features. To mitigate the impact of irrelevant changes
arising from registration errors, in the last two stages of the
encoder, the BFIM is inserted to learn the distribution of the
invariant background in bitemporal images. Second, to pay
more attention to spatial detailed information, the TFFM, which
integrates the JointAtt, utilizes adjacent bitemporal features
as spatial detailed information that lost during the process of
network training, and the temporal information contained in the
bitemporal features is used to correct the difference features.
Extensive experiments on two publicly available datasets, es-
pecially when the number of samples is limited, demonstrate
that the TFIFNet based on the pretrained Swin Transformer can
achieve state-of-the-art performance.
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