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A Method for Retrieving Maize Fractional Vegetation
Cover by Combining 3-D Radiative Transfer
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Abstract—Fractional vegetation cover (FVC) is an essential pa-
rameter of vegetation canopy. Understanding its dynamics is vi-
tal for agricultural monitoring and climate change response. The
physically based method for retrieving FVC from remote sensing
data has great potential due to the theoretical basis of the radia-
tive transfer model (RTM). However, the method is limited when
applied to satellite imagery due to its uncertainty in simulating
canopy reflectance. This article proposes a method that combines
three-dimensional (3-D) RTM and convolutional neural network
based transfer learning (CNN–TL) to address the inconsistency
between simulated and satellite reflectance, improving maize FVC
retrieval accuracy. First, 3-D RTM was employed to generate
canopy reflectance datasets of maize at various growth stages.
Second, CNN–TL is used to eliminate the discrepancy between
3-D RTM simulated reflectance and satellite reflectance, and the
retrieval accuracy of CNN–TL is compared with random forest
regression (RF) and CNN. Finally, the feasibility of the method was
validated using time-series of measured data from multiple samples
covering different growth stages of maize from 2021 to 2023. The
results showed that, when retrieving maize FVC on GF-1, HJ-2, and
Sentinel-2, CNN–TL performed the best (RMSE = 0.117, 0.063,
and 0.081) compared to RF (RMSE = 0.186, 0.226, and 0.184) and
CNN (RMSE = 0.133, 0.117, and 0.098). The spatial distribution
of FVC maps remains highly consistent across all three satellites,
indicating the exceptional performance of CNN–TL. These results
contribute to the development of physically based methods for FVC
retrieval and serve as a reference for multisource satellite studies.
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I. INTRODUCTION

CROPS play a significant role in the Earth’s ecosystems
and the worldwide food supply chain, and monitoring their

growth processes in real time is not only essential for high yields
and sustainable agriculture, but it improves farmland and global
ecosystems stability [1], [2]. Fractional vegetation cover (FVC)
is defined as the vertically projected area of green vegetation
elements (including leaves, stems, and branches) per unit of hor-
izontal ground surface area [3]. It is a biophysical parameter that
affects crop morphology and physiological features [4]. Hence,
it is the key trait of interest for characterizing crop growth status
and yield and is essential for crop-growth modeling [5]. The FVC
is also a fundamental parameter in modeling agricultural carbon
dynamics and ecosystem health [6], [7], [8]. Accurate estimation
of crop FVC is of great scientific and practical importance.

Satellite remote sensing has the ability of long time series and
repeated observation, making it the most effective way to esti-
mate FVC at regional or global scale [9]. Methods for retrieving
FVC from remote sensing data mainly include pixel unmixing
models, empirical regression models, and physical-based model
[10]. Among them, the pixel unmixing models assume that
each pixel is composed of several components and consider the
proportion of vegetation components as the FVC of the pixel
[11], [12]. This kind of methods face challenges in determining
the endmembers and extracting pure endmembers of different
components [13], [14]. Empirical regression methods focus on
establishing the relationship between field-measured FVC and
the reflectance of specific bands or vegetation indices (VIs)
[15]. The commonly used VIs include normalized difference
vegetation index (NDVI), the enhanced VI, soil-adjusted vege-
tation index, and so on. Due to the ability to mitigate the natu-
ral collinearity and efficiency of many machine-learning (ML)
methods, regression based on ML is quite popular within the
crop breeding and precision agriculture community. Numerous
studies have explored artificial neural networks, random forest
(RF), Gaussian process regression, and partial least squares
to estimate FVC [16], [17], [18]. However, the performance
of regression-based approaches is constrained by the quantify,
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representativeness, and quality of ground truth datasets [19],
which limit their spatial and temporal generalizability [20]. Re-
cent advancement in computer vision techniques, deep-learning
approaches, such as convolutional neural networks (CNNs),
can extract the deep features of input images and have been
utilized to estimate crop parameters with excellent performance
[21], [22].

Physical-based models, on the other hand, use the inversion
of radiative transfer model (RTM) based simulation to esti-
mate crop biophysical attributes [23], [24]. The RTM simulates
canopy reflectance under different leaf and canopy attributes
and backgrounds. This approach does not require any field
measurements for calibration, despite sometimes using them as
prior knowledge to define the parameters of RTM. To accurately
describe the interaction of sunlight with vegetation canopies and
other objects in the environment, researchers have developed
different RTMs, such as PROSAIL [25], DART [26], RAPID
[27], and LESS [28]. For crop biophysical trait estimation,
PROSAIL is one of the most popular models, which is a one-
dimensional (1-D) bidirectional model that assumes that the
canopy is a turbid medium in which leaves as absorbing and
scattering particles are small and randomly distributed in space.
The canopy characteristics of continuous crops are close to this
assumption [29], hence PROSAIL is widely used to simulate
the reflectance of homogeneous canopy [30]. Nonetheless, 3-D
RTMs simulate canopy reflectance based on a more realistic
3-D canopy structure description, providing relatively high sim-
ulating accuracy [31]. Maize is usually sowed in the row mode,
which means that crops are separated by bare soil across the rows
during the early growing season. With the growth of maize, the
row canopy trends to be homogeneous. A 3-D RTM which can
simulate the changes in maize canopy across the growth stages
is expected to improve the retrieval accuracy of FVC.

ML methods and deep learnings are also widely used for
indirect inversion FVC from RTM models [32]. However, the
challenge of RTM inversion is its “ill-posed” problem, where
various combinations of canopy biophysical variables may pro-
duce similar canopy reflectance. On the other side, due to
sensor signal-to-noise ratios and spectral noise, atmospheric
conditions, and other factors, there are always discrepancies
between simulated and satellite measured reflectance [33]. The
key to improving FVC retrieval accuracy from RTM is to find the
optimal match between the simulated and the actual reflectance.
To mitigate this challenge, recent studies focused on transfer
learning (TL), which enables users to train a new deep-learning
network with RTM simulation dataset and fine-tuned with field
data. The integration of RTM simulation and ground truth data
through TL can incorporate domain knowledge on RTM, miti-
gate spectral input noises, reduce the demand for field data, and
therefore potentially achieve high model accuracy [34], [35]. TL
can be stated to leverage the strengths of both regression-based
methods and physical-based approaches, which is highly needed
and deserves exploration.

The general objective of this article is to develop a method
based on a 3-D RTM and TL-based CNN aiming at estimating
maize FVC from Sentinel-2, GF-1, and HJ-2 satellites, respec-
tively. The rest of this article is organized as follows. Section II

TABLE I
INFORMATION ON THE FIELD EXPERIMENT DATES AND SATELLITE TRANSIT

introduces an overview of the study area, the field dataset, and
three satellites data. The strategy for simulating maize canopy
across the growth stages using LESS model and the TL-based
CNN method for FVC estimation are also described in Section II.
The evaluation of TL-based CNN to quantify FVC compared to
conventional ML (i.e., RF) trained by field data and the compar-
ison of FVC retrieval results from Sentinel-2, GF-1, and HJ-2
are presented in Section III. The potential of LESS model for
maize FVC retrieval, the advantages of TL, and the performance
of three satellites are discussed in Section IV. Finally, Section V
concludes this article.

II. MATERIALS AND METHODS

A. Study Area and Field Measurements

The study area is located in Youyi County, Heilongjiang
Province, China (46°45′N, 131°55′E) (Fig. 1). It has a temperate
monsoon climate, with an annual average temperature of 2.5°C
and an average annual precipitation of 476.5 mm. Maize is
planted in May and harvesting begins in early October in the
study area. Eight timestamps were selected (DOY 154–160,
DOY 170–174, DOY 173–177, DOY 180–185, DOY 188–192,
DOY 196–199, DOY 219–226, and DOY 233–237) for field
data collection in order to capture the dynamics of maize FVC
between 2021 and 2023. The dates of the field experiments as
well as the growth stages of maize are shown in Table I.

Plot sizes of 30 m × 30 m were considered and divided into
3 × 3 grids with each grid of 10 m × 10 m. Three grids in
the diagonal direction were selected and three sampling points
in each grid were selected for measuring crop traits. Maize
height, planting density, FVC photos, latitude, and longitude
were collected in each sample point (Fig. 2). Photos above
the maize canopy were collected vertically downward using
the camera of the DJI Air 2S UAV. The flight height is 6 m,
resulting in photos at least covering eight ridges with pixel size
of 5472 × 3078. The photos were then clipped to preserve only
the central portion with a size of 2400 × 2400 pixels.

A random forest classification (RFC) algorithm was used to
extract FVC by classifying UAV-derived RGB images. The UAV
images were classified into two categories: vegetation and soil.
The FVC is calculated as the number of pixels in the vegetation
class divided by the total number of pixels in an image. There are
1600 training samples that were generated to construct an RFC
model. Of these, 70% were used for training and the remaining
were used for evaluation. The classification had a high accuracy.
The overall accuracy was about 0.99. The producer’s accuracy
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Fig. 1. (a) Study area and location of ground measurements. (b) Location of experimental sites in the Youyi County. (c) Part of field photos.

for the vegetation class was 0.99. Additionally, 26 photos were
chosen for visual assessment to evaluate the accuracy of the RFC
model. The R2 value was 0.99, and the RMSE was 0.013 (Fig. 2),
indicating that the RFC accurately extracted FVC. In total, 1260
maize FVC photos were collected in the field experiments.

B. Satellite Data

GF-1 and HJ-2 were launched from China in April 2013 and
September 2020, respectively. The GF-1 WFV sensor is avail-
able in four bands, covering the spectral range from the visible
to the near infrared (NIR). The HJ-2 CCD sensor is available
in five bands, with an additional red-edge band that captures
crop-specific spectral characteristics. Both GF-1 WFV sensors
and HJ-2 CCD sensors have a spatial resolution of 16 m, but
with different band ranges [36], [37]. The GF-1 and HJ-2 images
were downloaded from the China Resources Satellite Data and
Application Center (CRESDA, http://www.cresda.com). The
radiance was converted to top of atmosphere reflectance using
calibration coefficients provided by CRESDA. The FLAASH
module in the ENVI 5.2 software was used for atmospheric
correction. The Sentinel-2 L2A level image was used as the
reference image to precise geometric correction of the GF-1
and HJ-2 images to ensure that the spatial deviation is less than
0.5 pixels.

Sentinel-2 consists of two satellites, namely Sentinel-2A
and Sentinel-2B, which were launched by the European Space
Agency in June 2015 and March 2017. The multispectral imager
equipped with Sentinel-2 provides 13 bands including visible,
red-edge, NIR, and shortwave infrared bands [38]. The level
2A product of bottom-of-atmosphere reflectance was acquired
from the Google Earth engine. The data were resampled using
the SNAP application to a 10-m resolution (https://step.esa.int/
main/download/snapdownload/).

To estimate FVC, cloud-free scenes from GF-1, HJ-2, and
Sentinel-2 that were as near to the field experiments as possible
were selected. Table II provides comprehensive details about the
satellite images that were employed.

C. Simulating Dataset Generation Using LESS

The LESS model is a newly proposed ray-tracing-based 3-D
RTM which employs a weighted forward photon tracing method
to simulate scene spectral reflectance [28]. Previous articles have
simulated different canopies using LESS, such as apple tree
orchards and grasslands [39], [40].

The essential inputs of the LESS model are the 3-D structure
(e.g., crop plant), component spectrum (e.g., leaf reflectance
and soil background reflectance), observation geometry, and
scene illumination parameters (e.g., sky light proportion).

http://www.cresda.com
https://step.esa.int/main/download/snapdownload/
https://step.esa.int/main/download/snapdownload/
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Fig. 2. FVC extraction flowchart.

TABLE II
GF-1/WFV, HJ-2/CCD, AND SENTINEL-2/MSI BANDS

The 3-D models for maize plants with different leaves and
heights came from the LESS model, but were modified by
3ds MAX 2015 software using the field measurements, such
as plant height, leaf length and width, and number of leaves.

Fig. 3. 3-D maize scenes with different FVC levels: (a) FVC = 0.1,
(b) FVC = 0.3, (c) FVC = 0.5, (d) FVC = 0.7, and (e) FVC = 0.9. They
are all in row distribution.

The simulated scenes are covered by maize plants in row
structure with spacing determined from field measurements.
It could make the simulated canopy closest to the actual
situation (Fig. 3). The range of FVC truth designed in LESS
was 0.05–0.95 with an increment of 0.05. The component (i.e.,
leaf) spectra was simulated by the PROSPECT-D model [41].
The input parameters of the PROSPECT-D model are listed in
Table III with reference of the knowledge of the biophysical
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TABLE III
NOMINAL VALUE RANGES OF PARAMETERS USED FOR LESS AND

PROSPECT-D

Fig. 4. Spectral response functions used in this article. The solid, delineated,
and unframed curves are the spectral response functions of the GF-1, HJ-2, and
Sentinel-2 sensors, respectively; black, red, blue, green, and violet represent the
blue, green, red, red-edge, and near infrared spectral bands, respectively.

conditions of maize in the study area, Leaf Optical Properties
Experiment, and relevant literature reviews [15], [24], [42]. In
addition, the soil reflectance was measured using SEI SR-8800
in the field. The sun-sensor geometry was determined based on
satellite metadata and the geographic location of the study area.
The simulated dataset includes 15 391 reflectance from 400 to
1000 nm with 1-nm wavelength intervals. The simulated
reflectance was resampled based on the spectral response
functions (SRF) of GF-1, HJ-2, and Sentinel-2 (Fig. 4).

D. FVC Retrieval Algorithm

The simulation datasets generated by LESS were used to
develop FVC retrieval models, and the performance of LESS
combined with CNN–TL on different satellites was evaluated
by comparing with CNN and RF. The LESS-simulated dataset
consisting of VIs calculated from the resampled reflectance and
the corresponding FVC. The ground measurement dataset (GD)
consists of three satellite actual reflectance and measured FVC.
Table IV shows the details of the datasets used for each model.

1) VIs Used to Retrieve FVC: To mitigate the impact of
mixing effects and alleviate shadowing effects arising from the

TABLE IV
DATASETS USED FOR DIFFERENT MODELS

Fig. 5. Contribution of the two sets of VIs to the FVC retrieval model:
(a) 21 conventional VIs and (b) 26 VIs including 21 conventional VIs and 5
red-edge VIs.

complex structure of the real world, as well as variations in
sun-sensor geometry. VIs were usually used for FVC estimation
[43]. Single indices may not be enough to capture the range of
crop variations because of the complex interplay of canopy struc-
ture, leaf properties, and soil properties on canopy reflectance.
Therefore, drawing from previous articles, 21 conventional VIs
and 5 red-edge indices were selected as alternative features for
constructing the FVC retrieval model (Table V).

Selecting appropriate VIs through feature selection methods
is essential to improve the performance and efficiency of the
FVC retrieval model. This article employs the tree-model-based
feature selection method in ML algorithms, an approach widely
used across various fields. The assessment of feature importance
in tree node splits involves measuring the reduction in prediction
result variance when features are included. By aggregating the
variance reduction across all nodes of all trees, the overall
contribution of each feature to the model is evaluated, rep-
resenting the total impact of the VIs on the developed FVC
retrieval model. Subsequently, the importance of all features
is normalized to ensure that their sum equals 1, facilitating an
accurate assessment of each feature’s contribution to the retrieval
capability of the model. Feature importance rankings (Fig. 5)
were conducted on the 21 VIs calculated from the blue, green,
red, and NIR bands, as well as on the 26 VIs calculated from
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TABLE V
VIS CALCULATED FROM THE LESS DATASET

the blue, green, red, NIR, and red-edge bands, respectively.
The VIs with contributions larger than 0.01 were considered
sensitive to the FVC model (Section II-D-1), and were used
as input features for RF, CNN, and CNN-TL. This selection
aims to capture the dynamics of maize FVC throughout the
entire growth stage, thereby enhancing the model’s sensitivity
to FVC retrieval. Specifically, MNVI, RVI, GNDVI, KNDVI,
NDVI, RGBVI, SR, and MSR were used as input features when
retrieving FVC using GF-1 data. MNVI, RVI, GNDVI, MSR,
RGBVI, KNDVI, SR, NDVI, and RERVI were input features
when estimating FVC from HJ-2 and Sentinel-2.

2) CNN: A CNN was pretrained using simulation data gen-
erated by a forward simulation process based on the LESS.
Previous article has highlighted the potential of CNNs in remote
sensing applications [70], [71]. The model development relies
on PyTorch. For the pretraining process, the dataset generated
from LESS simulation, containing 15 391 records, was split into
a training dataset and a validation dataset at the 80% to 20%
ratio. The optimizer used was Adam, with a learning rate set
to 0.001 and a batch size of 64. The CNN pretraining process
was commenced using the training dataset, where the data were
input into the model and forward propagated to obtain prediction
results. The loss between the retrieved and true values was
calculated, and the loss values were accumulated. Subsequently,
backpropagation was performed to update the parameters, and
the R2 and RMSE values over the validation set were recorded
after each epoch of the training run. The mean absolute percent-
age error function was used as the loss function in this process

L =
1

n

n∑

i=1

|yi − ypi | (1)

Fig. 6. Accuracy of theoretical simulations. Performance of the validation
dataset of LD on CNN. (a) Resampled based on GF-1 SRF, (b) Resampled
based on HJ-2 SRF, and (c) Resampled based on Sentinel-2 SRF.

where yi and ypi represent the reference FVC and predicted FVC
and n represents the size of the samples. After each epoch was
completed, the validation dataset was used to validate the model.
The article employs an early stopping method to prevent model
overfitting, where the error on the validation set is calculated at
the end of each epoch. If the error on the validation dataset begins
to increase, the model training is stopped. The accuracy of the
theoretical simulation is investigated using data generated from
GF-1, HJ-2, and Sentinel-2 based on LESS simulation, and its
validation dataset performs well on the pretrained model (Fig. 6).
This adequately demonstrates the validity of LESS simulation
and the suitability of CNN for FVC retrieval.

3) CNN–TL: The fully connected layers of the pretrained
CNN structure were fine-tuned using GD, where the proportion
of dataset division for fine-tuning and validating was 40% and
60%, respectively. For sufficient fine-tuning and validation, the
splitting program was performed 50 times in the TL phase using
different random seeds. The batch size was set at 8, and a smaller
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Fig. 7. Reflectance profiles of 400–1000 nm in maize canopy simulated by LESS with different parameter combinations at (a) FVC = 0.1, (b) FVC = 0.3,
(c) FVC = 0.5, (d) FVC = 0.7, and (e) FVC = 0.9.

Fig. 8. Relationships of MNVI, RVI, NDVI, GNDVI, SR, MSR, RGBVI, KNDVI, and RERVI with FVC.
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Fig. 9. Performance of RF, CNN, and CNN–TL on the validation dataset of GD: (a) GF-1-RF, (b) GF-1-CNN, (c) GF-1-TL, (d) HJ-2-RF, (e) HJ-2-CNN,
(f) HJ-2-TL, (g) Sentinel-2-RF, (h) Sentinel-2-CNN, and (i) Sentinel-2-TL.

learning rate of 0.0001 was set in this phase since the model
had already converged on the LESS simulation dataset. Other
settings were the same as in the pretraining phase.

4) RF: The RF algorithm [72] trains several binary decision
trees using the mean error and acquires the average from the
leaf nodes of each tree. It employs the Bootstrap method to
extract several samples from the original dataset and constructs
a decision tree for each sample. The outputs of these decision
trees are aggregated through simulation and iteration, and the
final retrieval model is formed through a voting process. The
RF algorithm shows high accuracy and wide applicability in
vegetation parameter retrieval. In this article, the RF algorithm

was used for comparison, and the dataset was used, refer to
Table IV.

III. RESULTS

A. Canopy Reflectance Simulated by LESS

Fig. 7 shows the canopy reflectance at different FVC levels
simulated by LESS with different combinations of leaf proper-
ties, sun-sensor geometry, and soil background. The green peak
caused by the strong reflection of chlorophyll appeared nearly
at 550 nm. The strong absorption due to chlorophyll appeared at
680 nm, and the sharp increase happened at 700 to 780 nm which
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is a typical red-edge phenomenon for green vegetation. The
beginning of NIR region lied at 780 nm. The narrow absorption
caused by water vapor was nearly 960 nm. The reflectance
increased with the increase of FVC. We concluded that the LESS
simulation framework was suitable for simulating the canopy
spectral response of vegetation.

Fig. 8 shows the relationships between FVC and the VIs
calculated from the simulated reflectance resampled by the SRF
of GF-1, HJ-2, and Sentinel-2, respectively. The differences in
VIs between GF-1 and HJ-2 were minimal because the two
satellites sensors have similar spectral response (Fig. 4). The
ranges of the eight VIs from GF-1 SRF show consistent with
those from HJ-2. The KNDVI, MNLI, GNDVI, RVI, and NDVI
values from Sentinel-2 were similar with those of GF-1 and
HJ-2. However, SR and MSR from Sentinel-2 had higher values
than those of GF-1 and HJ-2. The RGBVI from Sentinel-2 had
a wider range than that of GF-1 and HJ-2 and the RERVI from
Sentinel-2 was lower than that of HJ-2. Moreover, when FVC
is close to 1, saturation of RVI and NDVI for three sensors was
observed. The range of MSR and SR values became wider with
the increase of FVC, which may lead to errors in retrieving
high FVC values. Compared to the other VIs, GNDVI, RGBVI,
and RERVI having larger ranges are sensitive to other canopy
parameters, such as leaf area index and chlorophyll content. As
a result, it makes sense to select different VIs to collaborate on
developing the FVC retrieval model.

B. Performance of RF, CNN, and CNN–TL on Estimating
Maize FVC From GF-1, HJ-2, and Sentinel-2

Nine FVC retrieval models were developed by using three
different algorithms, RF, CNN, and CNN–TL, based on GF-1,
HJ-2, and Sentinel-2 simulation reflectance, respectively. FVC
were retrieved from GF-1, HJ-2, and Sentinel-2 imageries using
the models and were validated by field FVC measurements
(Fig. 9). It shows that RF had a moderate performance on three
satellites datasets. The accuracy of RF at Sentinel-2 dataset
(R2 = 0.66, RMSE = 0.184, bias = −0.144) was higher than
the other two satellite datasets. The FVC was underestimated at
high canopy cover. Compared to RF models, CNN architecture
improved the retrieval accuracy of FVC on the three satellite
datasets. CNN achieved an accuracy of R2 of 0.905 and RMSE
of 0.098 on Sentinel-2 datasets and these values for GF-1 dataset
were 0.772 and 0.133, higher than the accuracy obtained from
HJ-2 dataset (R2 = 0.757, RMSE = 0.117). After TL, the
CNN model performance on GF-1, HJ-2, and Sentinel-2 all
significantly improved, with the majority of the scatter plots
lying close to the 1:1 line (Fig. 9). The CNN–TL had the best
performance on HJ-2 dataset (R2 = 0.956, RMSE = 0.063,
bias =−0.011), followed by the CNN–TL on Sentinel-2 dataset
(R2 = 0.934, RMSE = 0.081, bias = 0.001). The retrieval
accuracy of FVC from GF-1 was improved to 0.814 (R2). It
indicates that the use of TL helped the models perform better
by utilizing LESS simulation knowledge. HJ-2 and Sentinel-2
outperformed GF-1. It is likely due to the red-edge band.

In order to comprehensively evaluate the modeling per-
formance of RF, CNN, and CNN–TL on GF-1, HJ-2, and

Fig. 10. Taylor diagrams compare the model performance of RF, CNN, and
CNN–TL(TL) on GF-1, HJ-2, and Sentinel-2. The figure shows the correlation
coefficient, SD, and RMSD in angular, radial, and concentric semicircular
coordinates, respectively. The measured point indicates that the correlation
coefficient is equal to 1 and the RMSD is equal to 0. Model retrieval performance
is better when points are closer to the measurement point.

Sentinel-2, this article used the multiple statistics in Taylor’s
diagram to compare their ability to estimate FVC (Fig. 10).
Although GF-1-CNN, HJ-2-CNN, and Sentinel-2-CNN were
based on simulated data rather than field collected data, they all
achieved an accuracy greater than 0.7. CNN–TL outperformed
RF and CNN. HJ-2-TL and Sentinel-2-TL showed similar per-
formance in terms of SD and RMSD, with HJ-2-TL having a
higher correlation coefficient than Sentinel-2. However, GF-1-
TL had a somewhat lower retrieval ability and a substantially
higher SD than the HJ-2-TL and Sentinel-2-TL.

C. Mapping FVC From GF-1, HJ-2, and Sentinel-2
Based on CNN–TL

Fig. 11 depicts the spatial distributions of FVC estimated by
CNN–TL from GF-1, HJ-2, and Sentinel-2 data in June 2022
and June 2023. It demonstrates that the FVCs retrieved by three
satellites had a continuous spatial distribution throughout the
study area. Fig. 12(a) shows the histograms of FVCs obtained
by the three satellites in June 2022. The average FVC values
for Sentinel-2 (green dashed line), HJ-2 (blue dashed line), and
GF-1 (red dashed line) were 0.21, 0.25, and 0.11, respectively. In
comparison, the FVC distributions obtained from GF-1 and HJ-2
were more similar. Fig. 12(b) shows the histogram of FVC for
June 2023. The mean FVC values obtained from Sentinel-2, HJ-
2, and GF-1 were 0.38, 0.4, and 0.45, respectively. These three
satellites showed similar distribution of FVC, which demon-
strates the robustness of CNN–TL and its generalization across
different satellites.

IV. DISCUSSION

A. The Potential of Combining LESS Model With Transfer
Learning to Retrieve Maize FVC

To quantitatively retrieve surface parameters, a thorough com-
prehension of the transfer mechanisms of solar radiation to the
surface is essential. Compared to 1-D RTM, 3-D RTM is able to
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Fig. 11. FVC mapping using CNN–TL. Satellites and imaging dates are (a) GF-1, 2022/06/12, (b) HJ-2, 2022/06/10, (c) Sentinel-2, 2022/06/08, (d) GF-1,
2023/06/19, (e) HJ-2, 2023/06/19, and (f) Sentinel-2, 2023/06/18.

Fig. 12. Histogram of FVC retrieved from GF-1, HJ-2, and Sentinel-2 by
CNN–TL: (a) in June 2022 and (b) in June 2023. Mean FVC values depicted by
vertically dashed lines.

more accurately characterize the complexity of canopy structure.
3-D RTM is distinguished by its capacity to customize the scene
and the elements, enabling precise simulation of the interaction
between different sceneries and spectral components. Gao et al.
[43] used LESS model to analyze the effect of crop structure

types on VIs and noticed obvious difference in VIs between row
structure and uniform structure. In this article, we used LESS
model to characterize the row structure of maize at the initial
phase of growth and the uniform structure at the late growth
stage. To the best of our knowledge, it is the first time to concern
the changes in maize structure. The superior retrieval accuracy of
FVC by CNN–TL is partly due to the high precision of LESS in
depicting the canopy structure. The application of LESS model
can lead to a reduction in the need for man power to collect field
data.

We obviously observed RF had an underestimation of high
cover, which was consistent with the study of Sexton et al. [73]
and DiMiceli et al. [74]. But this phenomenon was not observed
in CNN and CNN–TL, which may be attributed to high learning
efficiency of CNN and realistic constraints in model training.
We used the entire pretrained model from LESS in the satellite-
observed data space. For each sensor, the CNN–TL improved
the model performance significantly compared to CNN and RF
(Fig. 9). This finding aligned with prior article [35], [71]. It
demonstrates that CNN–TL is effective and full of potential.

In addition, this article investigated the effect of field data
size on CNN–TL. We conducted 20 comparative tests using
randomly divided datasets. Each test contains a total of 100 field
measured data. When using the amount of field data below 40%,
the retrieval accuracy (R2) of RF was lower than 0.5 (Fig. 13).
When using more than 40% field data, RF tended to be stable.
In contrast, CNN–TL exhibited superior stability against the
different field sizes. TL offered significant benefits for FVC
retrieval.
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Fig. 13. Model performance of FVC retrieved with various measured data
sizes. The error line is the standard deviation resulting from 20 random data
splits.

B. Comparison of GF-1, HJ-2, and Sentinel-2 in Retrieving
FVC

Because HJ-2 has just been launched, few research has
used it to estimate FVC. The article validated and compared
the performance of the proposed method on GF-1, HJ-2, and
Sentinel-2 imageries. Although HJ-2 has only one red-edge
band, it demonstrated equivalent performance in retrieving FVC
to Senitnel-2 (Fig. 9). In addition, HJ-2 is far more accurate
in estimating FVC than GF-1, even though the SRF of GF-1
is identical to that of HJ-2. This indicated the importance of
red-edge band for estimating FVC. The FVC maps generated
by GF-1 and HJ-2 exhibited a high level of consistency in
the study area, demonstrating comparable levels of fine detail
accuracy. Nevertheless, the FVC maps derived from Sentinel-2
showed some discrepancy to those derived from GF-1 and HJ-2
(Fig. 11). The increased spatial resolution of Sentinel-2 offers
additional information, such as terrain and shading, which can
lead to differences in the FVC maps when compared to GF-1 and
HJ-2. HJ-2 has a temporal resolution of 2 days and GF-1 has a
temporal resolution of 4 days. The combination of HJ-2, GF-1,
and Sentinel-2 allow us to obtain more valuable information,
reducing the disturbance of clouds, and ultimately improve data
availability and accuracy.

To precisely assess FVC dynamics and work toward com-
pletely closing the difference between simulated and satellite
reflectance, more field experiments should be designed. Our
future article aims to produce FVC products with high accuracy
by combining CNN–TL with RTM-based methods and detailed
ground measurements. This will enable us to deliver more trust-
worthy data for agricultural decision-making.

V. CONCLUSION

This article proposes a novel maize FVC estimation method
that combines the LESS 3-D RTM and TL based on CNN.
The CNN model was fine-tuned using field-collected FVC and
reflectance data from GF-1, HJ-2, and Sentinel-2 images. The
CNN–TL model offers a promising solution for improving crop
FVC estimation accuracy. Key findings include the following.

1) The LESS model offers a promising solution for simu-
lating canopy reflectance with the advantage of depicting
canopy structure.

2) CNN–TL exhibits superior performance compared to RF
and CNN. CNN–TL achieved an R2 of 0.956 and RMSE of
0.063 from HJ-2 dataset, higher than those obtained from
GF-1 and Sentinel-2 datasets. This underscores the impor-
tance of utilizing simulated reflectance data in conjunction
with TL.

3) The capacity of HJ-2 to estimate FVC is comparable to
Sentinel-2. The combination of multisource multispectral
satellites offers potential for precision agriculture and crop
breeding applications.

In summary, this article highlights the potential of the LESS
simulation and CNN–TL as a tool for improving FVC estima-
tion. Further article can expand the application of our proposed
method to other crops.
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