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URS: An Unsupervised Radargram Segmentation
Network Based on Self-Supervised ViT With

Contrastive Feature Learning Framework
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Abstract—Radar sounders are air and space-borne
nadir-looking sensors operating in high-frequency (HF) or very
high-frequency (VHF) bands and collect subsurface backscattered
returns by transmitting electromagnetic pulses. The backscatter
echoes are coherently integrated to generate radargrams for
investigating and identifying geophysical characteristics of
subsurface targets. While recent efforts have been made to develop
supervised or semisupervised deep learning models for segmenting
radargrams, obtaining accurate labeled information is often a
challenging task. Therefore, it is of paramount importance to
develop automatic unsupervised semantic segmentation methods
to characterize the subsurface targets without labeled information.
Unsupervised segmentation methods learn to discover meaningful
semantic contents and decompose them into distinct semantic
segments with known ontology. Here, we propose an unsupervised
radargram segmentation network that uses a convolution-based
expansive network as a proxy decoder and a progressive stepwise
reconstruction strategy of the input signal from the latent space
to measure the spatial similarity with the input radar sounder
signal. After designing a unique training strategy by bootstrapping
the randomness inside the minibatch and combining the spatial
similarity loss along with the contrastive correlation loss, the
proposed architecture outperformed the state of the art in
fully unsupervised settings. Experiments were conducted on
the multichannel coherent radar depth sounder to test the
robustness of the proposed method. We carried out a comparative
analysis with the state-of-the-art unsupervised and supervised
segmentation methods. MIoU is improved by 23.47%.

Index Terms—Multichannel coherent radar depth sounder
(MCoRDS), radar sounder, semantic segmentation, sequence-to-
sequence model, TransFuse, TransUNet, transformers.

I. INTRODUCTION

RADAR sounders (RSs) are sensors with active sensing ca-
pabilities operating on nadir-looking geometry to transmit

linearly modulated electromagnetic (EM) pulses and receive the
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Fig. 1. Sample MCoRDS Radargram with different subsurface targets.

reflected echoes from the subsurface targets depending upon
geophysical characteristics [1]. The operating frequency of these
sensors ranges from high frequency (HF) to very high frequency
(VHF) [2]. To generate radargrams, the received echoes are
coherently integrated by several processing tasks ranging from
synthetic aperture radar (SAR) focusing to correct for platform
instability, elevation variations, etc. [1]. The radargrams are
exploited to characterize the subsurface geophysical targets by
automatic techniques. The advantage of RS data is given by
the possibility to capture subsurface information up to several
hundred meters in the collaborative medium as ice, where SAR
sensors show limited penetration capability of a few centimeters
in comparable situations. In contrast, optical sensors do not
show subsurface penetration capabilities. Thus, RS sensors have
unique properties, allowing for the characterization of subsur-
face features which is not feasible with other remote sensing
sensors.

In recent years, the Earth’s climate change generated a great
deal of attention with miscellaneous research directions to char-
acterize the status of environmental parameters for tackling
alarming situations [3]. A significant loss of polar ice sheets
has been observed due to global temperature rise along with
the unprecedented fluctuations of climate variables contribut-
ing to climate change [4]. The subglacial hydrology directly
influences the motion of the ice along with the topographic
characteristics [2]. The land surface temperature affects the
internal stability of the ice layers and is intricately related to the
dynamics of the basal temperature [5], [6]. The ice layers depict
quasi-linear homogeneous characteristics in the radargram (see
Fig. 1). Another important geophysical subsurface component
is bedrock, often referred to as the deepest scattering area.
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Due to the significant attenuation of the transmitted wave, the
radar measures the noise at a depth greater than the bedrock.
Another subsurface region showing a noise-like signature is the
echo-free zone (EFZ) often situated above the bedrock region
(see Fig. 1). EFZ can be utilized as a proxy for paleoclimatic
research, change in flow behaviors, and ice sheet dynamics [7].
Therefore, the semantic segmentation of radargrams has mis-
cellaneous application in the context of geophysical research,
such as glaciological dynamics of subsurface targets (e.g., ice
layers, bedrock, noise, etc.). Further, radargrams can be ex-
ploited for postsemantic segmentation tasks like tracking ice
layers, measuring the thickness, etc. The major difficulty lies
in investigating the subsurface dynamics of these targets due
to the inaccessibility of the subsurface environment [3]. In this
regard, nadir-looking RS sensors and radar depth sounder (RDS)
provide reliable scientific information to monitor and investigate
the subglacial environment without an in situ survey. The RS
signals depict sequential linear structures (associated with dif-
ferent subsurface targets) often corrupted by the multiplicative
nature of noise (see Fig. 1). Therefore, modeling the local
spatial contexts (i.e., local spatial correlations among the small
neighbourhoods in radargrams) and the global spatial contexts
(i.e., long-range back-and-forth information processing system
between different spatial locations in radargrams [8]) is pivotal
for the deep learning architectures to segment radargrams.

Very popular CNN-based methods, such as U-Net [9],
FPN [10], FCN [11], SegNet [12] dominated the supervised
segmentation architectures in the domain of Earth Observation
(EO). Considering the RS sensors for EO, the authors in [13],
[14], [15], [16], and [17] developed CNN-based architectures for
applications, such as segmenting subsurface targets, tracking ice
layers, estimating ice thickness, etc. Wang et al. [13] developed
a joint multi-GAP RNN augmented with the triple-task CNN
architecture for detecting and numerically quantifying the ice
layers and the corresponding thickness. Cai et al. [14] utilized a
SegCaps network architecture to segment the radargrams. Varsh-
ney et al. [15] utilized different FCN-based architectures for
tracking and estimating the thickness of ice layers. Liu-Schiaffini
et al. [16] developed a novel CNN architecture (refined with con-
tinuous CRF) to identify the ice bed interface in the radargrams.
Donini et al. [17] utilized an attention UNet architecture for
segmenting the radargrams. Recently, the authors in [18] and
[19] utilized the semisupervised segmentation models for SAR
segmentation. However, convolutions capture the local spatial
contexts, whereas radar sounder depicts global spatial contexts
with respect to the depth which is often difficult to model by
CNNs. To mitigate the problems, Ghosh and Bovolo [20] pro-
posed a hybrid CNN-Transformer architecture for the semantic
segmentation of radargrams by utilizing TransUNet [21] and
TransFuse [22] architecture. To reduce the number of parameters
in Transformers, Ghosh and Bovolo [23] proposed an FFT-based
unparameterized self-attention mechanism to segment the radar-
grams. Recently, Ibikunle et al. [24] developed a Echogram
Vision Transformer with miscellaneous patchifying scheme with
learnable positional embedding to track the individual ice layers
in radargrams. Despite the success in supervised settings, these
architectures require a significant amount of labeled samples.

However, acquiring the labeled information in radargrams re-
quires drilling and/or strong domain expertise which are often
lacking.

In contrast, unsupervised segmentation methods learn the
inherent semantic contents from the training samples without
using any label. A decomposition is then performed on the
learned semantic contents with the known ontology across the
image corpora [25], [26]. In the domain of computer vision,
unsupervised semantic segmentation has been performed based
on contrastive clustering [27], mutual information minimiza-
tion [25], independent information clustering (IIC) [28], gener-
ative modeling approaches [29], etc. Caron et al. [30] proposed a
novel clustering approach by utilizing the unsupervised training
and iterative refinement of weights from pretrained CNN-based
networks (convnets). Several variants of clustering methods have
been proposed that incorporate miscellaneous pretext tasks for
unsupervised feature learning [31], [32], [33]. Contrary to the
pretext hypothesis, the contrastive methods leverage the learning
of discriminative pixel-level embeddings by maximizing the
agreement between positive pairs and minimizing between the
negative pairs [34]. Gansbeke et al. [27] proposed a two-step
framework by utilizing a-priori contrastive object mask proposal
for generating the meaningful pixel-level discriminative con-
texts for the downstream segmentation tasks. These approaches
showed good performance in computer vision, however, less
research works have been carried out in segmenting the EO
data. Among them, Saha et al. [35] proposed an unsupervised
segmentation method (US4EO) by combining deep clustering
with the contrastive learning approach by refining weights it-
eratively from a CNN-based two-stream deep feature learning
framework for segmenting EO dataset. In radargrams unsuper-
vised segmentation, Donini et al. [36] established a two-stream
teacher–student network by incorporating two parallel UNet-
like networks. In the domain of hyperspectral remote sensing,
Pérez-García et al. [37] utilized a novel spectral loss function
by incorporating a 3-D convolutional encoder to segment the
hyperspectral images. Mou et al. [38] utilized a fully conv–
deconv framework in the unsupervised spectral-spatial feature
learning paradigm. However, hyperspectral images contain very
high-dimensional spectral information which can be exploited
for the unsupervised tasks with miscellaneous framework as-
sociated to the spectral-spatial domain, whereas radagrams do
not contain spectral information, thereby making the unsuper-
vised segmentation task challenging. Further, it is often difficult
for the unsupervised CNN-based approaches to address the
multiplicative nature of noise embedded in radargrams. Also,
convolutions amplify the HF components during training and
often obfuscate the low-frequency components embedded in
radargrams. Although the authors in [35] and [36] demonstrated
the capability of unsupervised segmentation methods in EO,
however, in the radargrams, the difficulty lies in modeling the
global contexts as convolutions inherently impose spatial lo-
cality constraints. Further, these methods require a significant
number of parameters while training from scratch.

In contrast to CNN-based unsupervised methods in computer
vision, Caron et al. [39] established a novel self-supervised
feature learning framework (named DINO) to demonstrate that
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the self-supervised Vision Transformers (ViTs) explicitly embed
rich semantic contents which are not often emerged in the
supervised ones. By utilizing the aforementioned DINO as a
pretrained frozen visual featurizer, Hamilton et al. [25] estab-
lished an unsupervised semantic segmentation method named
self-supervised Transformer with energy-based graph optimiza-
tion (STEGO) by incorporating a novel contrastive loss function
and exploiting the interfeature and intrafeature correlation across
discriminative contexts extracted from the positive and negative
samples. In STEGO, the k-nearest neighbors (KNN) have been
incorporated to select the samples as positive descriptors for
generating the correlation volume. However, using KNN as
positive descriptors creates instability during training with the
radargrams while establishing the discriminative embeddings.
Melas-Kyriazi et al. [26] established a novel framework of deep
spectral segmentation methods by discretely segmenting the
eigenvectors of a Laplacian derived from a feature affinity matrix
of intermediate deep features extracted from self-supervised
pretrained networks. Overall, the authors in [25], [26], and [39]
demonstrated that deep features extracted from self-supervised
ViTs can be potentially utilized for the unsupervised semantic
segmentation tasks with light-weight parameterizations.

In summary, while considering unsupervised learning frame-
work, several drawbacks can be highlighted in the context of
segmenting the radargrams with the existing architectural set-
tings. First, while convolutions in the encoder accurately capture
local spatial contexts, they often fail to establish global spatial
contexts within the radargrams. Despite amplifying HF com-
ponents in feature tensors, convolutions may overlook crucial
low-frequency components during training. Although the ice
layers exhibit linear sequential features across the azimuth, the
backscattering response with associated linearity becomes cor-
rupted due to the multiplicative nature of noise as the signal at-
tenuates along the range direction in radargrams. Consequently,
the heterogeneity increases in the linear characteristics of the ice
layers as the depth increases. Therefore, effectively modeling
the rich contextual information embedded in radargrams neces-
sitates careful consideration of the varying transitions between
HF and low-frequency regions. Second, while considering the
unsupervised contrastive learning framework in computer vision
[25], [27], the negative samples depict class separability and
spatial variability for the surface features in optical images. The
challenge arises when the negative radargram samples are not
heterogeneous in terms of subsurface features, thereby impend-
ing the difficulty in establishing an attractive–repulsive con-
trastive optimization strategy in purely unsupervised settings.
Thus, addressing the issue of inadequate spatial heterogeneity
between the negative and positive descriptors associated with the
radargrams is crucial in designing contrastive learning frame-
work. Third, miscellaneous randomness (random shuffling of
samples, selecting positive and negative pairs, etc.) is introduced
into the unsupervised contrastive framework during training.
Therefore, it is equally important to assess and constrain the
degree of randomness while establishing the attractive–repulsive
discriminative contexts between the positive and negative pairs.
By addressing the miscellaneous limitations of convolutions,
addressing the properties of noise in radargrams, and the issues

related to incorporating contrastive framework in radargrams
segmentation, leveraging self-supervised ViTs can be a crucial
step forward in the domain of RS. Concretely, no work explored
the potential of self-supervised ViTs for unsupervised semantic
segmentation in radargrams.

By incorporating the self-supervised ViTs as a deep featurizer
for the input RS signals, the similarity of augmented view, and
utilizing a hybrid loss function, we develop an unsupervised
radargram segmentation (URS) architecture. The key contribu-
tions are twofold as follows.

1) We develop an unsupervised architecture by exploiting the
components of STEGO along with an expansive network
as a proxy decoder to reconstruct the rich discriminative
embeddings of the RS signals. The training strategy is
based on bootstrapping the randomness inside the train-
ing samples for developing a stable attractive– repulsive
coupling between the positive-negative pairs for the radar-
grams.

2) We design a loss function by integrating the spatial sim-
ilarity measure between the input RS signals with the
reconstructed RS signals from the latent space along with
the contrastive correlation loss to steer the learning opti-
mization with stable gradient flow.

The rest of this article is organized as follows. Section II de-
picts the concrete mathematical details of the proposed method-
ology. Section III reports the results and corresponding discus-
sions. Finally, Section IV concludes this article.

II. PROPOSED METHODOLOGY

The proposed method develops an unsupervised architecture
by utilizing the self-supervised ViTs into a two-stream con-
trastive learning framework by exploiting jointly the contrastive
correlation loss along with the spatial similarity loss.

A. Problem Formulation

We denote a radargram as a 2-D single channel matrix. The
backscattered returns from the different spatial positions along
with the channel information can be denoted as

R={R(C, i, j)|C=1, i ∈ P=[1, . . . , nT ], j ∈ Q=[1, . . . , nS ]}
(1)

where C denotes the channel dimension, [1, . . . , nT ] denotes
the acquired number of samples in the along-track direction and
[1, . . . , nS ]denotes the number of samples in the range direction.
A concrete mathematical treatment of the proposed architecture
is depicted as follows.

Let us denote N as a number of radargram training sam-
ples T = {X1, X2, . . . , XN} where the dimension of each Xi

is C ×H ×W (i ∈ {1, 2, . . . , N}). The goal of this research
work is to perform radargram unsupervised semantic segmen-
tation and to assign each pixel (C, i, j) a distinct class. The
unsupervised segmentation method aims at establishing discrim-
inative pixel embedding with deep feature learning framework
to cluster pixels associated to targets without using any labeled
information. In our case, the known ontology in the radargram
can be grouped into three different categories: 1) ice layers, 2)
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Fig. 2. Schematic layout of proposed architecture.

bedrock, and 3) noise (composed of EFZ above the bedrock
region and the noise at the depth greater than the bedrock).

B. Proposed URS Architecture

Fig. 2 depicts a two-stream schematic layout of the proposed
unsupervised URS architecture. From one branch, the self-
supervised transformer-based pretrained frozen visual back-
bone extracts rich discriminative semantic contents embedded
in tensors from the input radargram patches. From the other
branch, the pretrained backbone extracts the semantic contents
from the augmented view of the unlabeled training samples.
At this stage, the feature correspondence tensor is computed
by estimating the 1) self-correlation, 2) correlation with the

augmented view, and 3) correlation with the random samples.
The outputs from the frozen visual backbones are subsequently
fed into the lightweight segmentation head to amplify the
patterns embedded in the feature tensors. After that, the seg-
mentation correspondence tensors are computed between the
output generated from the segmentation head of two branches.
By utilizing feature correspondence tensors and segmentation
correspondence tensors, the contrastive correlation loss can be
computed for optimizing the network. On the other hand, the
expansive network incorporates a progressive upsampling by
utilizing the successive convolutions and transpose convolution
operations to reconstruct the input tensors from the intermediate
feature tensors from the segmentation head. A spatial similarity
is measured between the input tensor and reconstructed tensor.
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Finally, the contrastive correlation loss and the spatial similarity
loss is coupled to steer the gradient optimization for the un-
supervised feature learning framework. During the prediction
time, the frozen visual backbone along with the weights from
the learned segmentation head is utilized to generate the in-
termediate feature tensors. After that, the clustering operation
is performed to create pseudo labels for generating the final
prediction maps.

1) Training Strategy: Let the radargram samples in T =
{X1, X2, . . . , XN} be randomly shuffled and the new shuffled
sequence be denoted as Tshf = {x1, x2, . . . , xN} without loss
of generality. Let Bα (α ∈ {1, 2, . . . , �N/K�}) denote a batch
consisting of k samples selected from the shuffled training
sequence Tshf. For consistency of notations, we will carry out
all the mathematical treatment on

Bα = {xj ∈ Tshf|K(α− 1) + 1 ≤ j ≤ Kα,

∀α ∈ {1, . . . , �N/K�}}.
(2)

Let A : RCHW → RCHW be a function that creates an invariant
augmented view of every xj by keeping the spatial and channel
dimensions invariant. Therefore, the set of all augmented xj in
Bα can be denoted as

B′α = {x′j ∈ T′shf |K(α− 1) + 1 ≤ j ≤ Kα,

∀α ∈ {1, . . . , �N/K�}}. (3)

Let us denote the shuffled sequence on Bα as

Brnd
α = {Γj ∈ Bα|K(α− 1) + 1 ≤ j ≤ Kα,

∀α ∈ {1, . . . , �N/K�}}.
(4)

Each xj in Bα has a triplet associative mapping with the 1) Self
(xj ∈ Bα), 2) Augmented (x′j ∈ B′α), and 3) Random (Γj ∈
Brnd

α ) during training. Γj is selected randomly from the batch
Brnd

α to understand the contrast between xj andΓj . The prepared
dictionary training triplets for the batch Bα are

Dtr = {xK(α−1)+1 : (xK(α−1)+1, x
′
K(α−1)+1

ΓK(α−1)+1), xK(α−1)+2 : (xK(α−1)+2, x
′
K(α−1)+2

ΓK(α−1)+2), . . . , xKα : (xKα, x
′
Kα,ΓKα)

∀α ∈ {1, . . . , �N/K�}}. (5)

Mathematically, for every xj , Self: xj and Augmented: x′j are
the positive descriptors, and Random:Γj is a negative descriptor
for the triplet associative mapping. Here, a degree of randomness
can affect optimization when choosing the positive and negative
descriptors from the mini-batches associated with the random
shuffling. In order to bootstrap the aforementioned randomness,
the Gaussian blur is incorporated in the input radargram training
sample xj to generate x′j as positive descriptors for the learning
framework. By utilizing Gaussian blur as positive descriptor,
the original structure of the input radargram training sample
is retained while contrasting between the positive and negative
descriptors. These associative mappings between the triplets in

Dtr allow the URS architecture to understand the discrimina-
tive pixel embeddings in input radargrams by contrasting the
attractive and repulsive interactions in congruence to correlation
strengths between the elements in theDtr triplets.

After preparing these triplets in Dtr for contrastive learning,
a two-stream learning framework (see Fig. 2) has been con-
structed to create the discriminative pixel embedding with dense
intermediate visual representations. LetN : RCHW → RC ′H ′W ′

be a frozen backbone that maps every element xj in Bα,
and x′j in B′α to higher dimensional feature spaces with rich
discriminative semantic contents for the segmentation. Let us
denote these higher dimensional tensors generated by N are:
yj = N(xj), y

′
j = N(x′j), with the dimension C ′ ×H ′ ×W ′

(H ′ < H , W ′ < W , and C ′ >> C). As the backbone N is
frozen, it is necessary to drive the learning gradient with a
lightweight network to amplify the embedded high-frequency
and low-frequency components of the intermediate dense feature
tensors yj and y′j and keep the number of parameters and the
computational time low. Further, the amplified correlation pat-
terns are utilized for cluster compactifications to assign pseudo
labels. Therefore, similar to [25], we utilize a segmentation head
to map the tensors to a lower dimensional pixel embedding.
We denote the segmentation head as S : RC ′H ′W ′ → RC ′′H ′W ′

,
where C ′′ < C ′ and S is built with the small convolutional
block. Let us denote zj = S(yj) and z′j = S(y′j) as the ten-
sors generated from S by inputting yj and y′j , respectively.
The corresponding elements yj , y′j , zj , and z′j are utilized to
estimate the feature correspondence tensors and segmentation
correspondence tensors, respectively at the later stage of the
architecture.

C. Expansive Networks

After incorporating the segmentation head S on a two-stream
network, zj is fed to an expansive network to reconstruct the
tensors with a similar spatial dimension as the input radargram
tensors xj . Since the frozen backbone performs a significant
resolution reduction (approximately by a factor of 8), the spatial
reconstruction operation leverages to amplify the local spatial
details embedded in the radargram. The expansive network is
denoted by E : RC ′′H ′W ′ → RCHW. The corresponding mathe-
matical equations can be denoted as rj = E(zj). The expan-
sive network incorporates successive convolution and Transpose
convolution operations, respectively. These aforementioned op-
erations are similar to the symmetric expanding path as used
in a decoder of UNET architecture. We tabulate the parametric
settings of successive convolutions and Transpose convolutions
operations of expansive networks in Table I.

D. Feature Correspondence Tensors

In self-supervised settings, the intermediate dense features
often embed rich semantic information for downstream tasks,
such as object localization, semantic segmentation, edge detec-
tion, etc. The intermediate dense feature tensors can be extracted
from activation maps of deep convolutional layers of a network,
or queries, keys, and values matrices from intermediate layers of
self-supervised ViT-based architecture. The feature correspon-
dence tensors estimate the correlation volume as similar to [40].
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Algorithm 1: Unsupervised Feature Learning Framework
for Semantic Segmentation of Radar Sounder Data.

Require: N number of training samples
T = {X1, . . . , XN}

Ensure: Randomly Shuffle {X1, X2, . . . , XN} to generate
a shuffled sequence denoted as Tshf = {x1, . . . , xN} for
every batches Bα ∈ Tshf
for i← 1 to I do
[B1 : {x1, x2, . . . , xK},B2 :
{xK+1, x2, . . . , x2K}, . . . ,BN/K :
{xN−K+1, xN−K , . . . , xN}]

Gaussian Blur on
Bα = {xK(α−1)+1, xK(α−1)+2, . . . , xKα} to create
B′α = {x′K(α−1)+1, x

′
K(α−1)+2, . . . , x

′
Kα}

Create dictionary triplets for each xj in Bα to form
Dtr = {xK(α−1)+1 :
(xK(α−1)+1, x

′
K(α−1)+1,ΓK(α−1)+1), xK(α−1)+2 :

(xK(α−1)+2, x
′
K(α−1)+2,ΓK(α−1)+2), . . . , xKα :

(xKα, x
′
Kα,ΓKα)}.

for j ← 1 to K do
yj = N(xj)
y′j = N(x′j)
zj = S(yj)
z′j = S(y′j)
rj = E(zj)

end for
Estimate Feature Correspondence Tensor Fhwmn using yj
and y′j

Estimate Segmentation Correspondence Tensor Shwmn

using zj and z′j
Estimate Contrastive Correlation Loss - L1

Estimate Spatial Similarity Loss - L2

Estimate Cluster Compactification Loss - L3

Utilize the Losses to optimize the network parameters
end for

Here, the correlation volume is constructed by estimating a 4-D
tensor while considering the individual correlations among all
the pairs between the high-dimensional latent space generated
fromyj andy′j , respectively. We denote the correlation volume as
Fcorr. Let us denote a 1× 1 subset extracted from yj as Ychw and
from y′j as Ycmn with the channel dimension as c, and individual
spatial location as (h,w) and (m,n), respectively. Therefore,
the corresponding equations of individual correlations of these
tensors can be depicted as

Fhwmn =
∑

c

Ychw

|Yhw|
Y ′cmn

|Y ′mn|
. (6)

Equation (6) estimates the dot product or cosine similarity
between Ychw and Y ′cmn to generate feature correlation tensors
at each spatial position of yj with respect to the other spatial
position of y′j . In special cases, the similarity is measured
between the two regions of the same tensors (Ychw = Y ′cmn).
The tensor Fhwmn corresponds to the generalization of higher

order class activation maps [41] as a singular component ofFcorr.
In order to reduce the computational complexity of 4-D Fcorr,
a stratified grid sampling has been incorporated to reduce the
spatial dimension of the intermediate feature tensors (yj , y′j)
from H ′ ×W ′ to G1 × G2. The elements in Fcorr are correlated
with the cooccurrence of true labels.

E. Segmentation Correspondence Tensors

Similar to the Fcorr, estimations of the correlation volume are
performed on intermediate feature tensors zj , and z′j generated
by the segmentation head S. We represent the subset of 1× 1
tensor in zj as Zchw, and in z′j as Zcmn, respectively, with
the channel dimension as c, and individual spatial location as
(h,w), and (m,n), respectively. Mathematically, the correlation
between Zchw and Zcmn in the segmentation correspondence
tensor (Scorr) can be written as

Shwmn =
∑

c

Zchw

|Zhw|
Z ′cmn

|Z ′mn|
. (7)

As similar to the Fhwmn, Shwmn embed the correlation values.
Similar to the behavior of the attractive–repulsive duality, the
contrastive polarity is established in terms of the correlation
strengths embedded at different spatial positions of zj and z′j
extracted from input radargrams. In other words, the positively
similar couples will create positive pressure to drag the opti-
mization toward the highest correlation values and vice-versa.

F. Distillation of Feature and Segmentation Correspondences

By utilizing the correlation values of the discriminative pixel
embedding, a contrastive framework of attraction–repulsion can
be established by utilizing the correlation strength at different
spatial positions. The dot-product pushes the entries together
if there is a significant amount of positive couplings and pulls
apart the entries if the couplings are significantly negative. By
utilizing Fhwmn and Shwmn, a correlation loss function can be
established as

La(xj , x
′
j , b) =

∑

hwmn

−(Fhwmn − b)Shwmn. (8)

Here, the strength of dense feature correspondences at different
spatial positions is established between Fhwmn and Shwmn while
creating the dual attractive–repulsive pair. The b parameter plays
a crucial role in preventing the collapse of the gradient flow to
establish the equilibrium between the dual attractive–repulsive
combinations. In other words, theFhwmn − b determines the sign
of positivity and negativity, and the values Shwmn further drive
the optimization toward antialignment or alignment depending
upon the sign of Fhwmn − b. To balance the optimization further,
the spatial centering (SC) operation is incorporated

F SC
hwmn = Fhwmn − (1/H ′W ′)

∑

m′n′
Fhwm′n′. (9)

To decrease the colinearity between the weakly correlated pat-
terns concentrated in the feature and segmentation correspon-
dence tensors, zero-clamping has been utilized for establishing
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TABLE I
ARCHITECTURAL SETTINGS FOR EXPANSIVE NETWORK OF PROPOSED METHOD

orthogonality. The equation can be depicted as

La(xj , x
′
j , b) = −

∑

hwmn

(F SC
hwmn − b)max(Shwmn, 0). (10)

G. Loss Functions

1) Contrastive Correlation Loss: The contrastive correlation
loss drives the optimization between every triplet xj , x′j , and Γj

with three types of correlations: 1) self-correlation (between xj

and xj), 2) correlation with the augmented view (between xj

and x′j), and 3) correlation with the random samples (between
xj and Γj). Therefore, the linear combination between different
correlations can be depicted as

L1 = λsLs(xj , xj , bs) + λaLa(xj , x
′
j , ba)

+ λrLr(xj ,Γj , br) (11)

where the weights λs, λa, and λr are assigned to balance the
dual attractive–repulsive interactions between different correla-
tion strengths. Further, bs, ba, and br direct the change of sign
depending upon the correlation strength of different feature
correspondence tensors. While estimating the contrastive cor-
relation loss, in order to reduce the computation complexity of
Fhwmn and Shwmn, a stratified grid sampling is utilized to reduce
the spatial size of the feature tensors to a lower dimensional
space. For multiplication between the feature correspondence
tensor and segmentation correspondence tensor, the randomly
selected coordinates of Fhwmn and Shwmn are kept similar during
self-correlation.

2) Spatial Similarity Loss: The spatial similarity loss mea-
sures the difference between the pixelwise similarity between
the input tensor xj , and the reconstructed tensors rj . A mean-
absolute error between xj and rj , can be depicted as

L2 = ||xj − rj ||. (12)

It was observed during the learning process that if we combine
the spatial similarity loss with the contrastive correlation loss, the
learning optimization becomes convergent toward decomposing
the distinct segments more effectively, especially for the radar
sounder data.

If we combine the contrastive correlation loss (L1) and spatial
similarity loss (L2), the mathematical expression of the joint loss
function can be defined as

Ltotal = L1 +L2. (13)

The intuition behind summing L1 and L2 is that L1 uses the
correlation values of the discriminative pixel embeddings to
establish a framework for attraction–repulsion strategies based
on the correlation strength between every triplet xj , x′j , and
Γj in various spatial positions of the high-dimensional feature
tensors. The objective of L1 is to establish a discriminative
class separability in unsupervised learning. However, L1 does
not consider the resolution reductions when extracting rich dis-
criminative semantic contents from the pretrained frozen visual
featurizer. To address the issue of resolution reductions during
optimization, L2 is taken into account. While L2 addresses the
resolution reductions, it does not inherently leverage the con-
trastive optimization strategy to distinguish between different
ontologies. As a result, L1 and L2 complement each other to
enable efficient optimization strategy in purely unsupervised
settings.

3) Cluster Compactification Loss: During training, the clus-
ter compactification loss is estimated by utilizing the Einstein
summation between the randomly initialized weight matrixwnc,
with Zchw derived from S. Mathematically, the product can be
written as Knhw =

∑
c wncZchw. To create the pseudo labels

for the prediction module, one-hot encoding is performed after
taking the argmax on the dimension of the specified clusters n
on Knhw, depending on the number of classes to be detected in
the final prediction. Let us denote the updated tensor as K ′nhw.
The cluster loss is then computed by following:

L3 = −
∑

h,w

K ′nhwKnhw. (14)

The weights ofwnc are updated iteratively with respect to pseudo
labels created in K ′nhw. Note that, the gradient optimization of
L3 is performed separately from the loss L1 and L2 .

H. Prediction Module

In the prediction module (bottom left corner in Fig. 2), three
consecutive blocks are utilized for the final inference of the
unsupervised network. At first, the test samples are fed to the
self-supervised ViTs-based frozen visual backbone. After that,
the tensors are fed through the learned segmentation network.
Finally, these learned intermediate feature spaces are upsampled
to the required channel and spatial dimension and decomposed
to the number of segments with respect to the learned weights.
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III. EXPERIMENTAL RESULTS

In this section, we report the results and associated compar-
ative analysis between both unsupervised and supervised deep
learning architectures for semantic segmentation of the radar-
grams. We first elucidate upon the description of the dataset.
Next, we construct the experimental setup with associated re-
sources. Finally, the segmentation results with quantitative and
qualitative analysis are interpreted with some discussions.

A. Dataset

Experiments are conducted on data from multichannel co-
herent radar depth sounder (MCoRDS) owned by the Centre of
Remote Sensing of Ice Sheets (CReSIS) unit. Two bandwidths,
i.e., 9.5 and 30 MHz are utilized to acquire the dataset by
different sensors with a central frequency of 193.5 MHz. The
instrument was on-boarded on DC-8 aircraft. The acquisition
took place over several regions of Antarctica with an altitude
of 7000 m. The campaign was conducted on November 2010,
of which 8 radargrams (bandwidth 9.5 MHz) were utilized for
our experimental setup. The coordinates of acquisition ranges
between (−86◦00′N to−15◦67′E) to (−86◦02′N to 29◦45′E). A
total of 27 350 traces are acquired over a distance of about 400
km. For improving the range resolution, pulse compression tech-
niques are used to suppress the sidelobe level [42]. To improve
the along-track resolution and suppress the contributions of the
clutter further, SAR focusing techniques with the multilooking
approach are utilized with 1 look in the cross-track direction
and 11 looks in the along track direction. Therefore, the final
range resolution and along track resolution is 13.6 and 25 m,
respectively. To characterize the radargram, three classes are
chosen: 1) ice layers (blue), 2) bedrock (green), and 3) noise (yel-
low). The ambiguous pixels (blue in the reference map) are not
accounted for measuring the final prediction accuracy, however,
these pixels are labeled from the trained network in supervised
settings. In supervised settings, the deep networks utilize the
location of ambiguous pixels to capture the semantic contexts
with learnable parameters of filters, however, these locations
are discarded while estimating the final loss. In unsupervised
settings, we do not have access to the label information in any
location including ambiguous pixels, therefore the losses were
computed by taking into account the overall spatial extents of
the discriminative contexts embedded in the latent space. Please
see [42] for further details about the dataset.

B. Experimental Setup

In terms of the experimental setup, 1200 randomly selected
samples are employed for training [20]. No label is utilized for
training the network or tuning hyperparameter in the unsuper-
vised segmentation architectures. The test set is kept similar
to [20]. The corresponding channel and spatial dimension for the
training and testing sets are 1, and 320× 320, respectively. In
the case of associative mapping, Gaussian blur is incorporated as
an augmented view generator (A) for every training sample. As
a pretrained visual featurizer (N), DINO architecture is adopted
as a frozen backbone which is a self-supervised ViT-based

teacher–student network [43]. The N is incorporated over each
xj , x′j to generate the discriminative pixel-embedding tensors
with the dimension 384× 40× 40 (yj , and y′j). To amplify the
correlation patterns embedded in the feature tensors, the seg-
mentation head (S) is enforced to reduce the channel dimension
of the feature tensors (yj , and y′j) from C ′ = 384 to C ′′ = 192
(zj , and z′j). Hereafter, the expansive networkE is utilized on the
intermediate feature tensors yj to reconstruct the tensors with
spatial dimensions 320× 320. E is a network with successive
convolutional networks coupled with the intermediate transpose
convolution operations to upsample (rate is 2, as shown in Fig. 2)
the tensors from 40× 40 to 320× 320. The window size of the
CNNs in E is kept as 3× 3. Further, the LeakyReLU activation
function is utilized. The values of λs, λa, and λr [in (11)], are
0.67, 0.25, and 0.63, respectively [25]. For bs, ba, and br [in
(11)], the values are 0.08, 0.02, and 0.46, respectively [25]. In
order to reduce the computation of the feature correspondence
tensors and segmentation correspondence tensors, a random grid
sampling with spatial dimensionG1 × G2 = 21× 21 is utilized
to compute Fhwmn and Shwmn for estimating the contrastive
correlation loss. AdamW optimizer is used with a learning rate
of 1e− 5 while keeping the epoch at 100 for the unsupervised
networks. The batch size is kept as 16. We utilize the PyTorch
deep learning framework to implement all the networks on the
NVIDIA Tesla V100 GPU. Several assessment metrics, such as
precision, recall, F-1 score, MIoU, and overall accuracy (OA)
were used to assess the quantitative analysis between different
supervised and unsupervised segmentation methods.

C. Segmentation Results

In this section, we report the quantitative (see Table II) and
qualitative (see Fig. 3) evaluation of three unsupervised segmen-
tation architectures: 1) the proposed URS, 2) STEGO [25], and
3) the unsupervised single-scene semantic segmentation for EO
(US4EO) architecture [35], and two supervised semantic seg-
mentation architectures: 1) UNET [9], and 2) TransSounder [20].
We carried out the ablation study on our proposed URS archi-
tecture by utilizing the different combinations of loss functions
(L1,L2,L1 +L2) along with the training strategies based on
different positive descriptors during contrastive training (gb -
gaussian blur and knn).

In terms of quantitative assessment for the unsupervised ar-
chitectures, the proposed URS architecture achieved the highest
MIoU in comparison with the other unsupervised segmentation
architectures. URS improved OA of 17% and MIoU of 23.47%
compared to the STEGO architecture. Further, URS outper-
formed US4EO with an increased OA of 26.68% and MIoU
of 12.08%. Therefore, URS outperformed both STEGO and
US4EO (see Table II). Further, the ablation study showed that
the hybrid unsupervised learning optimization with contrastive
correlation loss (L1) along with the spatial similarity loss (L2),
achieved the highest rate of accuracy (see Table II). Since
negative descriptors were not establishing strong discriminative
embeddings in contrastive framework of STEGO, as expected
the learning was not stable while incorporating the positive and
negative samples of radargrams due to their spatial similarity.
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Fig. 3. Original Radargram (a, a1), Reference Map (GT) (b, b1), and associated prediction maps are highlighted in this figure with (c, c1) - URS, (d, d1) - STEGO,
(e, e1) - US4EO, (f) UNet, and (g) TransSounder. Ambiguous pixels are not considered for accuracy. (a) Radargram. (b) Ground Truth. (c) URS. (d) STEGO.
(e) US4EO. (f) UNet. (g) TransSounder.
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TABLE II
ACCURACY ASSESSMENT AND ABLATION STUDY OF MISCELLANEOUS UNSUPERVISED AND SUPERVISED ARCHITECTURES

TABLE III
CONFUSION MATRIX: URS ARCHITECTURE

TABLE IV
CONFUSION MATRIX: STEGO ARCHITECTURE

The overall contrastive framework was weakened due to the
spatial homogeneity. In contrast to KNN, when considering
Gaussian blur as positive descriptors (during training) for URS
and STEGO, the MIoU improved by 14.49% and 6.28%, re-
spectively. In addition, the parameters in US4EO (≈ 23M ),
are much higher than in URS (≈ 0.6M ). Even though super-
vised architectures achieved the highest OA (TransSounder with
0.9934), the OA of URS is significant when compared with
end-to-end fully supervised settings with a significant amount
of parameters (≈ 125 M for TransSounder and ≈ 31 M for
UNet). While assessing the confusion matrix, URS, STEGO, and
US4EO achieved the similar semantic segmentation accuracy
for ice layers (see Tables III–V). In US4EO, a significant
amount of ice layers samples were misclassified as bedrock
(≈ 0.8251 from Table V). Due to this, the OA of US4EO got
affected significantly. However, US4EO achieved the highest
classification rate of 0.9350 (see Table V) for the noise class.
On the other hand, URS detected the bedrock with highest OA

TABLE V
CONFUSION MATRIX: US4EO

of 0.2609 (see Table III). The low accuracy of the bedrock is
mostly motivated by the distribution of the number of samples
per class being strongly unbalanced (the number of samples
in bedrock classes is much less than in the ice layers and noise
classes). Thus, the unsupervised learning became skewed toward
discriminating the ice layers and noise more accurately than
the bedrock class. Further, the self-supervised ViT-based frozen
backbone incorporated a spatial resolution reduction (ratio of
320/8), that affected the learning mechanisms to extract rich
semantic contexts for the bedrock classes. In terms of compu-
tational training time, the proposed URS, STEGO, and US4EO
took 1.67 h, 1.43 h, and 2.12 h, respectively. On the other hand,
the supervised architectures, such as TransSounder and UNET
took 7.33 h and 3.43 h, respectively during training.

In terms of qualitative assessment, several observations can
be made while comparing the prediction maps (see Fig. 3). The
proposed URS is more effective in discriminating the class-
wise contexts against the STEGO and US4EO architecture [see
Fig. 3(c) and (c1)]. URS preserved the overall sequentiality (top
to bottom) of the distinct subsurface targets in the radargrams.
The ablation study on the proposed URS showed that the prob-
ability amplitudes (embedded in the intermediate features) are
more contextually richer (see Fig. 4) to accurately delineate the
different classes while combining the contrastive correlation loss
with the spatial similarity loss. In STEGO, the bedrock class was
not detected in most of the along track locations and was heavily
misclassified as noise [Fig. 3(d) and (d1)]. STEGO was unable
to identify the boundaries between the ice layers and noise in
the radargrams. For both US4EO and STEGO, it was observed
that the higher the rate of attenuation w.r.t the depth (near the
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Fig. 4. Plots of intermediate feature maps derived from the pseudo-label generations for cluster compactifications during training. (a) and (b) represent the
ablation study on proposed URS with Gaussian blur as positive descriptor and only with Contrastive Correlation Loss - denoted as URS-gb (L1), (c) and (d)
represent the ablation study on the proposed URS method with Gaussian blur as positive descriptor and only with the Spatial Similarity Loss - denoted as URS-gb
(L1), (e) and (f) represent the ablation study on the proposed URS method with Gaussian blur as positive descriptor and combining the Contrastive Correlation
Loss and Spatial Similarity Loss - denoted as URS-gb (L1 +L2). (e) and (f) represent the intermediate feature tensors of US4EO methods.

fuzzy boundaries between ice layers and noise), higher the rate
of misclassification between ice layers and noise [see Fig. 3(d),
(d1), (e), and (e1)]. In contrast, the proposed URS method is
less affected by the attenuation w.r.t the depth. On the other
hand, US4EO lost the sequentiality between the bedrock and ice
layers in the final predictions as shown in Fig. 3(e) and (e1).
The rate of misclassification near fuzzy boundaries (between
ice layers and noise) is often higher in US4EO, where a great

chunk of ice layer pixels were misclassified as bedrock. This
is in agreement with the empirical observations demonstrated
by[44], where they showed that ViTs are robust against HF noise
in contrast to CNNs. Further, the pixels belonging to the ice
layers nearer to the surface (with high intensity regions below
the free space) are misclassified as bedrock in US4EO [Fig. 3(e)
and (e1)]. Qualitatively, URS accurately modeled the local and
global spatial details associated with the ice layers, bedrock,
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and noise, while preserving the sequentiality along the range
directions.

In summary, the proposed URS method with self-supervised
ViT-based contrastive framework demonstrated the potential of
unsupervised semantic segmentation of radargrams. The step-
wise reconstruction of the intermediate feature tensors with
expansive network in URS boosted the overall performance of
the architecture for capturing the discriminative semantic con-
text more accurately and the coupling of contrastive correlation
loss with the spatial similarity loss steered the gradient flow more
effectively in URS. As expected, utilizing self-supervised ViTs
as an encoder and expansive network as a proxy decoder demon-
strated to be an efficient framework for the unsupervised feature
learning in radargrams. Both URS and US4EO captured the
local spatial contexts more accurately than the supervised UNET
architecture, thereby exhibiting the potential of the unsupervised
feature learning framework with the contrastive learning-based
approach.

IV. CONCLUSION

In this article, we constructed a self-supervised vision
transformer-based feature learning framework for the unsuper-
vised semantic segmentation of radar sounder data for the first
time. We explored the ViTs-based unsupervised segmentation
methods in the domain of RS signal segmentation. The proposed
unsupervised deep feature learning framework is a lightweight
computationally efficient method in contrast to the supervised
ViTs for modeling the semantic contexts for the downstream
semantic segmentation tasks. The experiments confirmed that
the proposed unsupervised framework embeds discriminative
pixel embeddings with rich semantic contexts without using any
training from scratch over the unsupervised framework. This
interpretation is aligned with the framework of NLP, where pre-
trained Transformers with large samples are fine-tuned with the
smaller targets in the downstream tasks. Further, the proposed
URS yielded rich semantic information in the intermediate dense
features extracted from the RS signal. Experimental results
on MCoRDS data confirm the capability of this lightweight
unsupervised segmentation methods in the radar sounder data
and show statistical significance while comparing with the heav-
ily parameterized supervised segmentation approaches, such
as TransSounder and UNET. URS shows the potential to be
explored for other EO sensors, and be embedded as a lightweight
unsupervised deep learning framework in the context of AI-
powered planetary robots for in situ explorations, where a-priori
geological knowledge is limited. In future work, we will explore
the physics-driven deep networks to improve the accuracy for
unsupervised semantic segmentation of radar sounder signal
segmentation along with tracing the individual ice layers and
measuring the ice thickness. Further, the possibility to design
large radar sounders labeled dataset will be explored.
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