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Abstract—To overcome the effect of grid mismatch on the su-
perresolution performance, a sparse Bayesian learning-based mul-
tichannel radar forward-looking superresolution imaging scheme
is proposed in this article. In the scheme, a coarse imaging grid
is initialized first, and local grid refinement is performed based
on the preliminary estimation results of the target information.
Then, based on the refined grid, an off-grid superresolution model
considering grid mismatch is established, and the total least squares
method is used to estimate the mismatch error for modifying the
steering matrix in superresolution processing. At last, based on the
modified steering matrix, sparse Bayesian learning algorithm is
iteratively executed to achieve multichannel radar forward-looking
superresolution imaging. Simulated and measured data processing
results are illustrated to verify the effectiveness of the proposed
scheme.

Index Terms—Forward-looking superresolution imaging, grid
mismatch, multichannel radar, sparse Bayesian learning.

I. INTRODUCTION

RADAR forward-looking imaging has important applica-
tions in autonomous landing, autonomous navigation, re-

connaissance guidance, etc. However, traditional monostatic
SAR or Doppler beam sharpening technology has forward-
looking imaging blind areas due to Doppler symmetry ambiguity
and small Doppler variations [1]. Different from traditional
monostatic SAR, bistatic SAR consists of separated transmitting
and receiving platforms [2], and by designing proper geometry
of transceivers, it can achieve high resolution forward-looking
imaging. However, the split transceiver brings complex synchro-
nization and motion compensation problems [3], [4], [5].

Scanning radar with single channel can be adopted to ob-
tain the real beam image of forward-looking area, and many
superresolution algorithms have been developed to improve
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the azimuth resolution in recent years [6], [7], [8], [9], [10],
[11], [12], [13]. However, due to the inherent ill-posed nature
of superresolution, these algorithms are sensitive to the noise,
and the superresolution performance is always limited by the
signal-to-noise ratio (SNR) of the real-beam data [14].

By placing multiple receiving channels on a single platform,
multichannel radar can form an aperture in azimuth and has the
potential of forward-looking imaging [15], [16], [17], [18], [19].
However, its azimuth resolution is limited by the restriction of
the platform size. Besides, multichannel forward-looking SAR
imaging schemes have been developed in [20], [21], [22], and
[23], although the resolution improvement can be achieved by
relying on long accumulation time for areas far from the plat-
form’s motion direction, the azimuth resolution for the adjacent
areas of the platform’s motion direction are still limited by the
small change in viewing angle.

In recent years, many algorithms have been developed to
realize superresolution imaging for multichannel radar. For ex-
ample, multiple signal classification algorithm is used to achieve
superresolution imaging [24], [25], but it needs to know the
number of sources in advance due to its superresolution mecha-
nism. The compressed sensing-based methods [26], [27], [28],
[29] and iterative adaptive approach [30] are also applied to
forward-looking superresolution imaging. In the procedure of
these algorithms, the imaging scene needs to be discretized to
grids and target-scattering centers are usually assumed to be
located on the grid, while the target will inevitably fall off the
predefined grid, then grid mismatch error yields and it will lead
to deteriorated superresolution performance or even failure in
recovering the target [31].

Sparse Bayesian learning (SBL) algorithm is another method
to realize superresolution [32]. It does not need the selection
of regularized parameters and usually can exhibit better perfor-
mance than other superresolution methods [33] and [34]. For
example, the forward-looking superresolution imaging based
on SBL is presented in [35] and [36], but the issue of grid mis-
match was not considered. An off-grid sparse Bayesian inference
(OGSBI) method, where the first-order Taylor expansion is ex-
ploited on the discrete grid is developed in [37]. Nevertheless, its
performance will be affected by the initial grid interval because
coarser grids will lead to larger errors of Taylor expansion, while
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denser grids will increase the computation complexity. Another
SBL-based method considering grid mismatch is designed in
[38], where grid mismatch error is considered to follow uniform
distribution and is equivalent to noise, and then SBL algorithm
is used for the solution. However, its performance will deteri-
orate dramatically if the grid mismatch error is not uniformly
distributed.

Although the above methods can overcome the effect of
off-grid error to some extent, their accuracy of focusing po-
sition is usually poor due to the coarse grid. To solve this
problem, a grid refinement method is proposed in [39], which
combines the root-SBL and grid fission process to make the
grids nonuniformly evolve from coarse to dense, but the off-grid
error cannot be completely eliminated [40]. Although dense
grid can reduce the effect of grid mismatch in theory, it often
brings about the problem of increased computation cost. Another
way to solve grid mismatch is the gridless method, i.e., the
atomic norm minimization (ANM) approach [41], [42], [43],
which yields an infinite dictionary of continuous atoms based
on Vandermonde decomposition of Toeplitz matrices. Generally,
the ANM method needs to solve a semidefinite program problem
with high complexity [44].

In this article, a SBL-based multichannel radar forward-
looking superresolution imaging scheme is proposed to over-
come the effect of grid mismatch on the superresolution perfor-
mance. In the scheme, a coarse imaging grid is initialized first,
and local grid refinement is performed based on the preliminary
estimation results of the target information. Then, based on the
refined grid, an off-grid superresolution model considering grid
mismatch is established, and the total least squares method is
used to estimate the mismatch error for modifying the steering
matrix in superresolution processing. At last, based on the
modified steering matrix, SBL algorithm is iteratively executed
to achieve multichannel radar forward-looking superresolution
imaging.

The rest of this article is organized as follows. Section II
gives the imaging model, Section III presents the principle of
SBL, Section IV illustrates the principle of the proposed scheme,
Section V gives the simulated and measured data experiments to
illustrate the effectiveness of the proposed scheme, and finally,
Section VI concludes this article.

II. SINGLE SNAPSHOT IMAGING MODEL

The geometric model of multichannel radar forward-looking
imaging with the single snapshot data is shown in Fig. 1, where
the platform flies along the x direction at v with an altitude of h
above the ground. The multichannel radar with one transmitting
antenna and multiple receiving antennas, where the transmitting
antenna is located in the middle with red dot, and the multiple
receiving antennas are uniformly distributed along the y-axis
with y = 0 as the center, and ym is the coordinate of the mth
receiving antenna.

During the flight, the antenna Tx transmits the linear fre-
quency modulation (LFM) signal at a given pulse repeating fre-
quency (PRF), each antenna receives echoes simultaneously, and
the noise-free single snapshot echo for point target P (x0, y0, 0)

Fig. 1. Geometric model of multichannel radar forward-looking imaging.

can be expressed as

Sr (ym, tr) = β0 · exp
[
jπKr

(
tr − Rtx +Rrx

c

)2
]

· exp
[
−j

2π (Rtx +Rrx)

λ

]
, m = 1, 2, ...,M (1)

where β0 is a constant, M is the number of channels, Kr is the
modulated rate of the LFM signal, c is the speed of light, λ is
the wavelength of the transmitted signal, tr is the fast time, Rtx

is the range from the transmitting antenna to the target, and Rrx

denotes the range from the receiving antenna to the target. The
coordinates of the transmitting antenna and receiving antenna
are P (0, 0, h) and P (0, ym, h), respectively, and then the ranges
from them to point target P (x0, y0, 0) can be expressed as⎧⎨

⎩
Rtx =

√
x2
0 + y20 + h2

Rrx =
√

x2
0 + (ym − y0)

2 + h2.
(2)

Generally, the issue of crossing range bins can be ignored due
to the small size of the array, and the noise-free echo in one
range bin can be expressed as

Sr(ym) = β0 · exp
[
−j

2π(Rtx +Rrx)

λ

]
. (3)

According to (3) and the knowledge of array signal process-
ing, when N narrow-band signals are incident on the spatial
array, the received signal of the mth channel can be denoted as

Srm =
N∑

k=1

(
e−j2πf0τmkβk

)
+ nm m = 1, 2, ...,M (4)

where βk is the scattering coefficient of the kth target, nm

represents the noise of the mth channel, τmk represents the
time delay between the kth target, and the mth channel, and
f0 represents the carrier frequency of the transmitted signal.
Hence, the echo of one range bin for different channels can be
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written as follows:⎡
⎢⎢⎢⎢⎢⎣

Sr1

Sr2

...

SrM

⎤
⎥⎥⎥⎥⎥⎦=
⎡
⎢⎢⎢⎢⎢⎣

e−j2πf0τ11 · · · e−j2πf0τ1N

e−j2πf0τ21 · · · e−j2πf0τ2N

...
...

...

e−j2πf0τM1 · · · e−j2πf0τMN

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

β1

β2

...

βN

⎤
⎥⎥⎥⎥⎥⎦+
⎡
⎢⎢⎢⎢⎢⎣

n1

n2

...

nM

⎤
⎥⎥⎥⎥⎥⎦

(5)
and (5) can be written as

SrM×1 = SM×N · βN×1 +NM×1 (6)

where SM×N is the steering matrix constructed by τmk and
NM×1 is the noise vector.

Assuming the coordinates of transmitting antenna and receiv-
ing antenna are P1 and P2, respectively, and the coordinate of
row m and column k in the scene is P (xm, yk, 0), then the delay
time τmk can be expressed as

τmk =

∥∥∥−−⇀P1P
∥∥∥
2
+
∥∥∥−−⇀P2P

∥∥∥
2

c
(7)

where ‖ · ‖2 represents L2 norm,
−−⇀
P1P and

−−⇀
P2P represent the

vectors fromP toP1 andP2, respectively. By dividing the target
scene, the coordinates of P (xm, yk, 0) can be expressed as⎧⎨

⎩
xm = mLA

NA
, yk = kLR

NR
+ dr

m = −NA

2 ∼ (NA−1)
2 , k = −NR

2 ∼ (NR−1)
2

(8)

where LA is the azimuth length of the imaging scene, LR is the
range length of the imaging scene, NA is the number of grids
in azimuth, NR is the number of range sampling points, and dr
is the projection length from the platform to the center of the
scene.

After calculating τmk, the steering matrix SM×N can be
constructed. Then, the imaging process can be formulated as
a problem of recovering sparse signals β.

III. SPARSE BAYESIAN LEARNING

In the SBL framework, the prior distribution model of each
variable is established first, then the approximate posterior dis-
tribution of the reconstructed signal can be derived based on
Bayesian inference. Finally, the scattering coefficient estimation
results can be obtained according to the mean value of the
posterior distribution.

A. Prior Distribution Models

Assuming the noise N is complex Gaussian white noise, then
it can be expressed as

p (N) = CN ( 0, α−1
0 I
)

(9)

where α0 = σ−2 denotes the noise precision, σ2 is the noise
variance, I is the identity matrix, and CN (μ,Σ) denotes a
complex Gaussian distribution with mean μ and covariance Σ.

Since the noise precisionα0 is unknown, a Gamma hyperprior
is usually assumed, which is a conjugate prior of the Gaussian

distribution

p(α0) = Γ(α0|a, b) (10)

where Γ(α0|a, b) = [Γ(a)]−1baαa−1
0 exp{−bα0} and Γ(a) =∫∞

0 ua−1e−udu. As in [33] and [37], a, b are set as small values
that approach 0 to obtain a broad hyperprior.

Similar to the noise prior distribution, the prior distribution of
scattering coefficient is also modeled as Gaussian distribution
with zero mean

p (β|α) =

N∏
n=1

CN (βn | 0, αn) (11)

where α = [α1, ..., αN ] is the variance vector with
αn(n = 1, ..., N) being the variance of βn, and it is also
modeled as the Gamma distribution

p(α) =
N∏

n=1

Γ (αn | 1, ρ) (12)

where ρ is a small positive value. According to the linear model
of (6), the distribution of received signal is

p (Sr |β,α, α0) = CN (Sβ,α−1
0 I
)
. (13)

Then, the joint probability density function (PDF) can be
obtained according to (10)–(13)

p(β,Sr, α0,α) = p(Sr|β,α, α0)p(β|α)p(α)p(α0). (14)

Finally, with the prior distribution of each variable and joint
probability density function, the Bayesian inference can be
performed in the next section.

B. Bayesian Inference

According to (11)–(14) and Bayesian’s theorem, the posterior
distribution of β can be deduced as [45]

p (β|Sr,α, α0) = CN (μ,Σ)

=
1

πN |Σ| exp
{−(β − μ)HΣ−1(β − μ)

}
(15)

where the mean μ and covariance Σ of the posterior distribution
are given by

μ = α0ΣSHSr (16)

Σ =
(
α0S

HS+Δ−1
)−1

(17)

where Δ = diag(α) and (·)H denotes the conjugate transpose
operator. Then, the estimation of β can be obtained according
to the mean value μ.

According to (16) and (17), the computation of μ needs
the prior information of hyperparameters α0 and α. Here,
they are estimated with the Bayesian evidence approximation
method [46], which obtains the hyperparameter by maximiz-
ing the marginal likelihood, or equivalently its logarithm. In
the evidence procedure, the goal is to maximize p(α0,α|Sr),
which is equivalent to maximizing the joint PDF p(Sr, α0,α) =
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p(α0,α|Sr)p(Sr), because p(Sr) is independent of the hy-
perparameters. Then, according to (14) and treating β as a
hidden variable, an expectation-maximization (EM) algorithm
[47] is adopted, which is an iterative procedure that performs
two main steps: expectation (E) and maximization (M). The
E-step computes the log likelihood of the joint distribution in
(14) first, and then it takes the expectation of the log likelihood
with the hidden variable β evaluated using current parameters.
The M-step updates the parameters by maximizing this expected
log likelihood. Then the parameters α0 and α can be estimated
by maximizingE{log p(β,Sr, α0,α)}, whereE{·}denotes the
expectation operator.

For α, ignoring terms in the logarithm independent thereof,
it is equivalent to maximize function E[log p(β|α)p(α)]. By
taking the partial derivative of the function with respect to α,
the α can be updated as

α =
−1 +

√
1 + 4ρΞ

2ρ
(18)

where Ξ ≈ μμH +Σ.
For α0, ignoring terms in the logarithm independent thereof,

it is equivalent to maximize function E[log p(Sr|β, α0)p(α0)].
With the similar procedure above, the α0 can be updated as

α0 =
M + (a− 1)

b+ ‖Sr− Sμ‖22 + tr
(
SΣSH

) (19)

where tr(·) denotes the trace of the matrix.
With the estimated hyperparameters α0 and α, μ can be

computed according to (16) and (17), which is also the esti-
mation result of β, and it can be determined when the following
condition in (20) is met∥∥∥∥α−αold

αold

∥∥∥∥
2

< ε (20)

where ε denotes a small constant and αold denotes the updated
value of α in the last iteration.

In principle, with the discretized model in (6), the traditional
SBL can be directly used for superresolution imaging, but its
performance is inevitably affected by grid mismatch. Although
dense grids can reduce the effect of grid mismatch, the compu-
tational complexity will increase greatly.

IV. PROPOSED SCHEME

In order to achieve the highest possible imaging accuracy
with minimal increased computational complexity, the proposed
scheme will be illustrated in detail, and it mainly consists of the
part of local grid refinement, estimation of grid mismatch error
and SBL iterations. At last, the detailed flowchart is illustrated.

A. Local Grid Refinement

Grid refinement can reduce grid mismatch error and improve
estimation accuracy in principle. Here, the local grid refinement
process mainly contains two steps: selection of the grid points
that need to be refined and insertion of new grid points around
selected position.

1) Selection of the Grid Points That Need to be Refined:
Before selecting grid points that need to be refined, the target
positions should be estimated roughly with one iteration in SBL
as shown in (16) and (17).

For an array with M elements, the maximum number of signals
that can be resolved is M-1 using DOA estimation methods [34].
Hence, the same constraint is used here. In each iteration of grid
refinement process, the local extremums are found out first, and
then they are sorted and the grids corresponding to the first M-1
larger extremums will be selected as candidates for refining.

2) Insertion of New Grid Points Around Selected Position:
Our strategy is to insert a new grid point on one side of each
selected grid point, where the side selection and insertion rules
are as follows. Assume that the left and right grid points next
to selected grid θim are θlim and θrim in one iteration, and then
the power P l

im
and P r

im
of them can be obtained, respectively.

The new grid points θ′im will be inserted one by one according
to following rules:

θ′im

=

{
θim− 1

2 (θim−θlim), if P l
im

>P r
im
&amp; (θim−θlim)≥Δv2

θim+ 1
2 (θ

r
im

−θim), if P l
im

≤P r
im
&amp; (θrim−θim)≥Δv2

(21)

where Δv2 is the final grid interval, and it should avoid deteri-
orating the performance according to the RIP condition [48].

After inserting a new grid point, the steering matrix S and the
hyperparameter α should be updated for the next iteration. Ac-
cording to (12), the distributions before and after grid refinement
at θim can be expressed as follows:⎧⎨
⎩

p(α) = Γ
(
αold
im

| 1, ρ) = e−ραold
im

p(α) = Γ (αim | 1, ρ) Γ (α′
im

| 1, ρ) = e−ρ(αim+α′
im).

(22)
To keep the distribution of α invariant after grid refining, we

have e−ραold
im = e−ρ(αim+α′

im
), which is equivalent to αold

im
=

αim + α′
im

. Since αold
im

is estimated in the last iteration by (18),
so αim + α′

im
can be determined. Without loss of generality, it

is set as

αim = α′
im

=
1

2
αold
im
. (23)

Generally, the local grid refinement can be realized via several
iterations. Assuming that the initial grid interval isΔv1, then the
number of iterations Imax can be obtained as

Imax =

⌈
log2

(
Δv1
Δv2

)⌉
(24)

where 
·� denotes the integer up operation.

B. Estimation of Grid Mismatch Error

Although the off-grid error can be reduced after grid refine-
ment, there are inevitably targets located off the grids since the
grid cannot be infinitely small. In this part, the imaging model
considering grid mismatch is built first, then the grid mismatch
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error is estimated with the total least squares method to modify
the steering matrix.

1) Imaging Model Considering Grid Mismatch: Since the
time delay τmk is calculated according to the grid nearest to the
target, the error inevitably occurs in this process, and it can be
represented as

τ̂mk = τmk +
Δd

c
(25)

whereΔd represents the equivalent wave path difference caused
by grid mismatch, and c is the speed of light.

According to (6), the impact of grid mismatch error on imag-
ing is mainly reflected in the steering matrix S. Hence, the error
matrix E is defined to represent the error between the actual
steering matrix Ŝ and the theoretical steering matrix S, and
E = Ŝ− S. Hence, the imaging model can be expressed as

SrM×1 = (SM×N +E) · βN×1 +NM×1

= Ŝ · β +N (26)

where Ŝ = S+E is the actual steering matrix.
2) Estimation of Error Matrix: Considering that the total

least-squares (TLS) method [49] do not need to know the distri-
bution of the error in advance, it is used to estimate the mismatch
error here.

The TLS method aims to find the optimal solution by min-
imizing the sum of the squared errors. According to (26), the
optimization problem can be represented as⎧⎨

⎩
{β̃, Ẽ, Ñ} = arg min

β,E,N
‖E‖2F + ‖N‖22

s.t. Sr = (S+E)β +N
(27)

where ‖ · ‖F represents Frobenius norm.
In order to obtain the sparse solution for the error matrix and

reconstructed signal, the regularization method can be used, and
(27) can be transformed into the following form [50]:⎧⎨
⎩
{β̃, Ẽ, Ñ} = arg min

β,E,N
‖N‖22 + μ‖β‖1 + λ‖E‖2F

s.t. Sr = (S+E)β +N
(28)

whereμ and λ are regularization parameters and‖ · ‖1 represents
L1 norm.

By substituting the constraint into the cost function in (28), N
can be eliminated, and then an unconstrained function containing
target scattering coefficient and error matrix can be obtained:

{β̃, Ẽ} = argmin
β,E

‖[Sr− (S+E)β]‖22 + μ‖β‖1 + λ‖E‖2F .
(29)

With mathematical optimization theory, one solution of (29)
is alternating descent suboptimal algorithm and it can be de-
composed into two subproblems [50], [51]. Given E, the cost
function has the form of the Lasso problem [52] that allows us to
obtain β easily; and given β, it reduces to a quadratic problem
that admits a closed-form solution of E. Since the alternating
descent algorithm is a special case of the block coordinate
descent method, and according to the theorem 5.1 of the block

TABLE I
PSEUDOCODE OF THE PROPOSED SCHEME

coordinate descent method in [53], it is straightforward that E
and β will converge to a coordinate minimum point of the cost.

Specifically, the coarse β can be obtained by solving the
Lasso-like convex problem using SBL algorithm with the ini-
tialized E, and with the coarse β, E can be obtained by solving
the following problem

E = argmin
E

‖[Sr− (S+E)β]‖22 + λ‖E‖2F . (30)

By solving the first-order derivative ofE and setting the result
equal to zero, the solution to the quadratic problem in (30) is
obtained as

E = (λ + ‖β‖2F )−1[Sr− Sβ]βH . (31)

Besides, the regularization parameter λ can be determined
adaptively as [54]

λ =
‖Sr− Sβ‖22

‖E‖22
. (32)

Finally, with the iteration of SBL algorithm, the error matrix
can be estimated according to (31) and (32), and then the steering
matrix can be modified according to (26).

In principle, the scattering coefficient β can also be estimated
with the TLS method here, but its performance is usually poor
due to the accuracy restriction, and it is sensitive to noise.
However, the estimated error here can be used as the prior for
superresolution, and it will be updated with the iterations of
scattering coefficient estimation.

C. Flowchart of Proposed Scheme

With the obtained nonuniform grids, the theoretical steering
matrix can be obtained, and it would be modified according to the
estimated off-grid error. At last, the target scattering coefficient
can be reconstructed using the SBL. The detailed flowchart and
pseudocode of the proposed scheme are shown in Fig. 2 and
Table I, respectively.
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Fig. 2. Flowchart of the proposed scheme.

TABLE II
SIMULATION PARAMETERS

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, several simulation and measured data process-
ing results will be presented to illustrate the performance of the
proposed scheme.

A. Simulation Results for Point Targets

To verify the effectiveness of the proposed scheme, the
simulations for off-grid point targets are illustrated, and its
performance is compared with that of back projection (BP)
algorithm and the traditional SBL algorithm. The simulation
parameters are shown in Table II and the point targets scene is
shown in Fig. 3. In addition, the signal-to-noise ratio (SNR) of
the range-compressed echo is 10 dB. Note that for algorithms
involving grid refinement process, the grid initialization interval
is θ/(M − 1) [39], where θ is the azimuth angle coverage range
of the scene, and the minimal grid interval is the same as other
algorithms.

Fig. 3. Point targets distribution.

Fig. 4. Imaging results of point targets. (a) Range-compressed echo. (b) BP.
(c) Traditional SBL. (d) Proposed scheme.

The point targets in column 1 and column 3 do not locate
on the preset grid in azimuth, and the targets in column 2 are
on the grid. The simulation results are shown in Fig. 4, where
(a) is the range-compressed echo data, (b) denotes the imaging
result of BP algorithm, (c) shows the imaging result of the
traditional SBL algorithm, and (d) gives the imaging result with
proposed scheme. It can been seen that the point targets in the
same range bin cannot be separated for the BP algorithms due
to the poor azimuth resolution determined by the small array
size, and the imaging result for off-grid targets is also poor
with the traditional SBL, while the targets can be separated
clearly with the proposed scheme, which means that it has a good
superresolution performance whatever the targets are on-grid or
off-grid.

B. Simulation Results for Surface Targets

In this part, the simulations for surface targets are illustrated
to verify the effectiveness of the proposed scheme. The scene is
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Fig. 5. Surface targets scene.

Fig. 6. Imaging results of point targets of surface targets. (a) Range-
compressed echo. (b) BP. (c) Traditional SBL algorithm. (d) Proposed scheme.

shown in Fig. 5 and the SNR of range compressed echo is 20
dB, the simulation results are shown in Fig. 6, where (a) is the
range-compressed echo data, (b) presents the imaging result of
BP algorithm, (c) gives the result of traditional SBL algorithm,
and (d) illustrates the result of the proposed scheme.

Similar with the simulation results of point targets, the adja-
cent targets shown in the rectangular box can not be separated
in azimuth for the result of BP algorithm. Although most of the
targets can be restored by traditional SBL algorithm, but there
are still targets with poor imaging results due to grid mismatch,
just as shown in the rectangular box. However, the proposed
scheme can better restore the original scene for all targets.

C. Robustness Evaluation of the Proposed Scheme

In order to evaluate the robustness of the proposed scheme,
the imaging results under different SNRs are presented, and

Fig. 7. Imaging results under different SNRs. (a) Proposed scheme with
SNR = 50 dB. (b) Traditional SBL with SNR = 50 dB. (c) Proposed scheme
with SNR = 20 dB. (d) The traditional SBL with SNR = 20 dB. (e) Proposed
scheme with SNR= 10 dB. (f) Traditional SBL with SNR= 10 dB. (g) Proposed
scheme with SNR = 0 dB. (h) Traditional SBL with SNR = 0 dB.

they are compared with the traditional SBL algorithm, just as
shown in Fig. 7. It can be seen that with the decrease of SNR,
the performance of both algorithms shows a deteriorating trend,
but it is evident that the proposed scheme performs better than
traditional SBL algorithm.

In order to quantitatively compare the quality of different
results, image entropy is introduced to evaluate the focusing
quality [55], and the image entropy of image I can be computed
as

Entropy(I) =
MI∑
i

NI∑
j

Pij logPij (33)
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TABLE III
ESTIMATED VALUES OF DIFFERENT METHODS FOR DIFFERENT TARGETS

Fig. 8. Image entropy under various SNRs.

where MI and NI are the dimensions of I, Pij is the probability
of pixel values, and a well-focused image usually has smaller
entropy than a blurred image.

Fig. 8 shows the image entropy of the imaging results of the
traditional SBL and the proposed scheme under various SNRs.
It can be seen that the proposed scheme has a smaller image
entropy and its variation with SNRs is not significant, which
can illustrate its robustness further.

D. Comparisons Between Different Algorithms Considering
Grid Mismatch

Since the impact of off-grid can be alleviated with dense
grids, here, the traditional SBL with dense grid and different
algorithms considering grid mismatch are compared. With the
point targets scene in Fig. 3, and the range-compressed echo
SNR of 20 dB, the results are illustrated in Fig. 9, where (a)
presents the traditional SBL result, (b) is the imaging result of the
OGSBI algorithm [37], (c) shows the SBL-based result which
models the off-grid error as uniform distribution (UDSBL) [38],
(d) demonstrates the result of AGRSBL algorithm [40], (e)
illustrates the result of ANM, and (f) gives the result of the
proposed scheme.

According to the simulation results, these methods have good
superresolution performances for on-grid point targets in column
2, while the performances for off-grid targets are different. The
results of OGSBI and UDSBL algorithm are both poor for
off-grid points which occupy two grid cells in azimuth. The
result of AGRSBL algorithm cannot achieve good performance

Fig. 9. Imaging results of different methods consider grid mismatch.
(a) Traditional SBL algorithm. (b) OGSBI algorithm. (c) The UDSBL algorithm.
(d) AGRSBL algorithm. (e) ANM algorithm. (f) Proposed scheme.

for all the off-grid targets, because grid refinement cannot be
carried out endlessly, and the impact of grid mismatch errors
can only be reduced partially. The result of ANM algorithm can
achieve good performance for all targets because it is essen-
tially a gridless algorithm. The proposed scheme can achieve
good superresolution performance close to that of ANM, which
illustrates its superresolution ability under grid mismatch.

In order to more intuitively compare the performance of
different off-grid methods based on SBL, the profiles of the
same range bin are shown in Fig. 10, and the specific estimated
values are illustrated in Table III. It can be seen that these
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Fig. 10. Profiles of different algorithms.

TABLE IV
RUNNING TIME OF DIFFERENT ALGORITHMS

algorithms have similar performance for the on-grid target in
the middle, while there are differences for off-grid targets. It
is shown in Fig. 10 that the results of the OGSBI and UDSBL
algorithm have wide main lobes and they take up about two
grid cells for off-grid targets, but the results of the AGRSBL
algorithm and proposed scheme have narrower main lobes due
to grid refinement. Besides, as shown in Table III, although the
estimated values of these algorithms all deviate from the true
values for off-grid targets, the estimated values of the proposed
algorithm are closer to the true values, which can demonstrate
its superresolution performance intuitively.

Besides, the root-mean-square-error (RMSE) is used to fur-
ther evaluate the precision of recovered positions, which is
defined as

RMSE =

√√√√ 1

MK

M∑
m=1

K∑
k=1

(
θ̂
(m)
k − θ

(m)
k

)2
(34)

where M denotes the number of independent simulations, K
is the number of targets, θ̂(m)

k and θ
(m)
k are the kth recovered

position and kth true position in azimuth in the mth simula-
tion, respectively. Here, with M = 10, the RMSEs of different
algorithms are calculated and summarized in Table IV.

Moreover, the computational times of the different methods
are summarized in Table IV. Note that all the simulations are
implemented by MATLAB 2018b on a computer equipped with
Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz 3.20 GHz×2. It
can be seen that the proposed scheme has higher accuracy similar
to gridless ANM method, but its computational complexity is

TABLE V
EXPERIMENTAL PARAMETERS

Fig. 11. Real scene of experiment. (a) Real scene 1. (b) Real scene 2.

much smaller, which is basically equivalent to the AGRSBL
method.

E. Measured Data Processing

In order to further illustrate the performance of the proposed
scheme, the measured data experiments are presented here. In
the experiment, TI’s millimeter-wave radar is adopted to simu-
late the multichannel echo data, and the specific experimental
parameters are shown in Table V. In the first experiment, there
are two angle reflectors in the scene and they are located at the
same range bin, just as shown in Fig. 11(a). In the second ex-
periment, another experiment is done where the angle reflectors
are in different range bins, and the imaging scene is shown in
Fig. 11(b).

The imaging results with different methods for two real scenes
are shown in Figs. 12 and 13, where (a) denotes the result of
range-compressed echo, (b) is the result of BP algorithm, (c)
shows the result of traditional SBL, (d) presents the result of
OGSBI algorithm, (e) shows the result of UDSBL algorithm, (f)
demonstrates the result of AGRSBL algorithm, (g) illustrates
the result of ANM, and (h) gives the result of the proposed
scheme. It can be seen that the targets cannot be separated with
BP algorithm due to its poor resolution in azimuth. The result
of traditional SBL is affected by off-grid error, resulting in that
the targets often occupy two cells in azimuth. The results of
OGSBI and UDSBL algorithm are improved to a certain extent
compared with traditional SBL, they are still influenced by
off-grid error. The result of AGRSBL algorithm cannot achieve
good performance for all the targets, because the impact of grid
mismatch errors can only be reduced partially. The result of
ANM can achieve a good performance in most cases because
it is essentially a gridless algorithm, and the proposed scheme
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Fig. 12. Imaging results of real scene 1. (a) Range-compressed echo. (b) BP.
(c) Traditional SBL algorithm. (d) OGSBI algorithm. (e) UDSBL algorithm.
(f) AGRSBL algorithm. (g) ANM algorithm. (h) Proposed scheme.

can achieve good superresolution performance close to that of
ANM.

VI. CONCLUSION

In this article, a SBL-based multichannel radar forward-
looking superresolution imaging scheme considering grid mis-
match is proposed. In the scheme, the effect of grid mismatch
on superresolution performance of SBL algorithm is over-
come by local grid refinement and estimating the mismatch
error beforehand with TLS method. Simulated and measured

Fig. 13. Imaging results of real scene 2. (a) Range-compressed echo. (b) BP.
(c) Traditional SBL algorithm. (d) OGSBI algorithm. (e) UDSBL algorithm.
(f) AGRSBL algorithm. (g) ANM algorithm. (h) Proposed scheme.

data experiments validate the effectiveness of the proposed
scheme. Compared with the results of BP, the result of the
proposed scheme owns superresolution imaging performance.
Compared with the mentioned SBL algorithm considering grid
mismatch, the proposed algorithm achieve the highest possible
imaging accuracy with minimal increased computational com-
plexity. At last, the proposed scheme can be combined with
synthetic aperture processing to achieve better forward-looking
imaging performance when time dimension data are available
[56], [57].
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