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Abstract—Deep learning methods are widely used in building in-
formation extraction from remote sensing images (RSIs). However,
this task still faces great challenges. First, it is difficult to perform
accurate boundary localization due to the complex contextual rela-
tionship of the building boundary area. Second, the heterogeneity
caused by different materials on building tops, as well as envi-
ronmental factors such as climate and vegetation, complicates the
extraction of top information. Finally, given the complexity of the
RSIs, the accuracy and generalization of the existing method still
need to be further enhanced. This study introduces the boundary
enhancement and multiscale refinement fusion network to over-
come these challenges. The boundary-aware self-attention module
is initially proposed to refine the network’s boundary detection
capabilities. It applies the distance transform algorithm across both
channel and spatial dimensions, reducing boundary fluctuation and
enhancing the accuracy of building boundary extraction. Subse-
quently, we present the multiscale refined fusion module to resolve
discontinuities within buildings caused by rooftop obstructions.
This module effectively merges high and low-level features, over-
coming information gaps through the strategic integration of multi-
scale data. To demonstrate the efficacy of our methodology, we con-
ducted comprehensive experiments and analyses using the WHU
Building Dataset and the Inria Aerial Image Labeling Dataset, both
known for their complexity. Our method surpassed 16 contempo-
rary state-of-the-art techniques, achieving IoU scores of 91.15%
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and 79.52% for each dataset, respectively, marking the highest
accuracy levels reported. Furthermore, in-depth discussions on
efficiency, generalizability, and ablation studies emphasized our
method’s robustness and adaptability.

Index Terms—Boundary enhancement, building extraction,
deep learning, multiscale refinement fusion.

I. INTRODUCTION

BUILDING extraction from remote sensing images (RSIs)
is of great significance, offering widespread applications,

including urban planning analysis, population estimation, and
the protection of resources and the environment [1], [2], Despite
remote sensing technology’s substantial potential for building
extraction, challenges persist due to the inherent diversity of
building structures and the variability in color, texture, and
spectral features associated with different building materials [3].
These challenges necessitate ongoing technological innovation
and enhancement.

Prior to the widespread adoption of machine learning tech-
nologies, extraction of buildings using traditional digital im-
age processing techniques depended on manually predefined
features or models. Researchers developed various methods,
including image segmentation and edge detection, to separate
buildings from their backgrounds by leveraging building edge
information [4], [5]. Additionally, some approaches utilized the
spectral and texture information of image pixels, analyzing each
pixel’s characteristics in remote sensing imagery to identify
buildings [6], [7], [8]. However, these methods required ex-
tensive data volumes, hindering quick and convenient building
information extraction. Generally, traditional techniques were
subject to human subjectivity and data complexity, lacking in
generalization capacity and computational efficiency to meet
demands effectively.

Deep learning has made significant advances in computer
vision in recent decades, garnering widespread interest among
researchers [9], [10], [11], [12]. These models excel at au-
tonomously learning and extracting complex features, thereby
substantially enhancing performance in building identification
and extraction tasks [13], [14]. Specifically, fully convolutional
networks (FCNs) [15] have been widely used in processing
RSIs. Presently, convolutional neural network (CNN) architec-
tures such as ResNet [16], Faster R-CNN [17], and ViT [18]
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are extensively utilized in remote sensing. These models have
emerged as fundamental technologies for the classification and
recognition of RSIs, effectively overcoming the constraints of
traditional approaches by accurately identifying and classifying
surface features [19], [20], [21], [22].

In the field of building extraction, many scholars have utilized
the advantages of CNNs to propose new convolutional networks
for achieving better extraction results [23], [24]. Specifically, the
effect of building boundary extraction significantly impacts the
overall extraction performance, leading numerous researchers
to improve building segmentation accuracy through boundary
information. Some research approaches attempt to simplify
models’ ability to capture boundary features by enhancing the
expression of boundary information [25], [26], [27]. Xu et al.
[28] introduced the MDBES-Net, which lowers the difficulty
of extracting building boundary features, Although this method
simplifies the capture of boundary information, it also results
in a more complex network structure and a higher computa-
tional load. Other research approaches attempt to extract build-
ing boundary information by capturing boundary features at
different resolutions [29], [30]. Lin et al. [31] addressed the
insufficient feature extraction and poor model generalization of
traditional methods by introducing the BEARNet, This approach
enhances focus on boundary information; however, it does not
resolve the issue of weakened boundary localization capabilities,
which are diminished by the complex background information
surrounding the boundaries, thereby reducing the effectiveness
of boundary extraction.

Beyond boundary extraction, the integrity of building tops is
another core focus in the field. Some studies address this by
enhancing the overall description of building tops to capture
more global information, though this often comes at the expense
of local detail in RSIs [32], [33]. Subsequent researchers, such as
Chen et al. [34], have attempted to prioritize local detail features
in neural network models. Although this approach effectively
utilizes different levels of feature layer, it overlooks the potential
benefits of feature fusion across different scales. Later methods,
including the GCCINet proposed by Feng et al. [35], employ
continuous atrous convolutions and multiscale fusion to address
issues such as missing small buildings and irregularities in
building appearance extraction. This method enhances boundary
extraction accuracy while mitigating the global relevance among
distant pixels. Despite the improvements, relying solely on
simple linear fusion of features with different resolutions can
result in distortion or loss of features during the fusion process.
This method struggles to address occlusions or heterogeneity at
the top of buildings, often leading to incomplete extraction of
rooftop details.

In complex scenes, building boundaries can cause confound-
ing in the surrounding environment. As depicted in Fig. 1,
the information on buildings is remarkably similar to that of
roads, leading to unclear boundary information. Existing detec-
tion methods scatter attention around the building boundaries,
causing fluctuations within a certain range. This results in weak
capabilities for precise boundary localization and, consequently,
an inability to accurately extract boundary information. Addi-
tionally, regarding integrity, current methods typically employ

Fig. 1. (a) Part covered in blue is the perimeter of the building’s boundary,
within which the position of the boundary fluctuates (b) contraction of the range
of boundary fluctuations of a building toward the boundary line.

multiscale fusion techniques to address issues related to the
completeness of building tops. However, challenges such as
shadows obscuring the tops of buildings and the heterogeneity of
those tops make it difficult for multiscale approaches to prevent
issues such as internal holes or incomplete extractions. There is
an insufficient focus on context-sensitive information, and the
integration of feature information lacks refinement, as illustrated
in Fig. 2. This often results in the presence of hole information
at the tops of buildings.

To address the aforementioned issues, we propose the bound-
ary enhancement and multiscale refinement fusion network
(BEMRF-Net). This network employs the distance transform
method to the network to concentrate more precisely on bound-
ary localization. It utilizes multiscale information for refined
fusion to enhance the network’s capability to extract continuous
information on building tops. The main contributions of this
article are as follows.

1) BEMRF-Net is designed to address the challenge of how
to efficiently extract buildings from RSIs. The method fo-
cuses on precise boundary localization of buildings and the
extraction of internal contextual information. Extensive
experiments and analyses were conducted on two datasets,
comparing them with 16 state-of-the-art (SOTA) models
and conducting a variety of challenging experiments to
demonstrate the method’s effectiveness and robustness.

2) The boundary-aware self-attention module (BSA) is pro-
posed to solve the problem of weak positioning capabili-
ties for building boundaries. This method uses the distance
transform technique to direct the network model focus on
the boundary messages, thereby narrowing the fluctuation
range for locating building boundaries. Simultaneously, it
combines boundary features with deep semantic features
as auxiliary features of the model heightens the model’s
congnition of complex scenes and enhances the model’s
ability to accurately locate boundaries.

3) The multiscale refined fusion module (MSRF) is specif-
ically designed to enhance the integrated extraction of
buildings. Due to the complexity of scenes at the rooftop
scenes, which often lead to holes in the extraction results,
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Fig. 2. (L1) Heterogeneity at the top of the building, (L2) clutter covering the top of the building, and (L3) shadow blocking at the top of the building.

Fig. 3. Overview of the proposed BEMRF-Net.

this method achieves a refined fusion of different level
features of the building target area. By obtaining local
information while avoiding a decrease in the ability of
extract global features, it effectively integrates contextual
information at the tops of buildings, enhancing the com-
pleteness of information at the building tops.

II. METHODOLOGY

A. Network Overall

The entire framework of BEMRF-Net is illustrated in Fig. 3,
primarily consisting of the BSA module and MSRF module. Ini-
tially, for feature extraction, the encoding phase utilizes the first
four layers of VGG16, VGG16 as an encoder can provide a stable
and powerful feature extraction base, and its simple and efficient
structure can maintain good feature extraction efficiency, which
is very suitable for dealing with building extraction tasks in

remote sensing data. We employ the ASPP [36] after the encoder
to facilitate global contextual inference between the encoder
and decoder stages. Subsequently, to enhance the capability in
distinguish buildings from their surroundings, the outputs from
the first three layers of the encoder are input into the BSA
module, which sharpens the delineation of building boundaries.
Finally, our MSRF module is designed to preserve high-level
semantic insights while retaining intricate low-level details, a
balance that is crucial for accurate building extraction. The
proposed modules’ contributions to the building extraction task
and their detailed functionalities are elaborated in the following.

B. Boundary-Aware Self-Attention Module

In order to accurately identify different ground buildings,
boundary information is important for differentiating buildings
from their surroundings and enhancing segmentation accuracy.
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Fig. 4. Structure of the BSA module.

Background noise can distract the network model’s focus away
from the building itself. However, attention mechanisms can
direct the network toward boundary information, effectively
filtering out irrelevant data [37]. We introduce the BSA module,
which utilizes the Euclidean distance transformation algorithm
to emphasize boundary details, thereby increasing the model’s
sensitivity to boundary information. Unlike traditional attention
mechanisms, our BSA module applies self-attention across both
spatial and channel dimensions. This approach preserves a high
internal resolution, enabling the capture of detailed low-level
boundary features. By integrating the distance transform algo-
rithm, the model’s focus on building boundaries is sharpened,
reducing the variability in boundary localization and achieving
refined segmentation. As depicted in Fig. 4, tensors from the
encoder (C, H, W) are directed into both channel and spatial self-
attention branches following a 1× 1 convolution and a boundary
information branch that utilizes distance transformation after a
3 × 3 convolution.

Different weights are obtained after two parallel reshape
operations in the channel self-attention branch, and the attention
weights with channel information (C,11) are acquired after the
Sigmoid function and multiplication. As shown in the following
equations:

CA = R1 (f)×R2 (f) (1)

Fc = Sig [Conv3×3CA (Conv1×1 (f))] (2)

where Fc represents the output feature map Fc ∈ R
C×1×1 in

the channel dimension, f represents the input feature map
f ∈ R

C×H×W ,CA(·)represents the channel self-attention,Ri ·
(i = 1, 2, 3, 4) represents the reshape operation and converts the
feature maps into different formats, Convj×j(·)(j = 1, j = 3)

represents convolutional layers with different convolutional ker-
nel sizes, and Sig(·) represents the Sigmoid activation function.

We first apply maximum downsampling and reshape opera-
tions to the tensor in the spatial self-attention branch, thereby
generating attention weights with spatial information (1, H,
W) through a subsequent reshape operation. Following this,
we integrate the distance-transformed boundary information by
multiplying it with the channel and spatial information sepa-
rately, then aggregate these products. This results in a feature
tensor where boundary information is intricately fused across
both channel and spatial dimensions. The process is shown in
the following equations:

SA = R3 (Gp (f))×R4 (f) (3)

Fs = R3 [SA(Conv1×1 (f))] (4)

Ffinal = Fc × ϕ⊕ Fs × ϕ (5)

d (p, q) =

√√√√ n∑
i=1

(pi − qi)
2 (6)

whereFs represents the featureFc ∈ R
1×H×W output in the spa-

tial dimension, SA(·) stands for Spatial Self-Attention, Gp(·)
stands for Global Average Pooling, Ffinal stands for the final
output of the module, ϕ stands for the distance employing the
correction value obtained by the algorithm, and ⊕ stands for the
element-by-element summation.

It is worth noting that the Euclidean distance transform algo-
rithm is particularly well-suited for processing high-resolution
RSIs. This is due to its effectiveness in feature extraction and its
computational efficiency when dealing with irregularly shaped
objects, compared with other distance measurement methods.



16346 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 5. Flow Field is generated by the distance transform algorithm and the actual boundary position information. The Flow Field guides the predicted boundary
pixels to move toward the actual boundary pixels, narrowing the fluctuation range of boundary localization.

The Euclidean distance Transform algorithm enhances image
analysis by updating each pixel’s value to represent the nearest
distance to a foreground pixel. Specifically, As illustrated in
Fig. 5, to convert the images to binary format, we first reduce
the feature map’s channel count to one using a 1 × 1 convo-
lution. Following this, we generate a Flow Field of identical
dimensions to the input feature map. For every foreground pixel,
we calculate the Euclidean distances (vectors) to the closest
background pixel by (6), wherep and q represent different pixels,
and these distances are recorded within the Flow Field. This
process assigns a semantic offset from each foreground pixel to
its nearest background counterpart, effectively highlighting the
semantic gap from the boundaries to the background. Subse-
quently, we iterate over each pixel in the feature map, adjusting
it according to the semantic offsets derived from the Flow
Field. This distance sampling algorithm amplifies the image’s
boundaries and narrows the model’s variability in identifying
building boundaries, thereby improving boundary localization
in complex backgrounds. The pseudo-code for the Euclidean
distance transform algorithm is provided in the following.

C. Multiscale Refined Fusion Module

The presence of irregularly shaped trees that obscure the
tops of buildings can diminish the network’s accuracy and
robustness, resulting in discontinuities within the buildings’
representations. To mitigate these disturbances, we enhance the
model by integrating an ensemble of contextual information.
Furthermore, we implement a multiscale fusion approach to
prevent gradient vanishing or explosion, issues that stem from
constraints associated with single-layer networks, and increased
network depth [38].

Therefore, we developed the MRSF module. As illustrated in
Fig. 6, this module takes the outputs from four different layers of
the encoder as its inputs. Initially, feature fusion occurs between
adjacent scale features in deeper layers. Subsequently, these
fused features undergo further fusion and interaction with the
features of the preceding layer, aiming to attenuate redundant
features. This process facilitates the refined integration of mul-
tiscale features. The specific formulations are presented in the
following equations:

λ1 = SF (Up (V1) , V2)⊕ Cbr1×1 (V4) (7)

λ2 = SF (Up (λ1) , Up (V3))⊕ Cbr1×1 (Cat (Up (V3) , V4))
(8)

whereVi(i = 1, 2, 3, 4) represents the high and low-level feature
maps Vi ∈ R

C×H×W output from the encoder, λi(i = 1, i = 2)
represents the output of the ith time fusion, SF (·)represents
fusion submodule, Cbr1×1(·)represents the convolution, nor-
malization, and activation, andUp(·) represents the upsampling
operation.

To preserve the local details of the image, we combined low-
level semantic features with the fusion results. Subsequently,
we integrated the most profound semantic features with the
outcomes of the two previous fusions, thereby reinforcing the
model’s emphasis on deep-level semantic information. Follow-
ing the multiscale feature fusion, we obtained the final output
feature map with 1 × 256 × 256 dimensions through a 1 × 1
convolution. The specifics of this process are detailed in (9),
where Λ represents the final prediction map, andCat represents
the splicing operation.

Λ = Conv1×1 (Cat (Up (V1) , λ2)) . (9)



CAO et al.: BEMRF-NET: BOUNDARY ENHANCEMENT AND MULTISCALE REFINEMENT FUSION FOR BUILDING EXTRACTION 16347

Fig. 6. Structure of the MSRF module.

As shown in the bottom half of Fig. 6, scale fusion is a fusion
submodule. Initially, two input feature maps are linked in series
along the channel dimension to merge the high and low features
This is followed by global average pooling, 1 × 1 convolution,
and application of the Sigmoid function, which are manipulated
in such a way as to integrate semantic information from different
feature layers. Subsequently, the feature information fused in the
initial phase and the global context weights derived in the first
phase are multiplied and then aggregated. The resultant feature
maps, enriched with cross-layer interactions, embody informa-
tion richness across multiple scales. The resultant representation
of the scale fusion output is given in the following equations:

ρ = Sig [Conv1×1 (Gp (Cat (e1, e2)))] (10)

ψ = Cbr3×3 (e1)× ρ⊕ Cbr3×3 (e2) (11)

where ei(i = 1, i = 2) represents the two feature maps of the
input submodule, ρ represents the result of the first step, and ψ
represents the final output of the fusion submodule.

III. DATA AND EXPERIMENTAL SETTINGS

A. Data

This article evaluates the effectiveness of BEMRF-Net using
two datasets: the WHU Building Dataset [39] and the Inria Aerial

Image Labeling Dataset [40], these datasets are used frequently
in the reverse side of semantic segmentation. It should be
noted that to enhance training outcomes, we have implemented
data augmentation processes on both datasets. These include
image-level flipping, center cropping, and grid distortion. These
operations do not alter the datasets themselves but increase the
training complexity and duration for the network. This approach
enables the network model to more effectively discover the
optimal fitting function.

WHU dataset: This dataset covers approximately 1 87 000
buildings. The data have a spatial resolution of 0.3 m and are
clipped into 8189 samples of 512 × 512 pixels. We cropped the
training and validation set images into 256 × 256 pixels to fully
exploit the performance of our network.

Inria Aerial Image Labeling Dataset: This dataset covers
several cities in Europe and the United States with a spatial
resolution of 0.3 m. It consists of 360 images with a 1:1 ratio
between the training and test sets, and the size of each image is
5000 × 5000 pixels. We crop each image to 256 × 256 pixels
to enlarge the dataset.

B. Experiment Setting

The server configuration used for the experiments in this
article is NVIDIA GeForce RTX 3090 24G GPU. Furthermore, a
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Algorithm 1: Euclidean Distance Transform EDT.
Input: binary_image (2D array of 0s and 1s, where 0 =
background, 1 = foreground)

Output: distance_map (2D array of distances to the
nearest foreground pixel)

1. Initialize distance_map:
for each pixel (y, x) in binary_image:

if binary_image[y][x] = = 0:
distance_map[y][x] = �

else:
distance_map[y][x] = 0

2. Forward pass:
for y from 1 to height - 1:

for x from 1 to width - 1:
distance_map[y][x] = min(distance_map[y][x],
distance_map[y-1][x] + 1, distance_map[y][x-1] +
1)

3. Backward pass:
for y from height - 2 down to 0:

for x from width - 2 down to 0:
distance_map[y][x] = min(distance_map[y][x],
distance_map[y+1][x] + 1, distance_map[y][x+1]
+ 1)

4. Final adjustment:
for each pixel (y, x) in distance_map:

distance_map[y][x] = sqrt(distance_map[y][x])
Return distance_map

deep supervision strategy was utilized to facilitate faster model
convergence. Following iterative testing and adjustments, the
batch size was set to 8, and Adam as the optimizer. The model
was trained for 100 epochs.

We use the Binary Cross-entropy (BCE) loss function, com-
monly employed in binary classification tasks, as the loss func-
tion. Specifically, the loss function consists of five components:
the loss of the final result prediction Loss1, the losses of low-
level fusion features at three stages Loss2, Loss3, Loss4, and
the loss of the ASPP output Loss5 The loss function formula is
as follows, where α and β are hyperparameters. After multiple
tests, we found that setting them to 0.3 and 0.2, respectively,
yields the best experimental results. We will specifically de-
scribe the selection process of these two hyperparameters in
Section V-D.

Loss = 0.5 ∗ Loss1 + α
4∑

i=2

Lossi + βLoss5. (12)

C. Evaluation Metrics

We adopt the following five evaluation metrics: overall ac-
curacy (OA), precision, recall, F1 score (F1), and intersection
over union (IoU). Specifically, TPpixel is True Positives of the
pixel, FPpixel is False Positives of the pixel, TNpixel is True
Negatives of the pixel, and FNpixel is False Negatives of the
pixel.

Their mathematical expressions are as follows:

OA =
TPpixel + TNpixel

TPpixel + TNpixel + FPpixel + FNpixel
(13)

Precision =
TPpixel

TPpixel + FPpixel
(14)

Recall =
TPpixel

TPpixel + FNpixel
(15)

F1 =
2× recall × precision

recall + precicion
(16)

IoU =
TPpixel

TPpixel + FNpixel + FPpixel
. (17)

Beyond the standard evaluation criteria previously mentioned,
we adopt the Hausdorff distance (HD) [41] and the structural
similarity index (SSIM) [42] to further assess our method’s
performance in boundary delineation and building integrity.
These metrics specifically evaluate boundary consistency and
visual similarity, offering more precise insights into the success
of our building boundary segmentation approach.

HD is a measure used to quantify the difference between two
sets of points and is commonly applied in image analysis, com-
puter vision, and computational geometry. Specifically, given
two sets of points M and N, HD can be shown by the following
equations:

p = sup
m∈M

infn∈Nd (m,n) (18)

q = sup
n∈N

infm∈Md (m,n) (19)

h (M,N) = max {p, q} . (20)

Here, sup represents the smallest upper limit in the set; inf
represents the largest lower limit in the set; d represents the
Euclidean distance. In order to reduce the bias caused by extreme
values, HD is multiplied by 95% to serve as the final evaluation
metric (95% HD).

SSIM is a number used to represent the degree of similarity
between two images as viewed by the human eye, focusing
primarily on the similarity of luminance, contrast, and structure.
For two images, ηand θ, the formula is as follows:

SSIM (η, b) =

(
2μημθ +H1

μ2
ημ

2
θ +H1

)
×
(
2σηθ +H2

σ2
ησ

2
θ +H2

)
(21)

where μη , μθ are the average luminance of images η and θ,
respectively; μ2

η , μ2
θ are the variances of images η and θ, respec-

tively; σηθ is the covariance of images a and b; and H1, H2 are
small constants added to avoid division by zero.

IV. RESULTS

A. Experimental Results

We compare six methods to verify the reliability of our
method, The models selected for comparison were DeepLabv3+
[43], SegNet [44], BMFR-Net [45], GCCINet [35], C3Net [46],
and MEC-Net [47]. The results of this comparative analysis are
detailed in Tables I and II.
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TABLE I
QUANTITATIVE COMPARISON WITH SOTA METHODS ON THE WHU DATASET

TABLE II
QUANTITATIVE COMPARISON WITH SOTA METHODS ON THE INRIA DATASET

1) Quantitative Analysis: Table I clearly demonstrates
BEMRF-Net’s superior performance across a range of metrics,
significantly outperforming other methods. For standard met-
rics, BEMRF-Net achieved the highest scores in IoU, F1, preci-
sion, and OA, recording 91.15%, 95.49%, 95.77%, and 98.96%,
respectively. Notably, improvements ranged from 0.08% to
4.6% for IoU, 0.16% to 2.95% for F1, 0.59% to 2.73% for
precision, and 0.03% to 0.67% for OA. Regarding boundary
metrics, BEMRF-Net also excelled, securing scores of 79.71%
in 95%HD and 94.63% in SSIM.

Table II shows the extraction results of our method on the Inria
dataset. BEMRF-Net scored the highest in the standard metrics
of IoU, F1, precision, and OA, with scores of 79.52%, 88.40%,
90.56%, and 96.88%, respectively, showing improvements of
0.21%–7.76%, 0.21%–4.84%, 0.9%–7.23%, and 0.11%–2.59%.
In terms of boundary metrics, BEMRF-Net achieved 280.06 in
95%HD and 84.97% in SSIM, representing the best and most
favorable outcomes in these categories, respectively.

2) Qualitative Analysis: We conducted a comprehensive
qualitative analysis of six outstanding models on both datasets,
focusing on boundary extraction, background interference, and
continuity within buildings. As illustrated in Figs. 7 and 8,
groups (a) through (f) serve as control groups for this experiment.
The methodology and experimental setup were aligned with
those described in the original papers.

The WHU dataset comprises a diverse array of buildings and
building clusters set against complex scenes. We selected six
representative images for testing, with the outcomes displayed
and comparatively analyzed. As illustrated in Fig. 7, we visual-
ized our prediction results, demonstrating the model’s capability
in various scenarios. Groups (a), (b), and (c) showcase the
model’s proficiency in extracting building boundaries amidst
complex backgrounds, where environmental factors notably
impact detection accuracy. Particularly, in groups (a) and (b),
the similarity in color and texture between roads and buildings
presents a significant challenge, yet BEMRF-Net distinctively
outperforms six other methods by accurately distinguishing be-
tween roads and building boundaries. In group (c), our method’s
resilience to shadow interference is evident, maintaining ac-
curate boundary delineation where other methods falter. This
success is attributed to the BSA module’s focus on semantic
boundary information at multiple levels.

Furthermore, Groups (d), (e), and (f) illustrate the network
model’s capability in extracting the interiors of buildings.
Specifically, group (d) reveals that the extraction results from
other methods exhibit holes and boundary gaps due to color
differences at the tops of buildings, issues that BEMRF-Net
effectively mitigates. In groups (e) and (f), buildings obscured
by trees and debris demonstrate significant gaps or complete
omissions in the extraction results of other methods, contrary to



16350 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 7. Qualitative comparison with SOTA methods on the WHU dataset.

our approach, which ensures more thorough coverage and yields
more comprehensive outcomes. This superiority is attributed to
the MRSF module’s efficient integration of deep and shallow
semantic information, which prevents the loss of contextual data
due to multiscale variances. Overall, our method demonstrates
robust performance.

As illustrated in Fig. 8, we analyze the qualitative results
of BEMRF-Net on the Inria dataset, which encompasses aerial
images from five distinct cities, each with significant geograph-
ical and environmental variations. This diversity makes the
Inria dataset a more challenging and illustrative testbed for
assessing our model’s generalization capabilities, particularly
when compared with the WHU dataset. BEMRF-Net demon-
strates a superior ability to extract complete building boundaries
amidst irregular borders and dense vegetation, outperforming
other models for both large and small structures, as evident in
groups (a) and (b). The impact of shadows on building boundary
segmentation, as demonstrated in group (c), shows that only our
method’s extraction results are minimally affected by shadows,
leading to a more precise delineation of building boundaries.
This accuracy is largely attributed to the BSA module, which
focuses on semantic boundary information.

Vegetation obscuring building tops poses additional detection
challenges, as evidenced in groups (d) and (e). While other mod-
els struggle with omissions and misjudgments, failing to distin-
guish between buildings and nonbuildings, BEMRF-Net effec-
tively minimizes vegetation interference, improving foreground
and background differentiation. Group (f) reveals that significant

texture variations on building tops often lead to incomplete ex-
tractions by other models, characterized by missing boundaries
and internal voids. Conversely, BEMRF-Net, supported by the
MRSF module’s integration of multiscale information, substan-
tially reduces such inaccuracies, ensuring the internal continuity
of buildings. Overall, our comprehensive qualitative analysis
underscores BEMRF-Net’s superiority in addressing the com-
plexities of building extraction from aerial imagery, validating its
enhanced performance across varied environmental conditions.

B. Comparison With Excellent Methods

To comprehensively demonstrate the advanced capabilities
and superiority of our method, we compared it with recently
developed building extraction models. We adhere to the config-
uration parameters specified in their original papers for methods
where the source code is publicly available. In addition, a
punctuation mark “-” in the table indicates that the metric was
not reported or tested in the original paper.

Table III illustrates that compared with other methods,
BEMRF-Net achieved the highest scores on all evaluation
metrics except precision and recall. Although it does not lead in
these two metrics, BEMRF-Net demonstrates the most effective
balance among them. These results represent significant
improvements over existing building extraction techniques
Furthermore, the experimental outcomes corroborate the
methodological advancement and superiority of BEMRF-Net
in extracting buildings from RSIs.
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Fig. 8. Qualitative comparison with SOTA methods on the INRIA dataset.

TABLE III
QUANTITATIVE COMPARISON WITH METHODS IN RECENT STUDIES ON THE WHU DATASET

V. DISCUSSION

A. Attention Module Comparison Analysis

To comprehensively demonstrate the role and indispensable
contribution of the BSA module, we conducted comparative ex-
periments with the BSA module against the MSA [58] module,
CBAM [59], and SE [60] module to illustrate the superiority
of the BSA module in building extraction. We added different

attention modules only to the baseline network. To ensure that
the experiment is reliable, we experimented with the WHU
dataset. As shown in Table IV, the experimental results indicate
that in general metrics, the SE module had the highest F1
score, the MSA module scored highest in IoU, precision, and
OA, and the BSA module only had the highest recall. How-
ever, the BSA module performed best across all indicators in
boundary metrics.
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TABLE IV
QUANTITATIVE ANALYSIS USING DIFFERENT ATTENTION MODULES

Fig. 9. Feature maps derived after sending the features from the encoder into different attention modules indicate that the blue areas represent areas of low model
concern and red areas represent areas of high model concern.

We visualized the feature map outputs after each module to
provide a more intuitive demonstration of different attention
modules’ impact on building boundaries. As shown in Fig. 9,
compared with the other three attention modules, the BSA
module shows a more pronounced focus on building boundaries,
with the boundaries mostly highlighted in yellow or red. This is
primarily because the BSA module is designed specifically for
building boundaries in conjunction with the distance transform
algorithm, reducing attention interference around the bound-
aries and focusing more on the boundaries. In contrast, the SE
module, CBAM, and MSA module do not specifically target
boundaries, resulting in their attention being dispersed across
various positions of the building.

B. Complexity Analysis

To rigorously evaluate our approach’s computational effi-
ciency, we analyzed the number of parameters (Params) and
floating-point operations (FLOPs) across our method and other
methods. We benchmarked the performance of each model to
assess their capabilities. Fig. 10 illustrates that GCCINet boasts
the lowest parameter count, whereas MEC-Net demonstrates the

minimal requirement for FLOPs. Despite our method achieving
the highest score exclusively in IoU, it records moderate scores
across other metrics, reflecting our focus on enhancing opera-
tional efficiency without compromising accuracy. Consequently,
BEMRF-Net achieves an optimal balance between accuracy, pa-
rameter count, and computational demands. However, as shown
in the figure, a notable disadvantage of BEMRF-Net is its high
parameter count, which leads to slower operation. In future work,
we will aim to design a more lightweight module to improve the
network’s efficiency.

C. Generalization Ability Analysis

To further evaluate our method’s generalizability and appli-
cability, we applied our model to an additional satellite imagery
dataset with a 0.5 m resolution [61]. This dataset comprises
satellite images from a specific region in Beijing, characterized
by building styles markedly different from those found in the
WHU and Inria datasets. It includes 344 images without a
separate validation set. For a comprehensive assessment, the
training and test sets were utilized solely for evaluation.
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Fig. 10. Params and accuracy of BEMRF-Net compared with SOTA models.

TABLE V
QUANTITATIVE COMPARISON WITH SOTA METHODS ON THE NEW DATASET

Table V presents the test results for the new dataset, revealing
that BEMRF-Net maintains outstanding performance. Except
for the precision and recall metrics, our method outperforms
six other evaluated methods across all other metrics, evidencing
BEMRF-Net’s robust generalizability.

Fig. 11 presents a qualitative analysis of our experimental
results. Observations from groups (a) and (b) reveal that, despite
the challenges posed by roads and shadows, our method consis-
tently ensures accurate boundary localization and extraction in
the new dataset. Furthermore, in groups (c) and (d), BEMRF-Net
demonstrates its effectiveness in identifying building tops, effec-
tively reducing the impact of vegetation cover and heterogeneity.
When compared with six other methods, our approach exhibits
superior building extraction performance.

D. Ablation Analyses

Table VI shows the results of our tests on the weights of the
loss function, illustrating the effect of different loss function
settings on the performance of the method. Our weighted loss
function proves to be effective and the weight settings are
reasonable.

To better understand the function of each block in the
BEMRF-Net, we conducted detailed ablation studies. These
studies were carried out separately on the WHU dataset and
the Inria dataset.

This experiment commenced with an evaluation of BEMRF-
Net’s basic network, stripped of all modules to retain only
the core backbone. Subsequently, individual modules were
incrementally integrated into the basic network to assess their
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Fig. 11. Qualitative comparison with SOTA methods on the new dataset.

TABLE VI
COMPARISON OF DIFFERENT WEIGHT SETTINGS

contribution. As indicated in Table VII, the increase in IoU by
3.73%, F1 by 2.22%, and Recall by 2.17% with the addition
of the BSA module; incorporating the MRSF module led to
increases of 3.72% in IoU, 1.96% in F1, and 1.92% in Recall.
Similarly, in the Inria dataset, integration of the BSA module
improved IoU, F1, and Recall by 3.35%, 1.77%, and 1.14%,
respectively, while the addition of the MRSF module saw im-
provements of 2.46% in IoU, 1.58% in F1, and 1.57% in Recall.
These enhancements affirm the significant role of both modules
in elevating standard and boundary metric performances. De-
tailed descriptions of these modules’ functionalities are provided
as follows:

1) Influence of BSA: To evaluate the effectiveness of the BSA
module, we compared the heat maps of the final results of the
basic network and the network containing only the BSA module,
as shown in Fig. 12. The analysis reveals that before integrating
the BSA module, the model’s ability to delineate building
boundaries was compromised by roads and shadows, resulting
in a limited focus on the actual boundaries. Incorporating the
BSA module shifts the model’s focus away from nonboundary
elements, directing attention toward the critical boundary

regions. Specifically, in the first image row, the proximity of
boundaries to shadows diminishes boundary detection, which
the BSA module effectively counters by enhancing boundary
emphasis. In the second row, the presence of roads distracts the
model, a challenge the BSA module overcomes by reducing
road-related attention. Similarly, in the third row, despite the
high resemblance of building boundaries to the background,
the BSA module succeeds in sharpening the model’s focus on
the boundaries, thereby improving the distinction between the
foreground and background within boundary zones.

2) Influence of MSRF: Similarly, we conducted heat map
comparison experiments on the WHU dataset between the basic
network and a version with only the MSRF module, as shown in
Fig. 13. Prior to integrating the MSRF module, the presence of
building top covers and heterogeneity within the input images
impaired the model’s ability to accurately recognize buildings,
leading to a dispersion of focus toward the background. Upon
incorporating the MSRF module, the heatmaps clearly demon-
strate a redirected focus toward the buildings themselves. Analy-
sis of the first and second rows of figures reveals how vegetation
and shadows obscure building tops, resulting in inaccuracies
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Fig. 12. Heat map visualization based on BSA feature maps.

Fig. 13. Heat map visualization based on MRSF feature maps.
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TABLE VII
COMPARISON OF ABLATION EXPERIMENTAL RESULTS OF DIFFERENT MODULES ON WHU DATASET

in the baseline network’s extraction outcomes. The addition
of the MSRF module mitigates these distractions by focusing
the model’s attention on the buildings, significantly improv-
ing extraction accuracy. Furthermore, the third row illustrates
that the baseline network struggles with the heterogeneity of
building tops, failing to fully capture their details. With the
MSRF module, the model exhibits enhanced attention to both the
exterior and interior aspects of buildings, effectively minimizing
extraction errors and bolstering its identification capabilities.

VI. CONCLUSION

This article introduces the BEMRF-Net, a novel network
designed to extract building information from RSIs. Initially,
the BSA module enhances the accuracy of building boundary
localization across both channel and spatial dimensions, utiliz-
ing the distance transformation method to focus the network’s
attention on boundary details. Additionally, the MSRF mod-
ule, introduced at the decoding layer, addresses discontinuities
within buildings caused by occlusions. This module integrates
high-level and low-level semantic information, captures com-
prehensive global context, and preserves local positional de-
tails, thereby mitigating internal discrepancies and enhancing
the integrity of rooftop information. A comparative analysis
against 16 SOTA models on two public datasets demonstrates
the method’s significant advantages through both quantitative
and qualitative assessments. Additionally, discussions on the
method’s efficiency, generalizability, and ablation studies fur-
ther validate its effectiveness. Given the complexity of remote
sensing imagery, future work will focus on enhancing network
efficiency and method generalization while maintaining high
accuracy.
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