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MIMFormer: Multiscale Inception Mixer
Transformer for Hyperspectral and
Multispectral Image Fusion

Rumei Li"¥, Liyan Zhang

Abstract—The fusion of low-spatial-resolution hyperspectral im-
age and high-spatial-resolution multispectral image provides an
effective method to obtain high-spatial-resolution hyperspectral
image. However, existing hybrid fusion architectures combining
convolutional neural networks (CNNs) and transformers face sig-
nificant challenges. Sequential approaches struggle with simulta-
neous local and global modeling, while parallel approaches often
result in information redundancy. In this article, to meet diverse
information demands at different layers, we propose a novel multi-
scale inception mixer transformer network (MIMFormer), a mul-
tiscale hybrid network based on the Inception structure integrating
CNN and transformer. The core of this network is the multiscale
spatial transformer (MST) structure, which enhances the detail
richness of fused images by integrating local and global information
at various scales. The inception spatial-spectral mixer (ISSM)
module within the MST leverages an Inception architecture and
employs a spectral splitting mechanism to regulate spectral channel
counts across different branches. This design allows the ISSM
module to efficiently extract local spatial-spectral features through
convolution and max pooling, while global features are captured
using a self-attention mechanism, ensuring comprehensive feature
fusion across spectral groups. Experimental results on three bench-
mark datasets and one real remote sensing dataset demonstrate that
MIMFormer outperforms ten advanced fusion methods.

Index Terms—Deep learning, hyperspectral image (HSI), image
fusion, multispectral image (MSI), transformer.

I. INTRODUCTION

OMPARED to multispectral images, hyperspectral images
possess exceptional capabilities for distinguishing key
features in illuminated scenes, a fact that has been confirmed
by numerous studies [1]. However, due to the physical limita-
tions of imaging sensors, there is an inherent tradeoff between
spatial resolution and spectral resolution in imaging, resulting
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in existing hyperspectral satellites often having lower spatial
resolutions, such as EO1-30 m [2] and ZY1E-30 m [3]. Conse-
quently, some hyperspectral applications experience significant
performance degradation due to insufficient spatial resolution,
including soil composition estimation [4], vegetation classifica-
tion [5], and urban change detection [6]. Unlike breakthroughs in
imaging hardware, fusing low-spatial-resolution hyperspectral
image (LR-HSI) with high-spatial-resolution multispectral im-
age (HR-MSI) offers an economically viable method to acquire
high-spatial-resolution hyperspectral image (HR-HSI).

Pansharpening methods [7] are used for fusing LR-HSI with
the panchromatic band extracted from HR-MSI to generate
HR-HSI. Model-based approaches [8] utilize matrix or tensor
decomposition of LR-HSI, followed by the recovery of HR-HSI
using predefined priors. However, these methods often overly
rely on handcrafted prior assumptions about the unknown HR-
HSI, leading to spatial distortions and spectral inaccuracies in
the fused results [9], [10].

In recent years, deep learning methods, such as convolutional
neural networks (CNNs) [11] and transformers [12], [13], have
been widely applied to address this challenge. While deep learn-
ing methods automatically extract image features, eliminating
the limitations of handcrafted features, they each have their own
limitations. Transformers emphasize global feature extraction,
whereas CNNs excel at local feature extraction. During the
fusion process, both global and local features play crucial roles in
accurately reconstructing spatial details and preserving spectral
fidelity. Global features primarily capture overall semantic and
structural context, aiding in maintaining visual consistency and
identifying major patterns and trends within the image. Simul-
taneously, local features focus on small-scale structures, such as
edges, lines, and fine textures, which are essential elements in
the fusion process.

In order to better combine global and local information,
many studies combine CNN and transformer to form a CNN-
transformer hybrid architecture [ 14] to make better use of global
and local information, thereby significantly improving the fusion
performance. At present, there are two ways to mix this architec-
ture, sequential and parallel, and the combination of sequential
results in each layer modeling only one aspect, such as local
modeling in the convolutional layer and global modeling in the
transformer layer, which is difficult to achieve both in this way.
In parallel combination, one branch handles local information
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and the other branch handles global information. However, this
approach can lead to information redundancy if all channels
are processed. Study [15] has shown that the lower layers of
the transformer require more local information and the higher
layers require more global information. Therefore, the simple
parallel processing method cannot fully meet the information
requirements at all levels, and a more flexible structure must
be introduced to optimize the processing and transmission of
information. The inception structure [ 16] is a good solution to the
problem of parallel joining, as long as the appropriate channel is
divided before entering the branch. At the same time, due to the
different requirements for high and low-frequency information
in different depths, the number of channels can be divided by
control to meet the needs of different depths.

Therefore, we propose a novel network, the multiscale incep-
tion mixer transformer (MIMFormer), which integrates CNN
and transformer architectures through an inception-based mul-
tiscale hybrid approach. Central to MIMFormer is the multi-
scale spatial transformer (MST) structure, which incorporates
an inception spatial-spectral mixer (ISSM). The ISSM regulates
the number of spectral channels in various Inception branches
via a spectral splitting mechanism, effectively combining CNN
and transformer advantages to capture both spectral and spatial
information across bands. The main contributions of this article
are as follows.

1) We introduce MIMFormer, a multiscale hybrid network
based on the inception structure that combines CNN and
transformer for fusing LR-HSI and HR-MSI. This archi-
tecture capture spectral and spatial information across
various bands and scales, enhancing the fused images’
quality and accuracy.

2) Wedevelop the ISSM module, constructed upon the incep-
tion framework, which ensures image precision through
meticulous processing of localized regions and maintains
consistency with global sharpening across the entire im-
age. By simultaneously integrating global and local infor-
mation, it enhances fusion quality while preserving the
integrity and authenticity of the image content.

3) Wedesign a spectral splitting mechanism, which regulates
the number of spectral channels across different Inception
branches. This mechanism reduces feature redundancy
and promotes a comprehensive integration of global and
local features, thereby further improving the performance
of the fusion algorithm.

The rest of this article is organized as follows. Section II
reviews related work, including pansharpening, model-based
approaches, and deep learning methods. Section III describes
the proposed network architectures, MIMFormer, and ISSM.
Section IV presents experimental results on benchmark and real
datasets. Section V presents the discussion. Finally, Section VI
concludes this article.

II. RELATED WORK

In recent years, researchers have developed numerous inno-
vative approaches to the fusion of LR-HSI and HR-MSI from
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diverse perspectives [17], [18]. These methods can generally
be categorized into pansharpening [7], [19], model-based ap-
proaches [20], [21], and deep learning methods [22].

A. Pansharpening

Pansharpening is one of the earliest developed methods for
fusing LR-HSI and HR-MSI. It involves merging the LR-HSI
with the panchromatic band extracted from the HR-MSI, trans-
forming it into HR-HSI [23]. Component substitution (CS)
and multiresolution analysis (MRA) are common pansharpen-
ing fusion techniques. CS enhances the spatial resolution of
hyperspectral images by separating and replacing the spatial
components of a multispectral image. Representative methods
include principal component analysis [24], [25], intensity hue
saturation [26], and Gram—Schmidt spectral sharpening meth-
ods [27], [28]. CS-based methods are computationally inex-
pensive and can recover the main spatial features similar to
the original image. However, such approaches often lead to a
degradation of spectral information [29]. MR A uses multiresolu-
tion decomposition techniques to extract high-frequency spatial
details from multispectral images and fuse them into LR-HSI
to enhance its spatial resolution. Typical methods based on
MRA include high-pass filters [30] and wavelet transforms [31].
While these techniques are computationally straightforward and
efficient, significant discrepancies in spatial resolution between
multispectral and hyperspectral images may lead to noticeable
distortions in the fused results.

B. Model-Based Approaches

Model-based approaches primarily include matrix decompo-
sition, tensor decomposition, and Bayesian-based methods [21],
[32]. Yokoya et al. [33] introduced coupled nonnegative ma-
trix factorization (CNMF) for the fusion of LR-HSI and HR-
MSI, exploring its impact on HSI classification. Their method
demixed the sources of the two images to identify the charac-
teristics and abundances of endmembers. Although this method
showed performance improvements, it is computationally in-
tensive and sensitive to parameter selection. Tensor decom-
position approaches [34] utilize multidimensional tensors to
represent multispectral and hyperspectral images, achieving
fusion through tensor decomposition or operations. Tucker
decomposition [35], a commonly used method, decomposes
high-dimensional tensors into a core tensor and dictionaries
for each dimension, extracting and representing information
across dimensions. The first known Bayesian fusion approach
was designed by Zhang et al. [36]. This method assumes
an additive noise imaging model for LR-HSI and uses inter-
polation as a prior, circumventing the need to estimate the
spatial degradation operator and performing super-resolution
in a blind manner. Overall, these methods frame the fusion
of LR-HSI with HR-MSI as an optimization problem con-
strained by various handcrafted priors, which may not ade-
quately represent the required HR-HSI, thus limiting their fusion
accuracy.
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C. Deep Learning Methods

Recent advancements in deep learning have significantly im-
pacted image processing [37], [38], [39], inspiring research in
LR-HSI and HR-MSI fusion. Dian et al. [40] introduced a deep
hyperspectral image enhancement model that integrates image
priors into a CNN fusion framework, outperforming traditional
methods. Han et al. [41] developed the MS-SSFNet network,
which uses a multilevel loss function to mitigate gradient vanish-
ing in fusing LR-HST and HR-MSI. Zhang et al. [22] employed
CNNs to regularize spatial and spectral degradation and used
generative networks to model HR-HSI. Li et al. [42] proposed the
cross spectral-scale and shift-window-based cross spatial-scale
nonlocal attention network (CSSNet) to explicitly learn spectral
and spatial correlations between two input images. To further
enhance CNN-based fusion algorithms, researchers introduced
a multitask, multiobjective evolutionary network [43], [44] to
address spectral distortion caused by LR-HSIupsampling. These
CNN-based methods have significantly advanced fusion algo-
rithms, providing robust solutions to the limitations of prior
methods and achieving satisfactory results.

Although CNN-based methods significantly improve over
traditional approaches, their limited receptive fields and lack of
remote modeling ability prevent the full extraction of global im-
age features, reducing fusion quality [45]. To address this, vision
transformer (ViT), which excels in modeling global dependen-
cies, has recently been applied to LR-HSI and HR-MSI fusion
with notable success [46]. For instance, Hu et al. [47] introduced
Fusformer, the first ViT-based solution for fusion, while Jia
et al. [48] developed the multiscale spatial-spectral transformer
network (MSST-Net) to enhance network performance and gen-
eralization. Fang et al. [49] integrated spatiotemporal frequency
information of LR-HSI and HR-MSI. However, focusing too
much on global information can neglect local feature extraction.

Combining CNN’s local feature extraction with transformer’s
global feature modeling [50], [51] aims to address these issues
and has shown promising results. This hybrid approach leverages
the strengths of both architectures, allowing for a more com-
prehensive extraction of image features. However, challenges
remain. Ma et al. [52] used Swin transformer’s window attention
with 3D-CNN to learn LR-HSI’s implicit priors. While this
outperforms pure transformer networks, the sequential mode
struggles to balance global and local information extraction.
Interactformer [53] combines Swin transformer and 3D-CNN
in parallel to improve spatial resolution and preserve spectral
information, but this can lead to feature redundancy and weak-
ened performance. Lower transformer layers need more local
information, while higher layers require global information [15].
Therefore, a simple parallel method cannot fully satisfy the
information needs at all levels.

Inspired by the Inception structure [16], we propose a novel
multiscale hybrid network, MIMFormer, which optimizes infor-
mation processing through a spectral splitting mechanism. By
adjusting the number of channels, MIMFormer meets different
depth requirements, providing a flexible structure to enhance
fusion. This innovative architecture effectively balances the
extraction of global and local features, addressing the limitations
of previous methods and achieving superior fusion quality.
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III. METHODOLOGY
A. MIMFormer Architecture

The proposed MIMFormer fusion network architecture, de-
picted in Fig. 1, comprises three primary modules: a shallow
feature extraction module, a deep feature extraction module, and
an image reconstruction module. The shallow feature extraction
module utilizes two residual network modules to extract prelim-
inary features. The deep feature extraction module consists of
three MST branches, each functioning at a distinct scale. Lastly,
the image reconstruction module includes two convolutional lay-
ers paired with a LeakyReL U activation function to reconstruct
the final image.

Let Z € RS represent the observed LR-HSI, where h, w,
and S denote the number of rows, columns, and spectral bands of
the LR-HSI, respectively. Let Y € R7*W>s represent the ob-
served HR-MSI, where H, W, and s denote the number of rows,
columns, and spectral bands of the HR-MSI, respectively. Our
objective is to fuse Y and Z to obtain an image X € R¥*W xS
that possesses both high spatial and spectral resolutions. Initially,
this article employs a bilinear interpolation method to upsample
LR-HSI to obtain Z,, € RHXWxS, facilitating channel-wise
concatenation with HR-MSI. This process can be represented
by the following equation:

Zup = Up(Z) ey

where Up(-) denotes the bilinear interpolation upsampling func-
tion. Subsequently, Y and Z,, are aggregated along the channel
dimension to form D, € RF*XWx(S+5)  which can be ex-
pressed as

Dy = Concat (Y, Zyp) 2)

where Concat(-) represents concatenation along the channel
dimension. Given that convolution is a simple and effective
method for mapping images to a higher dimensional feature
space, this article uses 2-D convolution with a kernel size of 3,
180 channels, and a stride of 1, constructing a residual network
with two blocks to extract shallow features Fy € R xWx180,
represented as

Fs =SF (Dcat) (3)

where SF(+) denotes the shallow feature extraction module.

In the deep feature extraction module, we designed three MST
to extract features at different scales. For the simulated dataset,
the patch size values in MST were set to 8, 12, and 16, whereas
for the real dataset, the patch sizes were set to 3, 15, and 6. Each
MST module includes a patch embed layer, three ISSMs, and a
patch unembed layer. Initially, the extracted shallow features F
are fed into the patch embed layer, whose goal is to divide the
shallow feature map into a series of equally sized image blocks,
each mapped to a higher dimensional feature representation.
This process is described by the following equation:

I' = GELU (Norm (Conv (F}))) . 4)

The feature maps, represented as I* € RH/PxW/PxC andj =

1,2, 3, are processed through a convolutional layer after passing
through the patch embed layer. The convolutional layer uses a
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Fig. 2. Architecture diagram of the proposed ISSM.

kernel size and stride of p (with p values being 8, 12, 16, or 3,
15, 6), a channel count of C' = 120, and a padding of 1.

B. ISSM and Spectral Splitting Mechanism

The architecture of the ISSM is shown in Fig. 2. After parti-
tioning the input features across the spectral dimensions, local
and global mixers are employed to learn features across different
frequency ranges. The local mixer includes a MaxPool path,
consisting of a maximum pooling operation and a linear layer,
and a parallel convolutional path, consisting of a linear layer and
a DwConv layer. The global mixer includes an attention path,
which consists of average pooling, a multihead self-attention
mechanism (MSA), and an upsample layer. The rationale is as
follows.

Local mixer: Given the sharpness sensitivity of maximum
pooling and the detail perception capability of convolution oper-
ations, we propose two local paths to leverage the sharpness sen-
sitivity of maximum pooling and the detail perception capability
of convolution layers to learn local features. Initially, the input I}

(where i = 1,2, 3) is divided into I}, € RH/PxW/PxCi/2 apq
I, e RH/PxW/PxCi/2 I our experiments, to reduce feature
redundancy, enhance feature extraction efficiency, and ensure
that both pathways receive spectral information representing
global characteristics while retaining sufficient detail, we de-
signed a spectral splitting mechanism. This mechanism sets C;
as C' — (i x dim), dim as 40. I}, is routed to the MaxPool path,
and I}, is routed to the parallel convolution path. The outputs of
the local mixer, F}; and F}},, can be represented by the following
equation:

F}; = Linear (MaxPool (I fl)) 5)

Fy, = DwConv (Linear (I},)) . (6)

Global mixer: Considering the powerful capability of atten-
tion mechanisms in learning global representations, we use an
MSA to establish long-distance dependencies to learn global
information. Before applying the attention operation, we use
an average pooling operation to reduce the scale of I; €
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nel size and stride for the average pooling in this experiment are
both 2. Then, a multihead self-attention mechanism is applied
to calculate the attention for redundant bands

Fy, = AvgPool (I})) (7)

where F, € RH/P/2xW/P/2xCy s the output of average pool-
ing, Cy is setas i x dim.

Multihead self-attention, as shown in Fig. 3, captures the
correlation among spectral bands by computing self-attention.
Initially, we project the input Faip through trainable linear pro-
jections to obtain the query matrix Q e RH/F/2xW/P/2xCy
key matrix K € RH/P/2xW/P/2xCq ~and value matrix V €
RH/P/2xW/P[2xCq represented as

Q= FpWo, K'=FpWi, Vi=FWy @

where Wé, Wi Wi, € R¢*C% are learnable projection matri-
ces. The scaled dot-product attention function, using the queries,
keys, and values, is defined as

S ) KiTQi
Atten(Q*, K*, V") = V" | softmax )
)

Atten(-) is the scaled dot-product attention function. The
MSA, similar to that used in ViT, enhances the network’s fea-
ture extraction capability. The function form of the multihead
self-attention is as follows:

(10)
)

head), = Atten (Q},, K}, Vi), h=1,2,3
Fl, = view (Concat (head},))

where heady, is the output of the hth head, computed through
the Atten function. Concat denotes concatenation of all head
outputs. Finally, the spectral multihead self-attention output is
reshaped.

C. Future Fusion
Ultimately, we employ an upsampling layer to restore the
original scale, consistent with a ratio of 2 used in max pooling

F; = UpSample (F;,

msa) .

12)
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The outputs F},, Fy},, and F}} are concatenated along the channel
dimension and fused to form £},

F}, = Fusion (Concat (F},, Fj, F})) . (13)

To ensure the feature dimensions are consistent before recon-
structing the image, the fused feature map is passed through
a patch unembed layer and a transposed convolution layer to
restore the features to the original number of hyperspectral bands
S, resulting in a single-scale feature F* € RE*W >S5 Subse-
quently, the extracted multiscale features are aggregated using
learnable weights to form the deep features Fy € RA*Wx3,
Finally, Fy; and the shallow features F) are input into an image
reconstruction module composed of two convolutional layers
and a LeakyReLU activation function, yielding the estimated

high-resolution hyperspectral image X € RH*WxS
X = Conv (LReLU (Conv(F))). (14)

Ultimately, the network’s parameters are optimized by minimiz-
ing the L1 pixel loss

h=|X-X]|

where X € RZ*WxS ig the true HR-HSL.

5)

IV. EXPERIMENTS AND ANALYZES

To effectively evaluate the performance of the proposed meth-
ods, this study selected ten state-of-the-art fusion technologies
for comparative analysis. These techniques include two tradi-
tional methods: HySure [54] and CNMF [33]; four CNN-based
approaches: MSDCNN [55], TFNet [56], MHF-Net [57], and
CSSNet [42]; along with four novel transformer-based tech-
nologies: Fusformer [47] PSRT [58], MSST-Net [59], and 3DT-
Net [52]. The parameters for each method were set according to
the original authors’ code or literature recommendations. Tradi-
tional methods were tested on a Windows 10 system equipped
with an Intel Core 19 processor and 32GB RAM, using MATLAB
R2014a. Deep learning methods were primarily implemented
using Python 3.8 and PyTorch 1.7, with GPU acceleration pro-
vided by NVIDIA RTX 4060TI. Data preprocessing and analysis
were conducted using MATLAB R2014a and Python’s NumPy
and Pandas libraries.

To comprehensively evaluate the performance of image fu-
sion algorithms, a variety of quantitative metrics are commonly
employed for comparative analysis [10], [60]. These metrics
include the spectral angle mapper (SAM), peak signal-to-noise
ratio (PSNR), erreur relative globale adimensionnelle de syn-
these (ERGAS), structural similarity index metric (SSIM), root
mean squared error (RMSE), and the quality with no reference
(QNR) index. SAM assesses spectral quality, with lower values
indicating minimal loss of spectral information. PSNR evalu-
ates spatial effects, where higher values denote lesser loss of
spatial details. SSIM is used to appraise structural correlation,
with higher values suggesting superior fusion outcomes. RMSE
measures the similarity between images, where lower values
denote a more effective fusion algorithm. ERGAS serves as
a comprehensive metric, with lower values indicating higher
fusion quality. Particularly, QNR is apt for evaluating the fusion
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quality of no-reference imagery, such as the ZY 1E real remote
sensing dataset, encompassing all aspects of distortion including
both spectral and spatial distortions. Higher QNR values signify
optimal fusion quality with more complete information preser-
vation. Collectively, these metrics reflect the efficacy of fusion
algorithms in retaining both spatial and spectral information.

A. Datasets

The experiments in this article utilized three mainstream hy-
perspectral image benchmark datasets: CAVE [61], Washington
DC Mall (WDCM) [62], Pavia University (PU) [63], and a real
remote sensing dataset ZY 1E.

The CAVE dataset contains 32 indoor hyperspectral im-
ages, each with dimensions of 512 x 512 pixels, covering the
wavelength range of 400-700 nm with 31 bands. Experi-
ments followed the Wald protocol [64], using the spectral re-
sponse function of a Nikon D700 camera to generate HR-MSI.
The original hyperspectral images of CAVE served as reference
HR-HSI. They were filtered with a Gaussian kernel of size
8 x 8 and standard deviation of 2, then subsampled by a factor
of eight in both horizontal and vertical directions to generate
LR-HSI. A total of 20 image pairs were randomly selected from
the dataset for training, and the remaining 12 pairs for testing.
During training, patches of 64 x 64 were randomly extracted
from each 512 x 512 image, making the dimensions of HR-HSI,
HR-MSI, and LR-HSI during training 64 x 64 x 31,64 x 64 x 3,
and 8 x 8 x 31, respectively, and during testing, 512x512x31,
512x512%3, and 64 x 64 x 31.

The WDCM dataset, captured by the Hydice sensor in 1995,
consists of 191 bands covering the wavelength range of 400-
2400 nm. Each band has a resolution of 1280 x 307 pixels,
with a spatial resolution of 2.5 m. Two subimages of 128 x 128
pixels were cropped for testing, with the remainder used for
training. The setup was the same as that used for MSST-Net [59],
with HR-MSI generated using the Sentinel-2A spectral response
matrix and LR-HSI produced in the same manner as the CAVE
dataset. The dimensions of HR-HSI, HR-MSI, and LR-HSI dur-
ing training were 64 x 64 x 191, 64 x 64 x 10, and 8 x 8 x 191,
respectively, and for testing, 128 x 128 x 191, 128 x 128 x 10,
and 16 x 16 x 191.

The PU dataset was collected by the ROSIS sensor in 2003,
originally measuring 610 x 340 pixels in dimensions, covering
a wavelength range of 430-860 nm. After removing 22 water
vapor absorption bands, 93 bands remained. Consistent with
the WDCM dataset, after Gaussian filtering, the images were
subsampled by a factor of eight to generate LR-HSI. Two
subimages of 128 x 128 pixels were cropped for testing, with
the remainder used for training. HR-MSI was generated using
a spectral response function similar to IKONOS. The dimen-
sions of HR-HSI, HR-MSI, and LR-HSI during training were
64 x 64 x93, 64 x 64 x 4, and 8 x 8 x 93, respectively, and for
testing, 128 x 128 x 93, 128 x 128 x 4, and 16 x 16 x 93.

The ZY 1E dataset consists of hyperspectral and multispectral
data acquired from the ZY1E satellite, specifically from the
ZY1E satellite, equipped with both visible-near infrared and
hyperspectral cameras. This study utilized an image captured
on 19 April 2023, over the Pinggu district of Beijing, consisting
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TABLE I
ABLATION STUDY OF THE ISSM AND MULTISCALE STRUCTURE ON THE
WDCM DATASET
Model M-scale  NAttention NMaxPool NDwConv  BASE
M-scale X v v v v
NAttention v X v v v
NMaxPool v v X v v
NDwConv v v v X v
BASE v v v v v
PSNRT 46.83 45.42 46.41 48.63 52.20
SAM| 1.45 1.67 1.49 1.19 0.78
ERGAS/] 1.10 1.28 1.14 0.80 0.53
SSIMT 0.9947 0.9935 0.9945 0.9934 0.9983
RMSE| 0.0046 0.0054 0.0047 0.0021 0.0014

The best indicators are displayed in bold.

of AHSI hyperspectral and VNIC multispectral imagery. In the
ENVI software, a series of preprocessing steps were applied
to the acquired hyperspectral and multispectral data, including
radiometric calibration, atmospheric correction, orthorectifica-
tion, and cropping, followed by registration of the hyperspectral
and multispectral images. The processed data comprised 166
bands of LR-HSI and 8 bands of HR-MSI, with spatial resolu-
tions of 30 m and 10 m, and spatial dimensions of 4986 x 4581
and 1662 x 1527 pixels, respectively. Notably, lacking HR-HSI
as a reference image for training, we followed the Wald proto-
col [64], using a 9 x 9 Gaussian kernel to perform a threefold
spatial downsampling of the original LR-HSI and HR-MSI to
generate the training dataset. Subsequently, the original LR-HSI
was considered as HR-HSI. Given the low signal-to-noise ratio
in some bands of the ZY-1E data, we selected the first 76 bands
of the LR-HSI for the fusion experiments. During the training
phase, image pairs were randomly cropped from the training
dataset (HR-HSI: 60x60x76, HR-MSI: 60x60x8, LR-HSI:
20x20x76) for training purposes. In the testing phase, image
pairs (HR-MSI: 540x540x8, LR-HSI: 180x180x76) were
cropped for testing.

B. Ablation Experiments

To better understand MIMFormer, a series of ablation exper-
iments were conducted. All models were trained on the WDCM
dataset for 100 epochs, with training configurations consistent
with those previously described in the document.

In terms of multiscale feature extraction: To adequately
extract features from LR-HSI and HR-MSI, this study em-
ployed a multiscale approach for feature extraction. To evaluate
the effectiveness of multiscale features, we conducted single-
scale feature extraction experiments by modifying the original
three-branch feature structure into a single-branch structure.
“M-scale” denotes the removal of the multiscale architecture,
utilizing only a single MST structure. The quantitative evalu-
ation metrics are presented in the first column of Table I. In
addition, we plotted the decline in the loss function and the
increase in PSNR values on the test set with the single MST
structure as training epochs progressed, as shown by the orange
lines in Fig. 4. The results demonstrate that multiscale feature ex-
traction effectively captures features at various scales, enabling
the model to identify patterns and details that are challenging
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Fig. 4.
(BASE, M-scale, NAttention, NDwConv, NMaxPool).

TABLE I
ABLATION STUDY OF SPECTRAL SPLITTING MECHANISM ON THE WDCM
DATASET
Model PSNRT SAMJ] ERGAS] SSIMT RMSE|
NSSM 51.40 0.86 0.58 0.9983 0.0015
AC 50.07 1.00 0.67 0.9967 0.0017
BASE 52.20 0.78 0.53 0.9983 0.0014

The best indicators are displayed in bold.

to detect at a single scale, thereby achieving superior fusion
performance.

Regarding the ISSM: To integrate the local feature extraction
capabilities of CNN with the strengths of transformer, we intro-
duces the ISSM, aimed at enhancing the transformer’s perceptual
ability in the spectral dimension. To evaluate the effectiveness
of each component within the inception mixer, we progressively
removed each branch from the complete model and recorded the
results. As shown in Table I, combining the attention mechanism
with convolution and max-pooling yields higher accuracy com-
pared to using only the mixer. This validates the efficacy of the
ISSM. As illustrated in Fig. 4, the blue line labeled “BASE”
represents our proposed MIMFormer architecture; the green,
red, and purple lines correspond to the removal of the attention
branch, the convolution branch, and the max-pooling branch
from the ISM’s three-branch structure, respectively. The results
indicate that MIMFormer exhibits the fastest and most stable
loss function decline, both in the test and validation sets, and
achieves the most significant improvement in PSNR values on
the test set.

Regarding the spectral splitting mechanism: This mechanism
can reduce feature redundancy and improve feature extraction
efficiency, but improper allocation may lead to insufficient ex-
traction of both global and local information. Therefore, the key
is to balance the splitting mechanism to ensure comprehensive
information extraction through the full integration of global and
local features. In designing the spectral splitting mechanism,
we ensure that both paths receive spectral information that
represents global features while containing sufficient detail. By
setting C; = C' — (i - dim) and gradually increasing the value
of 4, we can dynamically adjust the information received by
each path. As shown in Table II, ac represents an average
allocation of channels (both global and local paths receiving C'/2
channels), BASE represents our MIMFormer method using the

Epoch

60 80 100 0 20 40 60 80 100
Epoch

Ablation results on the WDCM dataset, showing evaluation loss on the test set, PSNR on the test set, and training loss on the train set, for different models

TABLE III
COMPARISON OF DIFFERENT FUSION METHODS ON THE CAVE DATASET

Method PSNRT SAM| ERGAS| SSIMT RMSE|
CNMF [33] 37.95 3.35 3.16 0.9762  0.0157
HySure [54] 40.39 2.61 2.62 0.9832  0.0096

MSDCNN [55] 39.84 3.04 2.90 0.9775 0.0100
TFNet [56] 44.29 1.90 1.45 0.9912  0.0062
MHF-Net [57] 45.93 1.58 1.21 0.9934  0.0050
CSSNet [42] 46.20 1.53 1.16 0.9943 0.0049
Fusformer [58] 46.74 1.45 1.11 0.9945 0.0046
PSRT [59] 4551 1.65 1.26 0.9936  0.0053
MSST-Net [60] 47.16 1.39 1.06 0.9950  0.0044
3DT-Net [61] 46.84 1.44 1.10 0.9950  0.0045
MIMFormer 48.36 1.25 0.95 0.9960  0.0039

The best indicators are displayed in bold.

spectral splitting mechanism, and NSSM represents the absence
of the spectral splitting mechanism (both global and local paths
receiving C' channels). BASE outperforms in all metrics. This
design ensures that the spectral splitting mechanism effectively
enhances network performance by fully leveraging and extract-
ing both global and local information.

C. Experiments With Benchmark Data

Results on CAVE dataset: We evaluated 12 test images on the
CAVE dataset and presented the average evaluation metrics for
different methods in Table III, with the best results highlighted
in bold. It is observable that the proposed MIMFormer method
significantly outperforms the comparison methods in terms of
performance. Notably, the PSNR values for MIMFormer are
substantially higher than those of other methods. This aligns
with previous analyses of the network architecture, suggesting
that the proposed ISSM effectively preserves the spectral char-
acteristics of the scene.

To ease the burden on readers, we only display the fusion
results for the “watercolors” test image. Fig. 5 showcases the
enlarged local images using bicubic interpolation, and the syn-
thesized false-color images of bands 29, 19, and 9. The second
and fourth rows display the error images, where the error values
are the average of all band errors. Compared to the methods
assessed, the proposed MIMFormer method reconstructs high-
resolution details more effectively, significantly reducing errors
in the error images, especially in regions with prominent edge
information.
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Fusion results of the “watercolors” image from the CAVE dataset. The first row presents a false-color image synthesized from the 29th, 19th, and 9th

spectral bands. The second row depicts the error images between the fused and the ground truth.

TABLE IV
COMPARISON OF DIFFERENT FUSION METHODS ON THE WDCM AND PU DATASETS

WDCM Dataset PU Dataset
Method PSNRT SAM| ERGAS] SSIMT RMSE| PSNRT SAM| ERGAS| SSIMT RMSE] FLOPs (G) Para (M)
CNMF [33] 37.28 4.10 2.93 0.9938 0.0077 34.73 5.07 291 0.9716 0.0309 / /
HySure [54] 35.65 4.74 3.52 0.9915 0.0094 36.05 4.16 2.30 0.9747 0.0256 / /
MSDCNN [55] 45.90 1.28 0.86 0.9986 0.0022 42.07 2.24 1.24 0.9885 0.0125 2.209 0.527
TFNet [56] 47.67 1.32 0.88 0.9983 0.0023 42.56 2.12 1.08 0.9904 0.0119 2.020 2.387
MHE-Net [57] 48.22 1.24 0.83 0.9985 0.0021 41.19 2.48 1.23 0.9841 0.0139 22.460 3.630
CSSNet [42] 48.82 1.16 0.78 0.9941 0.0020 42.11 2.21 1.14 0.9892 0.0125 2.507 1.226
Fusformer [58] 49.24 1.10 0.74 0.9989 0.0019 42.22 2.20 1.12 0.9897 0.0124 456.327 0.109
PSRT [59] 51.31 0.87 0.58 0.9992 0.0015 41.62 2.37 1.21 0.9866 0.0133 1.291 0.302
MSST-Net [60] 49.98 1.01 0.67 0.9990 0.0018 42.61 2.11 1.08 0.9910 0.0118 188.720 34.400
3DT-Net [61] 52.10 0.79 0.53 0.9993 0.0014 42.83 2.05 1.05 0.9916 0.0116 66.122 3.455
MIMFormer 52.20 0.78 0.53 0.9983 0.0014 43.09 2.00 1.02 0.9919 0.0112 35.537 16.206

The best indicators are displayed in bold.

Results on the WDCM dataset: Table IV presents the objective
results of various comparative algorithms on the WDCM dataset,
with the best metrics highlighted in bold. Deep learning methods
based on CNNs, such as MSDCNN and TFNet, exhibit superior
performance compared to traditional approaches, with PSNR
values reaching 45.90 and 47.67, respectively. MHF-Net and
CSSNet excel further in detail preservation, achieving PSNR
values of 48.22 and 48.82. Transformer-based methods also
demonstrate commendable efficacy; for instance, MSST-Net and
3DT-Net showcase exceptional integration capabilities. Notably,
3DT-Net attains an SSIM of 0.9993 on the WDCM dataset,

with its metrics being on par with our proposed MIMFormer,
attributable to its utilization of 3-D CNNs to accommodate the
characteristics of hyperspectral data cubes. However, it is worth
noting that our proposed MIMFormer shows slightly lower
SSIM performance on the WDCM dataset compared to other
deep learning networks. This may be due to the inherent chal-
lenges MIMFormer faces when handling extremely fine details.
Nevertheless, this 0.001 discrepancy is negligible in terms of
overall performance impact. Overall, the proposed MIMFormer
outperforms other methods across most critical performance
metrics.



15130

PSRT

Fusformer

CSSNet
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depicts the error comparison between the fused and the ground truth.

This confirms that employing multiscale feature extraction
combined with the ISSM structure can significantly improve the
performance of hyperspectral and multispectral image fusion
networks. Compared to methods that use CNNs alone for fusion,
increasing network depth limits the receptive field, leading to the
loss of many detail features. In our method, by incorporating the
Inception structure and using a three-branch structure to extract
high-frequency and low-frequency information, along with the
long-distance dependencies of the self-attention mechanism and
local feature extraction of deep convolution and max pooling
layers, our network can learn more valuable information, effec-
tively addressing this issue. Thus, MIMFormer surpasses other
comparative methods in performance. Fig. 6 provides a visual
appreciation of the superiority of our network’s results over other
comparative methods in terms of color and edge granularity.
Compared to CNN-based methods, our network achieves more
ideal results in color and brightness performance, and shows
more notable improvements in edge detail and clarity compared
to 3DT-Net and MSST-Net.

Results on the PU dataset: The ground sampling distance of
the PU dataset is 1.3 m, with each pixel containing only one or a
few types of land cover, making the spectral characteristics rela-
tively simple. The quantitative results of MIMFormer and other
comparative methods on the PU dataset are shown in Table IV. It
is evident from the table that traditional methods, such as CNMF,
still perform poorly on this dataset. In contrast, MIMFormer and
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0.01

MSST-Net 3DT-Net MIMFormer 0

Fusion results of WDCM test set. The first row presents a false-color image synthesized from the 56th, 21th, and 5th spectral bands. The second row

MSST-Net outperform Fusformer in key performance metrics
such as PSNR, SAM, ERGAS, SSIM, and RMSE, thanks to
their multiscale architectures that enable the extraction of deep
spectral features at different scales.

Regarding the fusion results of the PU dataset test set,
the false-color images and error maps are shown in Fig. 7.
MIMFormer, combining CNN and transformer technologies,
achieved satisfactory visual results on this dataset. As shown
in Fig. 7, the fused image mainly includes land cover types,
such as asphalt roads, grasslands, trees, self-adhesive bricks, and
buildings. In the error map, the areas marked by red rectangles
are magnified to show artificial buildings and grasslands. The
density of grasslands varies in different locations, and the mate-
rials used in different buildings also vary, leading to spectral
signal differences even among the same type of land cover,
greatly increasing the difficulty of fusing hyperspectral and mul-
tispectral images. Despite these challenges, MIMFormer still
demonstrates superior image reconstruction quality in the mag-
nified areas compared to MSST-Net and 3DT-Net, showcasing
its exceptional fusion capabilities. To analyze the computational
burden, the last two columns of Table IV list the floating-point
operations (FLOPs) and the parameters of different fusion meth-
ods on the PU dataset. As shown, MSST-Net and Fusformer
have higher FLOPs, at 188.72G and 456.327G, respectively.
Fusformer causes GPU memory overload due to its use of
original transformer layers. MSST-Net likely uses large-scale
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the error comparison between the fused and the ground truth.
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Fusion results of PU test set. The first row presents a false-color image synthesized from the 29th, 19th, and 9th spectral bands. The second row depicts
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Fig. 8. PSNR and SAM on CAVE and PU datasets of all bands.
transposed convolutions, resulting in a high parameter count.
Other methods like CSSNet, PSRT, and 3DT-Net have more
moderate FLOPs and parameter counts. For instance, 3DT-Net
has FLOPs and parameter counts of 66.122G and 3.455M,
respectively. Compared to MIMFormer, 3DT-Net has higher
FLOPs but fewer parameters, indicating different optimization
strategies in computational burden and parameter usage. Over-
all, MIMFormer strikes a balance between high performance
and reasonable computational burden and parameter count,
demonstrating efficiency and resource utilization in practical
applications.

CSSNet

0 5 10 15 20 25 30 0 20 40 60 80
Band

Fusformer PSRT === MSST-Net === 3DT-Net === MIMFormer

In addition, to further evaluate the performance of each
method across individual spectral bands of images, we plot-
ted the PSNR and SAM values for different methods across
each spectral band on the benchmark datasets CAVE and PU.
As shown in Fig. 8, from a spatial perspective, our proposed
MIMFormer displays the highest PSNR values in certain bands,
indicating optimal performance in terms of spatial information
loss; in terms of spectral quality, MIMFormer achieves the
lowest SAM values across all bands, indicating minimal spectral
information loss. These results demonstrate that our proposed
fusion method can generate higher quality fused images.
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Fig. 10.  Spectral contrast of diffferent objects in the ZY 1E dataset. (a) Bright roof building. (b) Highway. (c) Playground. (d) Cultivated land. (e) Lake.

D. Experiments With Real Data

To validate the robustness of our method on real data, we
created areal paired LR-HSI and HR-MSI dataset, named ZY 1 E.
Fig. 9 displays the fused images from the ZY 1E dataset, which
include diverse scenes, such as water bodies, buildings, roads,
and farmland, generated by different methods. We selected a
100 x 100 region within the red box and enlarged it in the bottom
left corner of the fused image. A clear comparison reveals several
key observations: the traditional HySure method exhibits severe
distortion and spatial aliasing; CSSNet produces images with
varying degrees of color distortion; and while MSST-Net and
3DT-Net show some improvement in spatial details, they still
fall short. In contrast, MIMFormer not only achieves a color
accuracy closer to LR-HSI but also significantly enhances spatial
details, demonstrating superior performance overall.

Fig. 10 illustrates the spectral curves of different objects after
fusion by various methods from the ZY 1E dataset, compared to
the original LR-HSI:

1) bright roof building;

2) highway;

3) playground;

4) cultivated land;

5) lake.

In these plots, our proposed MIMFormer is represented in
yellow, while the reference LR-HSI curves are in green. It is
evident that the spectral curves of MIMFormer, despite minor
discrepancies, closely match those of all objects in LR-HSI,
achieving the smallest error. The traditional method HySure
overall performs the worst, particularly showing significant
deviations from the LR-HSI spectral curves in the highway
and cultivated land scenarios. MSST-Net and 3DT-Net exhibit
smaller spectral curve errors in the bright roof building and lake
scenario. Severe deviations in the highway and lake scenarios.
In addition, we employed the QNR image quality assessment
metric to evaluate the fusion results of all methods. As shown in
Table V, the proposed method achieved the highest score, indi-
cating that MIMFormer outperformed its competitors in terms of
image quality. Overall, our method effectively addresses feature
redundancy through the spectral splitting mechanism, ensuring
superior spectral quality in the fused images. Furthermore, by
integrating the strengths of CNNs and transformers, we were
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TABLE V
NO-REFERENCE INDEXES FOR THE FUSION RESULTS OF EACH METHOD ON THE
ZY 1E DATASET
Method  HySure  CSSNet MSST-Net 3DT-Net MIMFormer
QNR 0.932 0.951 0.968 0.969 0.974

The best indicators are displayed in bold.

able to extract comprehensive spatial and spectral information,
resulting in significantly enhanced image quality.

V. DISCUSSION

The key advantage of MIMFormer lies in the introduction
of the spectral splitting mechanism, which enhances the con-
trol and utilization of different spectral channel characteristics,
effectively modeling and extracting spatial-spectral informa-
tion dispersed across various bands. However, the dim setting
within the spectral splitting mechanism primarily depends on
the network’s C value (number of feature maps) and is based on
empirical settings, presenting a limitation of our network. In the
future, we plan to adopt methods, such as genetic algorithms and
particle swarm optimization to automatically select or explore
other approaches for optimal band selection, thereby further
optimizing network performance.

In addition, our current network primarily targets well-aligned
images. Moving forward, we aim to optimize the MIMFormer
network and investigate advanced image alignment techniques
to enhance its performance under varying alignment conditions,
such as changes in posture and illumination. This will improve
its applicability and generalization in practical applications. Fi-
nally, we plan to explore cross-dataset generalization strategies
to address the generalization issues arising from differences
in the number of bands and image features. Through these
improvements, our goal is to promote the widespread application
of fusion networks, enabling them to demonstrate outstanding
performance across various hyperspectral datasets.

VI. CONCLUSION

This article presents a multiscale hybrid network (MIM-
Former) based on the Inception structure, combining CNN and
transformer, effectively addressing the shortcomings of existing
hybrid architectures in modeling local and global features, as
well as the lack of flexibility in information processing. By
designing the MST and ISSM modules, MIMFormer can capture
and fuse local and global information of LR-HSIs and HR-MSIs
at different scales, significantly enhancing the spatial and spec-
tral details of the fused images. In addition, the introduction of
the spectral splitting mechanism allows MIMFormer to more
effectively control and utilize the characteristics of different
spectral channels, modeling, and extracting spatial-spectral in-
formation dispersed across different bands. Experimental results
demonstrate that MIMFormer performs excellently on both
benchmark and real-world datasets, maintaining the integrity
of spatial and spectral information while being efficient and
accurate in processing spectral and spatial information. In the
future, we will continue to optimize this network and explore
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more advanced image alignment and cross-dataset generaliza-
tion strategies to further enhance its performance in various
application scenarios.
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