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Abstract—Remote sensing (RS) visual question answering
(VQA) provides accurate answers through the analysis of RS
images (RSIs) and associated questions. Recent research has in-
creasingly adopted transformers for feature extraction. However,
this trend leads to escalating training costs as a consequence of in-
creased model sizes. Furthermore, existing studies predominantly
employ transformers to extract features from a single modality,
insufficiently integrating multimodal information and thereby un-
dermining the potential advantages of transformers in feature ex-
traction and fusion in these scenarios. To address these challenges,
we propose parameter-efficient multimodal transfer learning for
RSVQA. We introduce a lightweight, parameter-efficient adapter
into the visual feature extraction module, initialized with weights
pretrained on large-scale RSIs to reduce both training costs and
parameters. A cross-attention mechanism is employed for multi-
modal interaction, enhancing the integration of information across
modalities. Comprehensive experiments were conducted on three
datasets: RSVQA-LR, RSVQA-HR, and RSVQAxBEN, achiev-
ing state-of-the-art performance. Moreover, exhaustive ablation
studies demonstrate that our parameter-efficient adapter strat-
egy achieves performance comparable to full-parameter training
under partial parameter conditions, validating the efficacy of our
approach.

Index Terms—Multimodal representation learning, parameter-
efficient transfer learning, remote sensing (RS) visual question
answering (VQA).

I. INTRODUCTION

R EMOTE sensing (RS) visual question answering (VQA)
entails obtaining information pertinent to posed questions

from RS images (RSIs) and providing precise responses. The
utilization of RS technology spans diverse domains including
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agriculture, forestry, natural resource management, and disaster
mitigation. Research in multimodal RS increasingly relies on
extensive RSI-text data. With advancements in RS technology,
the proliferation of high-definition and detailed RSIs datasets has
significantly enhanced the processing and analysis capabilities
for RSIs. Applications in RSIs analysis encompass hyperspectral
image classification [1], [2], scene classification [3], [4], [5], tar-
get detection [6], [7], [8], change detection [9], [10], and seman-
tic segmentation [11], [12], [13]. Despite these advancements, a
scarcity of high-quality RS multimodal image-caption datasets
persists when compared to single-modality image datasets. As
a precursor to RSVQA, Lobry et al. [14] introduced a novel
RSI-text dataset along with the RSVQA model, which employs
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) to extract visual and textual features, respec-
tively. Subsequently, these features are fused through pointwise
multiplication.

Subsequent research has continued to advance RSVQA. For
instance, Yuan et al. [15] enabled the model to incrementally
learn the problem by adjusting the prediction strategy. Building
on this, Yuan et al. [16] introduced cross-modal global attention
(CGA) and a spatial transformer to enhance visual information
extraction. Subsequently, the gated recurrent unit was employed
for semantic understanding and feature fusion [17]. Chappuis
et al. [18] proposed Prompt-RSVQA, utilizing CNNs to extract
image features, converts them into text, and integrates prompts
into the language transformer, DistilBERT. Notably, Zhang et
al. [19] designed a question-guided relation network (QRN) unit
and introduced the SHRNet model, incorporating an attention
mechanism to address the large-scale differences and location
sensitivity of RSIs.

However, the aforementioned studies predominantly focus on
enhancing single-modal feature extraction capabilities, adjust-
ing learning strategies, or employing pointwise multiplication
for fusion. This approach overlooks the significance of mul-
timodal fusion and inadequately addresses cross-modal knowl-
edge integration. Research by Chappuis et al. [20] demonstrated
that pointwise multiplication, the simplest fusion method, yields
the lowest performance compared to other existing fusion
methods [14], [21], [22], thereby underscoring the substantial
impact of cross-modal fusion on model effectiveness. Further-
more, although [17], [18], [19] adopt transformer technology to
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enhance feature extraction or fusion, they continue to rely on
traditional CNNs or RNNs for modal feature extraction. This
reliance hampers the full exploitation of transformer capabili-
ties in feature extraction and escalates both model storage and
training costs.

In multimodal RS research, handling diverse input types
such as images and text necessitates models with substantial
parameters to capture and learn the complex relationships and
interactions among the data, thus requiring the introduction
of additional vision encoding and text processing modules.
Furthermore, to enhance the integration of information across
modalities, additional fusion layers are introduced, which in turn
increases the parameter count. Concurrently, with the prevalent
use of transformer architectures, the multimodal transformer
is designed to be deeper and wider to improve performance,
consequently escalating both the parameter count and training
costs. Under these circumstances, balancing the reduction of
parameter updates, minimizing training costs, and maintaining
high performance presents a significant challenge in current
research on RS multimodality.

In response to the aforementioned challenges, we propose
Parameter-Efficient multimodal transfer learning for Remote
Sensing visual question answering (PERS). Within this frame-
work, we develop a multimodal fusion module using cross-
attention mechanisms to facilitate effective cross-modal rep-
resentation learning. In addition, to reduce both the training
costs and the number of parameters requiring updates, we intro-
duce a parameter-efficient transfer learning technique utilizing
lightweight adapters. Furthermore, we initialize the visual trans-
former (ViT) with weights pretrained on large-scale RSIs [23].
This adapter enables comparable performance to full-parameter
fine-tuning by adjusting only a minimal subset of parameters.
During training, we freeze all other parameters of the vision
encoder except for those in the adapter. Experiments demon-
strate that PERS achieves state-of-the-art (SOTA) results on
existing three RSVQA datasets: RSVQA-LR, RSVQA-HR, and
RSVQAxBEN. Simultaneously, we validate that the strategy of
employing an adapter and freezing other vision encoder param-
eters can achieve performance comparable to training the entire
model. Furthermore, we conduct ablation studies to illustrate the
effectiveness of our technique.

In summary, this article makes the following contributions.
1) We introduce the PERS, incorporating a lightweight

adapter in each layer of the vision encoder, initialized with
weights pretrained on large-scale RSIs. This approach
significantly reduces the number of parameters requiring
updates and lowers overall training costs.

2) We develop a novel multimodal fusion module that effec-
tively integrates self-attention and cross-attention mech-
anisms, facilitating a more comprehensive and effective
learning process from both visual and textual inputs pro-
cessed by their respective encoders.

3) We introduce and evaluate a new model for RSVQA, con-
ducting rigorous experiments to assess its performance.
Our model achieves SOTA results on the established
benchmark RSVQA dataset, demonstrating its superiority
and effectiveness.

II. RELATED WORK

A. Visual Question Answering

In recent years, significant advancements have been made
in research on single-modal tasks, including natural language
processing (NLP) and image classification. However, effectively
extracting and utilizing features from different modalities in
multimodal tasks remain areas that require further investigation.
VQA represents a precise intersection of visual and natural
language modalities.

Recently, the availability of abundant image-caption datasets
has significantly advanced research in VQA. Initially, Antol et
al. [24] employed a pretrained VGGNet for image processing
and LSTM for question processing. Subsequently, the field
evolved to incorporate various modules within the VQA model
for specialized processing tasks. For instance, Wang et al. [25]
considered the information in the image, question, and an-
swer, proposing a framework that utilizes trilinear attention and
self-attention mechanisms, structured in a two-stage workflow.
This approach, dubbed the MIRTT framework, achieved notable
results. Farinhas et al. [23] argued that the flexibility of attention
mechanisms could lead to distraction and lack of focus, prompt-
ing them to model the attention mechanism as a multimodal
feature function in VQA to emulate human attention patterns.
Furthermore, to address the issue of complex or discontinuous
focus areas in images, Martins et al. [26] introduced a continuous
unimodal attention mechanism.

However, most existing VQA methods utilize pipeline ap-
proaches for knowledge matching and extraction, which fre-
quently result in cascading errors, poor performance, and biased
answers. To mitigate these issues, Chen et al. [27] employed an
external knowledge graph for zero-shot modeling on a novel
dataset. In general, an effective VQA model must proficiently
manage image inputs and questions, incorporating capabilities,
such as fine-grained image recognition, spatial perception, and
knowledge-based reasoning.

B. RS Visual Question Answering

In contrast to the abundance of image-caption datasets in the
general domain, the RS domain features relatively few such
datasets. This disparity has catalyzed rapid development in the
general domain VQA, while progress in RSVQA has been
comparatively slower.

Lobry et al. [14] introduced RS datasets RSVQA-LR and
RSVQA-HR, which contain high-resolution and low-resolution
RSI-caption pairs, respectively. The RSVQA model utilizes
CNNs to extract image features and RNNs to extract textual
semantic features. It performs elementwise multiplication of
vector elements, each treated with the hyperbolic tangent func-
tion, for feature fusion. Results are obtained using an MLP,
treating VQA as a classification task. This approach has yielded
favorable results.

However, Chappuis et al. [20] confirmed in their study that the
elementwise fusion strategy in RSVQA was the least effective
among the three existing feature fusion methods [14], [21], [22].
In subsequent research, Yuan et al. [15] sought to derive superior
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semantic information through alternative methods, introducing
SPCL, which employs both hard and soft weighting strategies
to facilitate learning that progresses from simple to complex
problems. Concurrently, they developed a CGA module [16]
to comprehend overall image features as guided by language.
In addition, a cross-modal spatial transform module was devel-
oped to capture regional features pertinent to the query, thereby
enhancing the fusion of image and text features and yielding
positive outcomes. Zheng et al. [17] observed that existing
RSVQA methods employed a nonspatial fusion strategy, which
neglected the spatial information of images and the word-level
details of questions. Consequently, they proposed a mutual atten-
tion initiation network for RSVQA, which utilizes an attention
mechanism and bilinear techniques for effective fusion. This
network incorporates word vectors into the CNN, enhancing the
semantic interpretation of images.

Following the emergence and ongoing development of trans-
formers, Bazi et al. [28] recognized their advantages and im-
plemented them in both the visual and textual components of
RSVQA. Concurrently, they utilized the attention mechanism
to extract relevant modal information, achieving positive out-
comes. Simultaneously, Chappuis et al. [18] noted that tradi-
tional visual language models, which obtain embeddings by
fusing features from two deep models and process image and
text separately, still faced challenges with efficient image in-
formation extraction. To address this, they introduced Prompt-
RSVQA, which employs CNNs to extract image features. These
image features are subsequently converted to text and integrated
into the language transformer DistilBERT using prompts, yield-
ing favorable results.

In recent work, Zhang et al. [19] observed that current
methods infrequently account for geospatial objects with sig-
nificant scale variations and location sensitivity, and seldom
investigate the relationships between entities. They introduced
SHRNet and incorporated a QRN unit to model and reason
about high-order internal group-object relations within the hi-
erarchy. Furthermore, they developed a spatial multiscale vi-
sual representation module based on hashing, coupled with a
VQ interaction module, to derive more effective joint image-
text embeddings for answer prediction, achieving promising
results.

Although most current RSVQA research achieves commend-
able performance, it predominantly focuses on visual feature ex-
traction and frequently overlooks the cross-modal interaction be-
tween visual and textual features. This oversight has prompted us
to design a multimodal fusion module that effectively integrates
information across different modalities. Unlike earlier, simpler
multimodal fusion approaches, such as the dot product, our
module employs self-attention and cross-attention mechanisms
to comprehensively integrate information from both image and
text modalities.

C. Parameter-Efficient Transfer Learning

Parameter-efficient transfer learning facilitates the transfer of
parameters from a pretrained model to a new model, simplify-
ing its training and reducing costs by freezing some of these

parameters. Initially proposed and applied in the field of NLP,
this technique has yielded notable results. Subsequently, re-
searchers adapted this technology for the computer vision (CV)
field, where it has also demonstrated strong performance [29],
[30].

Currently, three mainstream methods exist for parameter-
efficient transfer learning. The first method involves integrating
adapters into the model, initially proposed for the CV field [31]
and subsequently adapted for the NLP field [32]. Adapters are
inserted between the model’s layers, during training, only these
adapters are updated while the remaining modules are frozen.
This approach significantly reduces the number of training pa-
rameters required for the model. The second strategy, prompt
tuning [33], [34], [35], adds training parameters to the model
without altering its architecture, similar to the adapter strategy.
Prompt tuning introduces a set of learnable tokens at either the
input layer or the middle layers of the model. In models utilizing
prompt tuning, the majority of components are frozen, updating
only the added tokens or downstream classifier modules [33].
The final strategy involves updating only the low-rank matrix
that approximates the weights during model training [36].

To date, in RSVQA research, the predominance of
transformer-based methods in vision-text modeling has resulted
in larger parameter sizes and increased training costs. To ad-
dress this, we employ parameter-efficient transfer learning for
RSVQA, initializing vision encoders with a ViT pretrained
on extensive RSIs datasets and adopting a lightweight adapter
strategy. This approach significantly reduces the number of pa-
rameters requiring updates, lowers training costs, and maintains
robust model performance.

III. METHOD

The PERS framework, depicted in Fig. 1, employs a vision en-
coder and a language encoder to encode the visual and language
modalities, respectively, and incorporates a parameter-efficient
component within the vision encoder. Subsequently, after sepa-
rately extracting information from each modality, the knowledge
from both is thoroughly fused in a multimodal fusion module.
Ultimately, this fully fused knowledge is fed into a classifier for
the purpose of classification.

A. Problem Definition

We approach the VQA task as a multiclass classification chal-
lenge, utilizing a training setD = {Ii, Qj

i , A
j
i}j=1...M

i=1...N that com-
prises N images, each image Ii associated with M question–
answer pairs (qi, ai). For the VQA model, our objective is to
correctly answer a question q associated with an image I , trained
on the dataset, wherein the answer a corresponds to the label of
the pair (qi, ai).

B. Vision and Language Encoders

1) Vision Encoder: In PERS, we utilize VIT-B with Nr

layers as the primary architecture of the vision encoder, as
depicted in Fig. 1. Concurrently, we initialize the encoder with
weights from a ViT that has been pretrained on large-scale RSIs
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Fig. 1. Architecture of PERS.

datasets. This initialization provides the vision encoder with
extensive RS visual knowledge from the outset. The parameter-
efficient adapter module for vision encoder detailed in Section
C. Parameter-efficient transfer learning.

For image I inputs to the vision encoder, we initially seg-
ment the image into patches Ip before inputting them into
the transformer, where v ∈ RH×W×C , vp ∈ RN×(P 2·C). Here,
(H ×W ) denotes the image resolution, C represents the num-
ber of channels, and (P, P ) specifies the resolution of each patch.
The total number of patches, N , is calculated as N = HW/P 2.
These patches are subsequently flattened and mapped to D
dimensions using a linear projection, as defined by the formula

zI =
[
IL; I1E

I ; . . . ; INEI
]
+ EI

pos (1)

where EI ∈ R(P 2·C)×D, IL ∈ RD represents the learnable em-
bedding, and EI

pos denotes the positional embedding, added to
the patch embeddings to preserve spatial information.

2) Language Encoder: As depicted in Fig. 1, we utilize NL

transformer layers to capture linguistic knowledge. For input
processing, PERS employs the WordPiece tokenizer [37], simi-
lar to BERT [38], to segment the input text into subword tokens
{ω1, ω2, . . . , ωM}, where ωM ∈ RV and V denotes the size
of the vocabulary. These subword tokens are then embedded
through linear projection, as described in the following:

zl =
[
ωT ;ω1E

l; . . . ;ωMEl;ωSEP
]
+ El

pos (2)

where El ∈ RV ×D. Simultaneously, the tokens ωT ∈ RD and
ωSEP ∈ RD are added to the text sequence. ωT represents the
initial sequence token, and ωSEP denotes a special boundary
token. Analogous to visual projection, it is necessary to append

an embedding El
pos ∈ R(M+2)×D at the end of the text sequence

to indicate positional information.

C. Parameter-Efficient Transfer Learning

As shown in Fig. 1, PERS incorporates a lightweight,
parameter-efficient adapter module within the vision encoder.
The vision encoder comprises Nr transformer layers, with each
layer including a self-attention layer followed by a feedforward
layer. This configuration precedes the inclusion of the parameter-
efficient adapter module. To limit the parameter count, the
adapter receives an embedding, zd, of dimension d from the
preceding layer, processes it through a down feedforward layer
Wdown ∈ R(d×m), and outputs an embedding, zm, of size m.
Subsequently, the embedding passes through a GeLU activation
function without a change in dimension and is then reprojected
to the embedding zd′ of dimension d via an up projection layer
Wup ∈ R(m×d).

In the adapter, accounting for biases, we add 2md+ d+m
parameters per layer. Thus, we can control the number of pa-
rameters by judiciously setting the sizes of m and d, ensuring
m � d. After dimension reduction, the dimension size m en-
sures a balance between performance and parameter count. In
addition, to prevent the parameter initialization in the projection
layer from being too small or nearing zero, thus averting large-
scale knowledge forgetting, a skip-connection is introduced
at the outset of the adapter, rendering the module effectively
an approximate identity function. The computation within the
adapter is formalized as follows:

Adapter(x) = x+ s · GeLU (xWdown)Wup (3)
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where x ∈ Rd represents the input embeddings, and s denotes
the scaling factor.

Within the vision encoder, we freeze all modules except
for the adapter, which remains the only component updated
throughout the training process. The self-attention layers and the
feedforward layers within the transformer span the successive
Nr layers and, when combined with an adapter, constitute the
basic components of the vision encoder. As depicted in Fig. 1,
we concatenate the Nv layer with this component, which not
only preserves the initialized knowledge but also enables the
acquisition of new visual modality knowledge through updates
to the parameters of the lightweight adapter module.

D. Multimodal Fusion Module

After obtaining the embeddings of the image and language
modalities, we utilize both self-attention and cross-attention
mechanisms within the multimodal fusion module to effec-
tively fuse the contextualized representations of these modal-
ities. Within this module, as depicted in Fig. 1, we employ
NM transformer layers. Each transformer layer receives an
embedding from the previous layer, which it then feeds into
the self-attention layer. This process enables the model to han-
dle long-distance dependencies more effectively and capture
global information enriched with new knowledge. Following the
self-attention layer, the information from multiple modalities is
integrated through the cross-attention mechanism, defined as
follows:

zIc = ATTN
(
zIs, zls, zls

)

zlc = ATTN
(
zls, zIs, zIs

)
(4)

where zIs and zls denote the visual and linguistic representa-
tions, respectively. The cross-attention layer establishes a cor-
relation between the inputs and outputs of the two modalities,
enabling the model to assimilate multimodal knowledge and
enhance its performance. Once the inputs for the cross-attention
layer are obtained, zIc and zlc are passed to the feedforward
layer, which consists of an MLP fully connected layer. Finally,
after multimodal feature fusion, the integrated information from
both modalities is conveyed to the classifier to perform the
classification task.

IV. EXPERIMENTS AND RESULTS

We conducted comprehensive experiments on three
benchmark datasets: RSVQA-LR, RSVQA-HR [14], and
RSVQAxBEN [39], evaluating accuracy across various question
types as well as average and overall accuracy. Simultaneously,
we performed detailed ablation studies on various modules
within the model to assess the effectiveness of our proposed
method. Furthermore, we conducted a visual analysis to enhance
the model’s interpretability, displaying attention maps of the
model applied to RSIs under various scenarios.

A. Datasets

1) RSVQA-LR: The RSVQA-LR dataset comprises 77 232
question–answer pairs, divided into training, validation, and test

sets at proportions of 77.8%, 11.1%, and 11.1%, respectively.
Images in the dataset derive from Sentinel-2 imagery acquired in
the Netherlands, focusing on nine tiles with low cloud coverage.
These image data are publicly accessible through the ESA’s
Copernicus Open Access Center. Each block is segmented into
772 images, each image featuring a resolution of 256 × 256
pixels and captured in the RGB color band. Collectively, these
images encompass a total area of 6.55 square kilometers. Given
that the Sentinel-2 satellite captures images at a resolution of
10 m, smaller objects such as houses, roads, and trees are not
discernible, indicating that the images span extensive spatial
and temporal scales. The question types for the datasets include
“count,” “comparison,” “presence,” and “rural/urban” classifi-
cation.

2) RSVQA-HR: The RSVQA-HR dataset contains 1 066 316
question–answer pairs and was divided into a training set, a
validation set, Test Set 1, and Test Set 2, in proportions of
61.5%, 11.2%, 20.5%, and 6.8%, respectively. Test Set 1 covers
an area similar to the training and validation sets, while Test Set
2 focuses on the city of Philadelphia. The images in the dataset
derive from the USGS High Resolution Orthophoto dataset,
which comprises 15 cm aerial RGB images covering most cities
in the United States, and are publicly accessible via the USGS
EarthExplorer tool. The dataset includes 161 map blocks from
the Northeast Coast of the United States, segmented into 10 659
images, each with a resolution of 512 × 512 pixels and covering
5898 square meters. Given the high resolution of USGS imagery,
RSVQA-HR contains more useful information. The question
types include “count,” “comparison,” “presence,” and “area,”
where questions about object areas are only feasible in such
high-resolution datasets.

3) RSVQAxBEN: The RSVQAxBEN dataset comprises
590 326 Sentinel-2 L2A image blocks from the BigEarthNet
(BEN) archive, each equipped with 12 spectral bands. Questions
in this dataset are categorized into two types: “yes/no” and
“land cover.” Each image block generates 25 unique questions,
yielding a total of 14 758 150 question–answer pairs with
26 875 unique answers. To streamline the dataset, we limited
the answers to the 1000 most frequent ones, which constitute
98.1% of the total answer set. This constraint ensures alignment
with previous benchmarks [39]. We allocated 66%, 11%, and
23% of the image samples and corresponding question–answer
pairs to the training, validation, and testing sets, respectively.

B. Experimental Details

Our model was implemented in Python 3.8 and PyTorch 2.0,
and trained on two NVIDIA RTX 4090 GPUs, each with 24 GB
of RAM. The vision encoder was initialized with pretrained
weights from the ViT-B model [37], which had been trained
across a diverse array of RSIs datasets. BothNT andNv were set
to 3. For data augmentation, we employed RandAugment [40],
randomly cropping the input images to a resolution of 256× 256
pixels.

For the language encoder, we initialized with pretrained BERT
weights [41], setting NL to 12. The model was trained for 20
epochs with a batch size of 32, using the AdamW optimizer [42]
at an initial learning rate of 2e−5. A cosine schedule was applied
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TABLE I
COMPARISON OF THE PERS WITH EXISTING METHODS ON THE RSVQA-LR

DATASET

TABLE II
COMPARISON OF THE PERS WITH EXISTING METHODS ON THE RSVQA-HR

TEST SET 1

TABLE III
COMPARISON OF THE PERS WITH EXISTING METHODS ON THE RSVQA-HR

TEST SET 2

to gradually reduce the learning rate to 1e−8, with a decay weight
of 0.05 also applied.

C. Comparison Results and Analysis

In this section, we compare the performance of PERS with
several top-performing models on the RSVQA-LR, RSVQA-
HR, and RSVQAxBEN datasets. First, as shown in Table I, we
evaluate several models across four question types within the
RSVQA-LR dataset: “count,” “comparison,” “presence,” and
“rural/urban” region classifications. We also assess the overall
and average accuracies of these models. PERS achieves SOTA
results in the RSVQA-LR dataset for “count” and “rural/urban”
questions. The performance on “presence” and “comparison”
questions is lower by only 0.2% and 0.19% compared to bi-
modal [28] and MADNet [43], respectively. For “rural/urban”
questions, our model surpasses MADNet [43] by 3.33%, and
for “count” questions, it exceeds SHRNet [19] by 1.92%. In
addition, the average and overall accuracies of our model are
1.5% and 0.92% higher, respectively, than those of MADNet.

Tables II and III demonstrate the SOTA performance of
PERS across two test sets in the RSVQA-HR dataset, with
comparably strong performance observed in both the RSVQA-
LR and RSVQA-HR datasets. We evaluate the performance
across four question types in this dataset: “count,” “comparison,”
“presence,” and “area,” assessing both the average and overall
accuracy of various models. As indicated in Tables II and III,
although PERS did not surpass the SHRNet model on “Count”

TABLE IV
COMPARISON OF THE PERS WITH EXISTING METHODS ON THE RSVQAXBEN

DATASET

TABLE V
PERFORMANCE OF PERS IN RSVQA-LR AND RSVQA-HR DATASETS AFTER

TRAINING ON DIFFERENT DATASET SIZES

and “Presence” questions, the differences were marginal, with
gaps of only 0.25% and 0.36% in Test Set 1, and 1.19% and
0.9% in Test Set 2, respectively. Notably, PERS achieves SOTA
results for the “area” question type in both test sets, and for the
“comparison” question type in Test Set 2. Specifically, for the
“area” question type, PERS outperforms the previous best by
4.92% in Test Set 1 and by 5.51% in Test Set 2. Across both test
sets, PERS achieves SOTA results in terms of both average and
overall accuracy.

As shown in Table IV, we compared the performance of
various models on the “yes/no” and “land cover” question types
within the RSVQAxBEN dataset, including both the average
and overall accuracy of all models. Our model achieves SOTA
performance in both question types, as well as in terms of average
and overall accuracy. It surpasses the previously best-performing
model, LiT-4-RSVQA, by 2.77% and 3.41% on the “yes/no” and
“land cover” questions, respectively. The average and overall
accuracy of PERS are 3.09% and 2.48% higher, respectively,
than those of the previously proposed model.

D. Ablation Study

To further validate the efficacy of the proposed method,
we conducted comprehensive ablation studies across all three
RSVQA datasets. As indicated in Table VI, omitting the pre-
trained ViT weights from the large-scale RSIs datasets resulted
in a performance decline, with the most notable decrease being
a 1.19% drop in average accuracy in the RSVQA-LR dataset.
Removing the multimodal fusion module had a more substantial
impact than omitting pretrained weights. Eliminating the multi-
modal fusion module resulted in decreases of 2.47% and 2.54%
in overall and average accuracy, respectively, in the RSVQA-LR
dataset, and more than a 1% reduction in RSVQA-HR Test Set
1. In RSVQA-HR Test Set 2, overall and average accuracies
decreased by 1.6% and 1.51%, respectively. Similarly, in the
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TABLE VI
ABLATION STUDY USING PERS MODELS WITH DIFFERENT VARIANTS ON RSVQA-LR, RSVQA-HR, AND RSVQAXBEN DATASETS

TABLE VII
COMPARISON OF DIFFERENT NUMBER OF LAYERS IN THE MULTIMODAL FUSION MODULE ON RSVQA-LR, RSVQA-HR AND RSVQAXBEN DATASETS

RSVQAxBEN dataset, overall and average accuracies decreased
by 1.31% and 1.8%, respectively. In additton, training with
full parameters yielded results comparable to adapter-based
fine-tuning, with gaps ranging from 0.04% to 0.12% in the
RSVQA-LR and RSVQA-HR datasets, respectively, with the
largest gap being 0.27% in the RSVQAxBEN dataset. Notably,
the overall accuracy in the RSVQA-LR and the average accuracy
in the RSVQA-HR Test Set 2 were slightly higher than those
achieved with full parameter training. Meanwhile, we replaced
the adapter with a fully connected layer enhanced by low-rank
adaptation (LoRA). As a parameter-efficient transfer learning
technique, the model’s performance, after the replacement with
LoRA, was inferior to our method across the three datasets.
Specifically, on the RSVQA-HR Test Set 2, the overall accuracy
was the closest, differing by 0.07%. The largest performance gap
was in the average accuracy on the RSVQA-LR dataset, with a
difference of 2.8%. On average, across the three datasets, the
performance was 1.14% lower than our method.

To determine the optimal number of layers in the multimodal
fusion module, we conducted a comprehensive ablation study.
As shown in Table VII, we evaluated the performance of the
model across the RSVQA-LR, RSVQA-HR, and RSVQAxBEN
datasets with varying numbers of layers, ranging from 1 to 6.
When the multimodal fusion module consisted of a single layer,
the model achieved an overall accuracy of 86.45% and an aver-
age accuracy of 87.9% on the RSVQA-LR dataset. In RSVQA-
HR Test Set 1, the model’s overall accuracy was 85.99%, and the
average accuracy was 86.18%. In RSVQA-HR Test Set 2, the
model’s overall accuracy was 81.62%, and the average accuracy
was 81.63%. In the RSVQAxBEN dataset, the overall accuracy
was 83.23% and the average accuracy was 67.42%. Interestingly,

we observed that the model’s performance improved with an
increase in the number of module layers, achieving optimal
performance when the multimodal fusion module contained four
layers. Moreover, increasing the number of layers to five or
more resulted in performance leveling off or slightly degrading,
suggesting that adding additional layers to the multimodal fusion
module does not necessarily improve performance and may
introduce unnecessary complexity.

To further examine our method’s sensitivity to the size of
training datasets, we conducted detailed ablation studies on the
RSVQA-LR and RSVQA-HR datasets. As indicated in Table V,
our experiments encompassed various training set sizes, includ-
ing 10%, 20%, 30%, 40%, and the entire training set. We was
observed that PERS achieved an overall accuracy of 83.63% and
an average accuracy of 85.28% on the RSVQA-LR dataset with
only 10% of the training data, demonstrating strong adaptability
to small-scale datasets. As the size of the training set gradually
increased, the model’s accuracy steadily improved. When the
training dataset size reached 30%, the overall accuracy of PERS
was nearly equivalent to that of the current best-performing
model, MADNet [43]. Specifically, when the training set size
increased to 40%, PERS outperformed MADNet [43] in both
average and overall accuracy. Similarly, with only 10% of the
training data for the RSVQA-HR datasets, the overall accura-
cies for Test Set 1 and Test Set 2 were 85.51% and 79.88%,
respectively. When the training set size was increased to 20%,
PERS had already surpassed MADNet, and at 40%, its perfor-
mance was nearly comparable to that achieved with the full
datasets. Fig. 3 further illustrates the performance of PERS and
bimodal [28] after training on datasets of varying sizes within
the RSVQA-LR and RSVQA-HR datasets. In these line charts,
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Fig. 2. Examples of three RSVQA datasets, including different question types.

Fig. 3. Comparison of performance of different models on RSVQA-LR and RSVQA-HR datasets after training on different training set size. (a) RSVQA-LR.
(b) RSVQA-HR Test Set 1. (c) RSVQA-HR Test Set 2.

PERS’s performance is represented by the red line, while the
blue line depicts the performance of bimodal [28]. It is evident
that PERS consistently outperforms bimodal [28] across the
same sizes of training datasets. This demonstrates that PERS can
achieve competitive performance even with a relatively limited
amount of training data.

To explore the impact of the dimension m in the adapter,
we conducted comprehensive ablation experiments for different

sizes of m, as shown in Table VIII. The other dimension size,
d, represents the input and output dimension of the adapter
and must be consistent with the hidden layer dimension size
of ViT, thus, it is fixed at 768. In Table VIII, the smallest m
is 8 and the largest is 512, with intermediate values of 16,
32, 64, 128, and 256, which are common reduced dimensions
in parameter-efficient transfer learning techniques. In addition,
384, which is half of the ViT hidden layer size of 768, is the
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TABLE VIII
PERFORMANCE OF PERS IN RSVQA-LR AND RSVQA-HR DATASETS AFTER

TRAINING ON DIFFERENT M SIZES IN ADAPTER

TABLE IX
IMPACT OF M VARIATIONS WITHIN THE ADAPTER ON TRAINABLE PARAMETERS

final size of m chosen for our method. As m gradually increases
from 8 to 256 and 384, the model’s performance on different
datasets reaches its peak. However, when further increased to
512, the model’s performance decreases compared to 384 on the
RSVQA-LR and RSVQA-HR Test Set 2 datasets, with average
decreases of 0.55% and 1.31%, respectively. On the RSVQA-HR
Test Set 1, there is a slight increase of approximately 0.35%.
Therefore, it is evident that the size of m in the adapter should
be neither too large nor too small, and approximately half the
size of d is optimal. Meanwhile, we also studied the change
in the number of trainable parameters, as shown in Table IX.
Compared to when m is 8, as m increases, the growth rate of the
number of trainable parameters also increases. However, even
when m is raised to 512, the proportion of additional trainable
parameters is only 1.23%. When the model performs best at
384, the number of trainable parameters increases by only 0.92%
compared to the smallest m. As shown in Table VIII, the model’s
performance is optimal at m values of 256 and 384, and the
increase in parameters is within an acceptable range. Therefore,
these two m values are ideal choices.

E. Visualization

To further enhance our model’s interpretability, we employed
Grad-CAM [47] to visualize the cross-attention maps that our
model predicts for the RSVQA task. This approach highlights
the image regions most influential in the model’s decision-
making process for answering specific questions. As illustrated
in Fig. 4, we present four examples of attention maps overlaid on

the original images from the RSVQA-HR dataset. In Fig. 4(a),
the image corresponds to the question “Is there a residential
area?” Consequently, the model focuses on the residential areas
depicted. Similarly, Fig. 4(d) corresponds to the question “How
many cars are there?” The model focuses on the cars, enabling
an accurate count and a prediction of “2.” For the “area” question
type, as shown in Fig. 4(c), the question asked is “What is the
area covered by commercial buildings?” The model concentrates
on the commercial buildings depicted. The highlighted section
of the image represents the area of the commercial buildings,
enabling the model to accurately estimate this area as “between
1 and 10m2,” consistent with the ground truth. These visualiza-
tions further elucidate how the model interprets image and text
information to generate corresponding answers, underscoring
its capability to comprehensively understand the input images
and language data.

V. DISCUSSION

The experimental results demonstrate that PERS outperforms
existing top models in both overall and average accuracy across
three benchmark RS datasets: RSVQA-LR, RSVQA-HR, and
RSVQAxBEN. PERS achieves optimal performance in “count”
and “rural/urban” question types within the RSVQA-LR dataset.
In the RSVQA-HR dataset, PERS shows superior performance
in the “area” question type in Test Set 1 and both “area” and
“comparison” types in Test Set 2, with similarly outstanding
results in RSVQAxBEN. PERS is specifically designed for the
RSVQA task and incorporates a lightweight, parameter-efficient
adapter utilizing pretrained weights. The modular design of the
adapter enables independent training and adjustment, reducing
interference with the main model. Training adapter keeps the
majority of the vision encoder parameters unchanged, preserv-
ing the extensive knowledge embedded in the pretrained model.
Specifically, in the vision encoder, the trainable parameters
account for only about 1.98% of the total parameters, with the
total reaching approximately 90 M. Although full-parameter
training can bring slight improvements, as shown in Table VI, the
largest performance improvement appears in the RSVQAxBEN
dataset, which is only 0.27%. Moreover, in some datasets, such
as RSVQA-LR, the overall accuracy decreases. Meanwhile, the
increased training cost is significant, demonstrating the effec-
tiveness and efficiency of this method. This approach enhances
performance and generalization on specific tasks, providing a
significant advantage in learning new tasks. In addition, the
adapter serves as a regularizer to some extent. By limiting
changes to the model parameters, the adapter technique miti-
gates overfitting, especially in data-constrained scenarios. This
regularization effect enhances the model’s generalization on new
tasks. This method reduces training costs and resource consump-
tion while maintaining competitive performance, thus achieving
unparalleled success in the RS VQA task. This underscores
the feasibility of parameter-efficient approaches for effectively
managing large-scale RSIs and highlights the potential of such
architectures in RS applications.

Central to PERS, the multimodal fusion module employs
self-attention and cross-attention mechanisms, representing a
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Fig. 4. Attention maps of RSIs for different question types.

significant advancement in integrating visual and textual in-
formation. This architecture facilitates a nuanced and context-
sensitive interpretation of input data, crucial for accurately ad-
dressing complex questions about RSIs and surpassing existing
models on baseline datasets. Table VI demonstrates that the
multimodal fusion module significantly enhances model perfor-
mance. The effective fusion of multimodal information not only
achieves higher accuracy but also underscores the importance
of intricate intermodal interactions in boosting RSVQA system
performance.

Furthermore, as shown in Table VII, we analyzed the model’s
sensitivity to varying numbers of multimodal fusion layers.
As the number of layers increased from 1 to 6, the model’s
performance on three datasets progressively improved, peaking
at three to four layers before gradually declining. Similarly, we
analyzed the model’s sensitivity to the dimension size m in the
adapter, as shown in Table VIII. The performance trend was
similar to that observed with the Table VII: as m increased from 8
to 512, the model’s performance gradually improved, peaking at
256 and 384, before declining. From these two tables, it is evident
that there is a consistent trend of performance improvement
followed by a decline as the parameters increase. Notably, we set
the maximum number of fusion layers to 6, which is commonly
used in practical applications. The theoretical maximum value
of m is consistent with d at 768, a frequently used hidden
layer size in non-PEFT research. When these two parameters
are approximately halved to 3 and 384, the model performs

optimally. This observation may serve as a reference for future
studies in similar contexts.

Meanwhile, we conducted a detailed sample analysis for
PERS, with several typical examples shown in Fig. 5. These
samples were selected from the RSVQA-LR, RSVQA-HR Test
Set 1, and RSVQA-HR Test Set 2 datasets. PERS exhibits
varying performance across different types of questions. Com-
pared to other question types, PERS is most prone to errors in
“count” questions. As indicated in Tables I–III, this is also the
type where PERS performs the worst overall. For other types
of questions, PERS can achieve accuracy rates of 89.12% or
even 98.33%. However, in the RSVQA-LR dataset, the accuracy
for “count” questions is only 75.79%, and in the RSVQA-HR
Test Set 1 and Test Set 2, the accuracy is 69.79% and 62.23%,
respectively. From the examples in Fig. 5, it can be observed that
PERS performs well when the count result is zero. However, the
accuracy decreases as the number of targets, such as roads or
houses, increases. For instance, in the bottom right example,
the actual number of houses is 51, but the model counts 22. In
scenarios with fewer targets, such as the middle right example,
where the actual number is 6 and the model counts 3. It can be
seen that not all buildings are fully visible in the image, if only
buildings with larger segmented areas are considered; the model
might interpret there to be only three buildings, specifically in the
upper left, upper right, and lower right parts of the image. This
phenomenon is not unique to our study. The comparative studies
listed in Tables I–III also show poor performance specifically
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Fig. 5. Performance of PERS on typical samples in RSVQA-LR and RSVQA-HR datasets, from top to bottom, are RSVQA-LR,RSVQA-HR Test Set 1,RSVQA-
HR Test Set 2, respectively.

on “count” questions. This insight may guide future research
in RS.

Despite PERS’s advantages, its limitations offer significant
opportunities for further research. Although effective, the in-
clusion of multimodal fusion modules in PERS may introduce
inefficiencies in scenarios that demand real-time processing.
Future research on PERS could explore more dynamic and
scalable multimodal integration methods and more efficient
parameter training strategies, potentially employing advanced
transfer learning or adaptive learning techniques, to better bal-
ance performance with computational costs. Furthermore, cur-
rent research on multimodal large language models is expand-
ing, demonstrating significant achievements in both general
and specialized domains, such as healthcare and autonomous
driving. This trend suggests a promising research trajectory for
RS applications.

VI. CONCLUSION

In this article, we propose PERS, a novel parameter-efficient
multimodal transfer learning model for RSVQA. We initialize
the vision encoder with a ViT pretrained on large-scale RSIs
datasets and introduce a lightweight, parameter-efficient adapter
module within this encoder. By training on only a minimal subset

of parameters, we achieve performance nearly equivalent to that
of fine-tuning with full parameters. Concurrently, we develop
a multimodal fusion module that utilizes both self-attention
and cross-attention mechanisms, enabling the model to fully
leverage multimodal information. Our approach achieved SOTA
performance on three benchmark RS VQA datasets, and we
further validated our model’s exceptional performance on ex-
tremely limited training datasets. Moreover, we demonstrate our
model’s interpretability by showcasing attention maps.
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