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SAR2ET: End-to-End SAR-Driven Multisource ET
Imagery Estimation Over Croplands
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Abstract—Evapotranspiration (ET) is a crucial parameter in
agriculture as it plays a vital role in managing water resources,
monitoring droughts, and optimizing crop yields across different
ecosystems. Given its significance in crop growth, it is essential
to measure ET accurately and continuously to conduct precise
analyses in agriculture. However, the continuous monitoring of
ET changes is very challenging: while in-situ measurements are
costly and not feasible for covering a wide geography, remote
sensing-based ET products are typically dependent on optical
satellites that cannot operate and transmit data under certain
weather conditions, especially in the presence of clouds. In this
article, we present the first comprehensive study on predicting ET
from synthetic aperture radar (SAR) imagery, which we refer to
as SAR2ET. Our work is motivated by the fact that SAR has the
critical advantages of being all-weather available and sensitive to
crop and soil changes. In handling the SAR2ET problem, we addi-
tionally incorporate nonoptical meteorological and topographical
input data from auxiliary data sources. We approach SAR2ET as a
multimodal image-to-image translation task, for which we train a
UNet-shaped network. To evaluate the effectiveness of SAR-based
ET predictions, we construct a benchmark dataset over a large
geographical region with image samples covering a whole agri-
culture season. Our experimental findings on this dataset suggest
that first, the proposed approach leads to strong results, second,
valuable information can be extracted from both SAR and auxiliary
data sources, and finally, SAR2ET is overall a promising research
direction toward obtaining data-driven year-round ET estimates.
The benchmark dataset will be shared publicly upon publication
to stimulate future work.

Index Terms—Agriculture, climate change, disaggregation,
Earth engine evapotranspiration flux (EEFlux), evapotrans-
piration (ET), Sentinel-1, weak supervision.

I. INTRODUCTION

EVAPOTRANSPIRATION (ET), the evaporation from the
surface of water-bodies, soil and vegetation, is a key param-

eter in agriculture, particularly for water management and for
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efforts to optimize yield. ET depends on complex interaction of
meteorological variables, such as air temperature, humidity, so-
lar radiation, and wind speed over vegetated surface, making its
prediction challenging [1]. Typically, field-scale ground-based
measurements are used to predict ET; however, these measure-
ments cannot consider the spatial distribution characteristics of
the soil and are not enough to provide necessary information
at large scale agriculture. In contrast, conventional space-based
remote sensing (RS) sensors are relevant for large scale moni-
toring, as they obviate the demanding ground-based surveys and
provide detailed information about not only the characteristics of
the soil and vegetated surfaces but also meteorological variables.
Hence, there are RS-based global ET products covering different
complex environment, such as the Global Land Evaporation Am-
sterdam Model (GLEAM), the MODerate Resolution Imaging
Spectroradiometer-MOD16 (MODIS), the Global Land Data
Assimilation System (GLDAS), and numerical terradynamic
simulation group [2]. Nevertheless, when it comes to agriculture,
their usage is limited due to their spatial resolution.

Given that ET plays a critical role in crop growth, the timely
and continuous measurement of ET is essential for accurate anal-
ysis in agriculture [3], [4]. Indeed, the spatio-temporal resolution
of RS-based ET products is restricted by the characteristics of the
thermal infrared channel of the sensors. In order to obtain high
resolution ET product, accordingly high resolution land surface
temperature (LST), there has been a strong interest in data fusion
techniques including spatial downscaling and spatiotemporal
fusion [5], [6], [7], [8]. In spatiotemporal fusion tasks, the
basic hypothesis is that high resolution thermal image can be
reconstructed using medium resolution thermal image acquired
under clear-sky. In addition to this, downscaling methods also
take into account the assumption that the relationship between
the LST and the auxiliary data, i.e., land cover, soil indices,
digital elevation model (DEM), etc., is not varying along the
spatial scale. For both approaches, machine learning methods,
particularly supervised regression methods, have densely been
used to establish a transition model for characterizing these
multiscale nonlinear relationships. Xue et al. [9] underlined the
importance of temporal sampling of high resolution Landsat
images using other sources of medium-resolution thermal imag-
ing (i.e., MODIS and ECOSTRESS) for rainfed agriculture.
Similarly, Li et al. [5] designed a downscaling coupled with
spatiotemporal fusion based framework for combining different
resolution thermal images for having temporally more regular
LST data. Dong et al. [10] analyzed 32 geographically diverse
LST data with 35 different downscaling methods including
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different types of scaling factors and regression models. In the
study by Xiao et al. [11], RF model is redesigned to derive LST
for cloudy pixels by mapping input vector including water index,
solar radiation factor, vegetation index, topographic informa-
tion, and latitude onto an output vector LST, where the samples
are from clear sky pixels.

Recently, with the improvement of neural networks (NNs),
spatiotemporal fusion networks have been proposed to generate
fine resolution LST images. Chen et al. [12] have used a vari-
ational interference model based on a conditional variational
autoencoder to learn the temporal and nonlinear relationship
between the high and medium resolution LST images. Instead,
Zhang et al. [13] have improved the NN-based networks and
offered multi-information fusion network based on convolu-
tional NN and attention mechanism using MODIS LST and
ERA5 meteorological variables together. Mpakairi et al. [14]
have also proposed similar methodology; strategically integrates
data from multiple sources, including public repositories (e.g.,
cropland data, field data) using deep learning NN and RF. All
these studies have showed that for high resolution ET product,
multisource data-based framework is promising approach and
deep learning-based methods are good at modeling complex
relationship among these data.

Although with these fusion techniques, the new generation
sensors provide high spatial resolution thermal imaging and its
products, their availability remains uncertain due to the cloud
coverage problem. In addition, the lack of temporally regular
thermal sensor is one of the key challenges identified in the
agriculture. In this regard, recent studies have sought to explore
supervised and unsupervised domain adaptation and transfer
learning techniques using microwave sensors [i.e., passive ra-
diometers and active synthetic aperture radar (SAR) images]
with the capability of operating in all weather conditions, day
and night, to obtain high resolution temporally regular biophys-
ical parameters (such as LAI and NDVI), which are typically
derived from optical and thermal sensors [15], [16], [17], [18],
[19].

Zhang et al. [20] proposed a RF-based model to understand
the complex relationship between microwave radiometer and
thermal LST imaging. The model improved the timeliness of
the thermal LST product by including daily soil moisture (SM)
information from low resolution radiometer, specifically; ad-
vanced microwave scanning radiometer for the Earth observing
system. Zhu et al. [1] combined microwave-based SM data and
MODIS LST data with more physical-based model. In all those
studies, the main purpose of leveraging microwave radiometer
information, even with the cost of low resolution, is making use
of the sensitivity of microwave sensing to dielectric constant
variations. In this context, Sentinel-1 mission allows for the first
time to provide dense temporal (approximately weekly) and high
spatial (∼ 10 m) resolution SAR data, which is not possible with
passive microwave sensors due to the practical restrictions on
their spatial resolution. In addition, its free data policy has made
Sentinel-1 accessible for regular mapping, which is essential for
understanding all the other variables in dynamic agriculture [16],
[21], [22], [23].

Amarzirh et al. [24] used Sentinel-1 data to characterize
spatial variability of SM for fusion of high spatial Landsat-9

LST and medium resolution MODIS LST data. Their results
when applied to two different agricultural sites underlined the
importance of taking into account the Sentinel-1 as input to
the disaggregation. Similarly, Chintala et al. [18] combined
Sentinel-1 with Sentinel-2 and Sentinel-3 LST to directly es-
timate actual ET fluxes for croplands under high cloud cover.
Besides its backscattering, Ouaadi et al. [25] also used Sentinel-
1’s weekly coherence information, which is linked to the vertical
morphology of crops, for ET estimation. Similarly, for sugarcane
ET, Alavi et al. [26] proposed using Sentinel-1in the case of
unavailability of Landsat-8 LST data in the cloudy conditions.
Whether using a pure data-driven or a physical-based method-
ology, all these recent studies aim to leverage the relationship
between SAR and ET, which lies in the ability of SAR to
provide information about the structure and water content of
soil-vegetation volume.

Despite the advantage of using Sentinel-1 coupled with opti-
cal sensors for ET estimation, the requirement of sequential high
spatial resolution optical data cannot be ignored. Specifically,
for rainfed croplands, the performance of any model relying on
optical sensor cannot satisfy the expectations, and the spatial
resolution of any high temporal resolution optical data would
not be enough for field-scale agriculture [14], [27], [28]. To ad-
dress these difficulties, this work proposes a weakly supervised
learning (WSL) framework to estimate ET as target and high
spatial resolution Sentinel-1 and climate variables as inputs for
having cloud-free regular ET product over croplands.

In this study, we first constructed a benchmark dataset to facil-
itate systematic investigations into SAR-driven ET estimation.
This dataset includes both static and dynamic (time-dependent)
data related to topography and meteorology, obtained from
various sources with differing spatial and temporal resolutions,
covering a vast geographical region. The dataset primarily com-
prises ET and SAR data, and multiple auxiliary weather, SM,
topography, and soil texture variables. This benchmark dataset
provides a foundation for our subsequent experimental analysis
in later sections. Then, we proposed a SAR2ET1 model that
utilizes a UNet-like architecture that performs patch-level map-
ping, taking a combination of SAR and auxiliary data patches as
inputs and predicting a corresponding ET patch, as summarized
in Fig. 1. To train the model, we incorporated multiple data aug-
mentation techniques and a customized mean squared loss error
that emphasizes only high vegetation pixels. Then, we analyzed
the effect of using auxiliary data from different sources, with
or without SAR, on the overall accuracy of ET estimation. We
assessed the accuracy using multiple evaluation metrics, and we
further examined the performance of our proposed approach on
samples grouped geographically and temporally and conducted
additional analyses that are explained in detail in Section IV.

II. DATA SOURCES AND PREPROCESSING

To enable systematic studies on SAR-driven ET estimation,
we carefully construct a benchmark dataset. To explore the
potential value of auxiliary data sources, we also incorporate

1The SAR2ET dataset will be made available at:https://github.com/Agcurate/
SAR2ET
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Fig. 1. Graphical representation of SAR-based ET estimation: SAR2ET.

TABLE I
DATA EMPLOYED IN THIS STUDY FOR WEAKLY SUPERVISED SAR-DRIVEN ET ESTIMATION

various temporally static and dynamic data sources. In our
selection of dynamic auxiliary data sources, we avoid options
that would imply a dependency on optical sensors so as to
maintain operability during weather events. Finally, the crop-
land masks are utilized to focus on agricultural regions, and
Sentinel-2-based NDVI data only for experimental analysis.

A summary of all data sources, including temporal and spatial
resolutions, are provided in Table I. The following paragraphs
define the time period and geographical regions used in data
collection, and the details of individual data types.

A. Time Period and Geographical Regions

To conduct this study, Landsat-based ET imagery is down-
loaded from the open source Earth engine evapotranspiration
flux2 (EEFlux) [29] for our selected area of interest between
March 1 and September 30, 2021, and resampled to a 10-m
resolution. Corresponding SAR (Sentinel-1) imagery and auxil-
iary data, such as meteorological variables, SM, topography,
soil texture, cropland mask, and NDVI (Sentinel-2) are all
downloaded from the Google Earth Engine (GEE) platform.
In order to identify the study area, we first selected regions

2EEFlux: https://eeflux-level1.appspot.com

with significant agricultural activity. We then gathered all the
available ET data in the vicinity of these regions, including any
additional areas that may be covered, resulting in a large study
area, as shown in Fig. 2. The time interval was selected to gather
data that covers the majority of the agricultural season in the
study area. This allows us to evaluate our approach on various
crop development phases.

B. ET Data

EEFlux is used as the source for the actual ET data. EEFlux is
a version of mapping evapotranspiration at high resolution with
internalized calibration [30], a satellite-based image processing
model. It operates on the GEE system and provides global ET
products in 30-m spatial resolution based on Landsat data. The
data was collected using Landsat with a revisit frequency of
approximately 16 days. We retrieved a total of 121 ET data
rasters based on 11 predefined distinct regions within a prede-
fined date range. Although each raster covers a vast region of
approximately 54 000 km2, only a relatively small portion of
all ET data are included in the final dataset after going through
the process of patch extraction. EEFlux-derived ET serves as
a viable alternative to field measurements in various studies.
The efficacy of this estimation method has been corroborated

https://eeflux-level1.appspot.com
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Fig. 2. Study area. The dataset consists of patches from specific regions with high agricultural activity, centered on 11 predefined areas. A1, A2, and A3 are
chosen for the Aegean region (as shown in Section II-A, B1 and B2 for the The Balkans (Section II-A), M1, M2, and M3 for Marmara Region (Section II-A), and
CA1, CA2, and CA3 for the Central Anatolia (Section II-A). (a) Aegean region. (b) Balkans. (c) Marmara region. (d) Central anatolia.

by Nisa et al. [31] and Kadam et al. [32], who demonstrated
its satisfactory performance through comparison with ground
observations in their respective works.

C. SAR Data

This study uses Sentinel-1 (S1) ground range detected prod-
ucts in 10-m resolution as the SAR data source. The inter-
ferometric wide swath mode of the radar satellite is used to
obtain both log-scaled VV and VH backscatters. By default, the
data undergoes preprocessing steps, such as thermal noise re-
moval, radiometric calibration, and terrain correction. Backscat-
ter values are separately collected according to the direction of
the orbit, either descending (DSC) or ascending (ASC). They
are subsequently subjected to incidence angle filtering (any
backscatter values with an incidence angle below 30o or above
42o are excluded) due to the high impact of angle changes
on agricultural products. In addition, to avoid redundant data
points and reduce speckle effects in S1 scenes, edge filtering
(by removing backscatter values lower than -30◦) and spatial
smoothing (by using a 5 × 5 average smoothing kernel) are
applied. In order to acquire the final S1 data for every target ET
data, all the available S1 data from a week prior to and a week
after the date of ET data are gathered. The collected S1 data is
then mosaicked based on their closeness to the date of ET data to
obtain a single S1 raster that corresponds to the target ET and to
fill in any gaps that may have been created due to incidence angle
filtering and edge filtering. Finally, a cross ratio (CR) (VH-VV,

in log scale) is included as an extra band to facilitate further ET
estimation tasks.

D. Dynamic Auxiliary Data: Meteorological and SM

For the auxiliary meteorological (dynamic) data, we utilize
global ERA5-Land Daily Aggregated [33] and soil moisture
active passive (SMAP) [34] datasets, which offer daily data. The
ERA5 reanalysis dataset provides a range of meteorological data
directly influencing the rate of ET, such as temperature (mea-
sured 2 m above the surface), dewpoint temperature (measured
2 m above the surface), total precipitation, U and V components
of wind (measured 10 m above the surface), surface net solar
radiation, and surface pressure. These weather data variables
have a spatial resolution of about 11 km. The SMAP dataset, on
the other hand, provides SM data on a daily basis with a spatial
resolution of 9 km.

E. Static Auxiliary Data: Topography and Soil Texture

For the auxiliary static data, we utilize ALOS World 3-D [35]
and SoilGrids [36] datasets. The ALOS World 3-D global digital
surface model provides static parameters of the height (m), slope
(◦), aspect (◦), and hillshade (◦) with a 30-m spatial resolution,
which have impact on ET through their influence on temperature
distribution and solar radiation exposure. The SoilGrids dataset
offers comprehensive data on soil attributes worldwide, with
a spatial resolution of 250 m. This study focuses on four vital
parameters of SoilGrids for the ET: the bulk density (bdod), clay,
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sand, and silt ratios of the fine Earth component at a depth of
0–5 cm beneath the surface, which are important for understand-
ing water storage capability in the soil profile.

F. Third-Party Data: NDVI and Cropland Mask

In order to further analyze the benefits of our research with
a focus on the vegetation activity, we gathered the two 10-m
bands, red (band 4) and NIR (band 8), from the Sentinel-2 (S2)
satellite (L2A product) to calculate the NDVI. Similar to the
coregistration of SAR data, to obtain the final NDVI data for each
target ET data, the available red and NIR bands of S2 from one
week before and one week after the ET data’s date are collected.
These data are then combined based on their proximity to the
ET data date through a process called mosaicking. This method
is used to fill in any gaps that may have resulted from clouds
since the products with a cloud probability greater than 10% are
filtered out, and the remaining products are further filtered using
a cloud mask based on the QA band.

As we focus on ET estimation on agricultural regions, crop-
land masks are essential. Rather than crafting the masks from
scratch, we make use of the Dynamic World (DW) [37] dataset
presented in 10-m resolution. We collected all available land
cover masks for the targeted regions in the year of the study and
then determined the crop pixels that are consistently indicated
as crops throughout the year in each scene.

III. METHOD

In this section, we formally define our problem setting for
end-to-end ET prediction, explain the details of the benchmark
that we construct from the data sources defined in Section II,
and give the details of the proposed multisource approach.

A. Problem Definition

We approach the multisource SAR2ET problem as a patch-
level mapping task. We presume that the training set Dtrain

consists of input and target ET image patch pairs (x, y). All data
sources are resampled to 10-m resolution. Therefore, each input
x is obtained by concatenating the input data tensors, i.e., x ∈
RH×W×|C|, where H and W refer to the height and width, and
C indicates the input channels. The list C is obtained by select-
ing a combination of {CSAR, CERA5, CDEM, CSMAP, CSoilGrids},
corresponding to the data sources presented in Table I. Each
target output is similarly of the same spatial dimensionality, i.e.,
y ∈ RH×W .

The SAR2ET model is represented by the function f(x; θ) :
RH×W×|C| → RH×W , parameterized by the trainable param-
eters θ. Therefore, the modeling problem is essentially seen as
learning an image-to-image translation model from the inputs to
the target patch of corresponding ET values. We note, however,
that the task involves a fundamentally WSL problem: while the
primary input SAR imagery provides a native 10-m resolution,
the model is constructed at this most detailed resolution level,
the ET imagery originally has 30-m resolution. The fact that the
targets come from a 3× lower-resolution sensor imply that a

single supervisory signal is provided effectively every 9 output
pixels.

We also highlight that the modeling problem is challenging
at the input side as well. First, we observe that most auxil-
iary data sources have original resolutions different from, and
sometimes much lower than the model’s operating resolution,
e.g., SM has 9 km resolution as opposed to the 10-m modeling
resolution. Second, some of the input channels contain data
with highly different modalities. Third, the sources are coarsely
geo-registered, especially due to drastic resolution differences,
pixels are only coarsely across the data channels. All these
factors greatly increase the difficulty of the modeling task.

The model selection and final evaluation steps are carried
out on held out validation and test datasets, referred to as Dval

and Dtest, respectively. These datasets are presumed to contain
input and target ET image patch pairs with the same spatial and
spectral specifications.

B. Approach Details

In the following parts, we present the approach details, in-
cluding the benchmark construction, network architecture, data
augmentations, the loss function, the evaluation metrics and the
model selection methodology.

Benchmark construction: Creating a benchmark dataset for
studying SAR2ET predictions is a central part of our work. As
mentioned in Section II, we collected matching rasters from
various data sources to create a complete dataset that includes
and is based on 121 target ET rasters collected in 2021. Each
sample in the dataset consists of an ET patch and corresponding
patches from different data sources that cover the same exact lo-
cation and belong to the same or a closer date to ET’s date. Once
all the data sources, covering the same locations and dates, are
gathered, we carefully extract patches that are 128×128 pixels
in size. We take care to ensure that none of the patches from
any data source contain any invalid pixel values that may have
resulted from no data and nonterrain pixels, or cloud pixels if
the data source is optic-satellite-based. Furthermore, patches
that do not contain any crop pixels, as determined by cropland
masks (refer to Section II-F), are also excluded. After completing
the pairings of the patches, a major challenge was the uneven
distribution of patches collected over a wide geographic area and
time range. To this end, we ensured that the patches were split
into sets in an equally distributed manner. Therefore, we split
the data into train, validation, and test sets using a 70%, 15%,
and 15% ratio, respectively, by adopting a splitting strategy that
applies the same split ratio to each individual ET raster and its
matching rasters of different data sources to ensure the patches
were proportionally distributed from different regions and dates
into each split. As a result, we obtained 447 951, 95 939, and 96
111 patches in the train, validation, and test sets, respectively.

Network architecture: The network architecture is a modified
version of the fully convolutional UNet [38], featuring four
layers that comprise both contracting and expansive paths, and
double convolution operations are utilized throughout the for-
ward pass. The contracting path follows a standard convolutional
network approach, utilizing repeated 3×3 kernel convolutions.
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Each convolution is succeeded by a rectified linear unit and a
max pooling operation. The expansive pathway combines the
extracted feature and spatial information through a sequence of
up-convolutions. To maintain the original size of the features,
padding is applied, as the size diminishes after each convolution
step in the original UNet implementation. In addition, batch
normalization layers are added to double convolution blocks for
more stable and efficient training.

In order to prepare the SAR2ET model input, we com-
bine SAR and auxiliary data patches and input them into the
model. Channel-wise concatenation is applied depending on the
SAR2ET model being trained. For example, if we are training
a basic SAR2ET model that uses only SAR patches to predict
ET, the input tensor will be shaped as (6 × 128 × 128) since
SAR data has six variables (see Table I). However, if we want to
train a SAR2ET model that predicts ET using both static (like
DEM) and dynamic (like ERA5) auxiliary data in addition to
SAR, we must concatenate patches from all data sources. In
this scenario, we concatenate patches of size (5 × 128 × 128)
for DEM, (7 × 128 × 128) for ERA5, and (6 × 128 × 128) for
SAR, to obtain a final patch of size (18 × 128 × 128), which is
fed into the model as input.

Data augmentations: In order to prevent overfitting and artifi-
cially increase the number of training examples for the model, we
use a data augmentation pipeline that involves various geometric
augmentations, such as 90◦ rotations (with a uniform probability
of rotating between 0 to 3 times), and horizontal and vertical
flipping (with a 50% probability), applied to each training
example. During training, we applied the same augmentations
equivalently to each input patch from different data sources
(SAR, ERA5, DEM, etc.) and target ET patch.

Masked loss: We approach the problem of estimating ET as a
regression task, and simply use the mean squared error (MSE)
loss for model training. To ensure that we focus on lands with
high agricultural activity, we have utilized the binary cropland
masks corresponding to each patch, using the corresponding
mask source explained in Section II-F. Consequently, we in-
corporate the cropland masks into the final loss function, �,
via pixel-wise masking. The masked loss function is defined
as follows:

�(ŷ, y) = MSE(ŷ, y)�M (1)

where y and ŷ represent the ground truth and predicted ET,
respectively, both having the same size (1 × 128 × 128). The
binary cropland mask, denoted by M , has the same size (1 ×
128 × 128) but of boolean type and indicates the pixels with
high vegetation activity. The masking provides accumulating
gradient signals only over the cropland pixels.

Evaluation and model selection: To evaluate the quality of ET
predictions, MSE, mean absolute error (MAE), and coefficient of
determination (R2) metrics are used. During the training process,
a separate validation set is utilized to fine-tune the models and
prevent over-fitting to the training data. This is achieved by
calculating batch-averaged MSE, MAE, and R2 on the valida-
tion set. Once the hyperparameters are fine-tuned according to
their batch-averaged validation R2, their final performance is
evaluated on the separate test set. All reported quantitative and

qualitative results in the experiments section are based on the
performance of the models on the test set.

In order to speed up the training process, instead of using
all training examples, 85% of randomly selected examples are
iterated over in each epoch, which affects the learning rate
schedule and makes the entire training process more efficient
without any significant performance drop.

Summary: A summary of the model is provided as an il-
lustration in Fig. 3. Once the model is trained, we estimate
pixel-wise ET values based on SAR data as well as static data,
such as topographical and soil texture, and dynamic data, such as
meteorological and SM, which do not rely on optical satellites.
The influence of each input data type, as well as the overall
behaviour of the model, is evaluated and analyzed in the next
section.

IV. EXPERIMENTS

In this section, we thoroughly evaluate various SAR2ET mod-
els that estimate ET using different combinations of static and
dynamic data sources. We first provide a summary of important
implementation details. Then, in Section IV-B, we provide a
detailed quantitative comparison of the models, highlighting
their strengths and weaknesses, and showing the impact of differ-
ent data sources on ET estimation accuracy. More specifically,
we measure model performance using the evaluation metrics
explained in Section III-B, and analyze seasonal and regional
differences by evaluating these models across different study
areas to identify any regional disparities and analyze R2 scores
on a monthly basis for the year 2021. In Section IV-C, we provide
qualitative results to further examine the models’ performance.
This includes presenting visual examples of patches from the test
set and their corresponding predictions by the models. Finally, in
Section IV-D we evaluate the importance of SAR as a data source
for ET estimation in comparison auxiliary data sources, and
analyze the impact of soil texture and vegetation on estimation
quality.

A. Implementation Details

Instead of training multiple region-specific SAR2ET models,
we trained a single SAR2ET model using the train data con-
structed from crops in all four regions, collectively. With this
approach, we aim to teach the model a generalizable represen-
tation that can be applied to any unseen data from any of the
included regions in the inference stage.

To optimize the training of deep learning models, tuning
the learning rate is crucial, as it is one of the most sensitive
hyperparameters. To achieve this, we utilized Adam optimizer
with default parameters except for weight decay and adopted
the 1-cycle learning rate scheduling policy [39] since it offers
a principled and efficient learning rate tuning scheme, and high
learning rate values in the middle of the model training show
a regularization effect. With this approach, the learning rate
gradually increases from the initial rate to a maximum rate and
then decreases further to a minimum rate that is significantly
lower than the initial rate. We set the maximum learning rate
to 1e-4. Initially, the (initial) learning rate is set to 1/25 of
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Fig. 3. Illustration of the proposed SAR-based ET estimation approach. A U-Net-like SAR2ET model takes a combination (channel-wise concatenation) of data
patches from multiple nonoptical dynamic and static sources and predicts ET. With a low-resolution ground truth ET and a binary crop mask, the model learns to
optimize its prediction strategy with a focus on the pixels with high vegetation activity.

TABLE II
COMPARISON OF MULTIPLE SAR2ET MODELS TRAINED WITH DATA FROM

VARIOUS STATIC AND DYNAMIC DATA SOURCES ALONG WITH SAR FOR

ESTIMATING ET, IN TERMS OF MSE (MM/DAY), MAE (MM/DAY), AND R2 ON

THE TEST SET

this maximum value. It gradually increases and reaches the
maximum value at around 10 epochs. Afterward, the learning
rate gradually decreases to 1/1000 of the maximum value until
the end of the learning process. Apart from that, for all the
experiments, the weight decay is set to 1e-6, the batch size
is set to 128, and the models are trained for 50 epochs. All
experiments are performed on a system with a single GPU of
NVIDIA GeForce RTX 3090 Ti on the CUDA 12.0 platform
using PyTorch 2.0.1.

B. Main Results

In this section, we present the quantitative results and provide
a comprehensive understanding of the measured variables in our
study.

Table II shows the performance metrics of various SAR2ET
models that are trained using different combinations of static and
dynamic data sources, on the test set. The baseline SAR model
achieves an MSE of 0.94 mm/day, an MAE of 0.72 mm/day,
and a R2 of 0.63. However, as auxiliary static data sources

are added to the models, their performance further improves.
For example, when combined with SoilGrids data, the SAR
model’s R2 increases to 0.66. The inclusion of DEM data further
improves the model’s performance, resulting in an even higher
R2 of 0.69. Even better results are achieved when combining
SAR, DEM, and SoilGrids data altogether, with an MSE of
0.74 mm/day, an MAE of 0.63 mm/day, and a R2 of 0.71
(an 8-point improvement over the baseline), which shows the
significance of integrating multiple static data sources. However,
dynamic data sources, especially ERA5-based meteorological
data, also have a significant impact on enhancing model accu-
racy. To illustrate, the SAR model, when combined with ERA5
data, achieves an outstanding R2 of 0.80, a significant 17-point
improvement over the baseline, indicating the importance of me-
teorological data in SAR-based ET estimation. The best model
in this comparison incorporates SAR, ERA5, and DEM data,
achieving an MSE of 0.46 mm/day, an MAE of 0.49 mm/day, and
a R2 of 0.82 (a 19-point improvement over the baseline). This
underscores the synergistic benefits of combining both static
and dynamic data sources. Expanding this combination further
with SoilGrids data yields the nearly the same results across all
evaluation metrics, therefore, in the interest of brevity, we have
chosen to omit it. Similarly, although SM is directly related to
ET, the added value of SMAP-based SM data to SAR signal
could be overlooked in the presence of meteorological reanalysis
data. This is attributed to the spatial resolution of the SMAP
dataset, which is insufficient to capture field-level SM variations.
Instead, the meteorological parameters do not vary as much as
SM across the spatial domain. Overall, Table II emphasizes
the importance of integrating SAR, DEM, and ERA5 data to
enhance the accuracy of SAR2ET models for estimating ET.

Table III provides a detailed comparison of multiple SAR2ET
models, each trained with a combination of static and dynamic
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TABLE III
COMPARISON OF MULTIPLE SAR2ET MODELS TRAINED WITH DATA FROM VARIOUS STATIC AND DYNAMIC DATA SOURCES ALONG WITH SAR FOR ESTIMATING

ET BY MONTHS OF THE STUDY YEAR 2021, IN TERMS OF R2 (HIGHER IS BETTER) ON THE TEST SET

TABLE IV
COMPARISON OF MULTIPLE SAR2ET MODELS TRAINED WITH DATA FROM VARIOUS STATIC AND DYNAMIC DATA SOURCES ALONG WITH SAR FOR ESTIMATING

ET BY REGIONS CENTERED ON STUDY POINTS (SEE FIG. 2), IN TERMS OF R2 (HIGHER IS BETTER) ON THE TEST SET

data sources, for the purpose of estimating ET over the course
of the study year 2021. The primary focus of this analysis is the
variation in R2 scores across different time intervals (months of
the year), shedding light on the models’ performance throughout
the year. Examining the R2 scores by month, we observe distinct
patterns. The SAR-only model starts with relatively lower R2

values in March (0.37) and April (0.31) but gradually improves
its performance as the year progresses, achieving its highest R2

scores in July (0.63) and August (0.68). This suggests that the
SAR model becomes more accurate in capturing ET variations
as vegetation and environmental conditions change during the
warmer months. As additional data sources are incorporated
into the models, such as SoilGrids, DEM, SMAP, and ERA5
data, the R2 scores generally show improvement across all
months. The model trained with SAR, ERA5, and DEM data
consistently outperforms others, with the highest R2 scores
across all months, notably achieving a remarkable R2 of 0.85 in
August. This demonstrates that combining SAR with dynamic
(meteorological) and static (topographical) data significantly
enhances the model’s ability to estimate ET throughout the year.
Overall, Table III illustrates the importance of data integration
in SAR2ET modeling and highlights how the accuracy of ET
estimation varies by month, with SAR-based models becoming
more effective in capturing ET dynamics during the warmer
months of the year when the crops have sufficient developed
leaves for exchanges of mass and energy. In other words,
with vegetation growth the model is getting more sensitive
to Sentinel-1 parameters explaining depolarization based on

volume scattering. The clear relationship between SAR and ET
based on the crop’s volume gradually diminishes towards the
late season of crops (around September). This trend is attributed
to the radar signals’ high penetration into dry crop volume.

Table IV demonstrates notable improvements in the overall
performance of SAR2ET models across various geographic
regions. Initially, the SAR model exhibits moderate accuracy in
estimating ET, with R2 scores ranging from 0.56 to 0.71 across
different regions. However, as additional static data sources,
such as SoilGrids and DEM are integrated into the models, a con-
sistent enhancement in R2 scores is evident. The model trained
with SAR, DEM, and SoilGrids data, for instance, achieves a R2

value of 0.64 in the Aegean region (an 8-point improvement over
the baseline), illustrating the positive influence of static data,
topographical and soil texture information, on ET estimation.
This trend continues in other regions, including the Balkans (B),
Marmara (M), and Central Anatolia (CA), where the integration
of data sources like DEM and SoilGrids consistently improve
R2 scores by 7–8 points. The most remarkable performance
improvement is observed in the model trained with SAR, ERA5,
and DEM data, where R2 scores reach their maximum when
both the most significant static (DEM) and dynamic (ERA5) data
sources are present. In areas, such as the Balkans (B) and Central
Anatolia (CA), this model has shown remarkable R2 values
of up to 0.86 and 0.83, respectively. These values represent a
significant improvement of 15 and 21 points over the baseline
and indicate a robust correlation between model predictions and
observed ET data. These findings emphasize the importance of
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TABLE V
COMPARISON OF SAR VERSUS AUXILIARY DATA SOURCES

combining topographical data (DEM) and meteorological data
(ERA5) in SAR-based ET estimation, especially in areas where
these variables significantly influence ET dynamics.

C. Qualitative Results

In this section, we share and examine the qualitative results
of our study, providing a detailed analysis and discussions of the
insightful and contextually based information gathered from the
experiences.

Fig. 4 illustrates the comparison between ground truth ET
and predicted ET’s made by different SAR2ET models. Each
row shows a different example belonging to the test set. The
first column displays true-colored satellite imagery derived from
S2, while the next column shows their corresponding ground
truths ET’s. The remaining columns show the predictions made
by multiple SAR2ET model that are trained with different sets
of data that are indicated at the top of each column. Overall,
the figure suggests that the SAR2ET model, which harnesses
the synergy of meteorological data, topographical features, and
SAR, emerges as the most robust and accurate predictor of
ET. This combined approach allows the model to effectively
capture micro-seasonal weather patterns and local topographical
structures. Consequently, it consistently delivers ET predictions
that closely align with the target values. In contrast, the SAR2ET
model exclusively relying on SAR data exhibits limitations in
accurately representing the subtle nuances of micro-seasonal
variations in weather conditions and local terrain characteristics.
It tends to yield ET predictions that deviate from the expected
target, sometimes underestimating or overestimating the ground
truth ET. Meanwhile, the SAR2ET model that only relies on
a combination of auxiliary static and dynamic data sources
performs poorly in its ET predictions. The primary challenge
lies in the relatively lower resolution of the auxiliary data, which,
although capable of approximating average target ET values
more faithfully in certain instances, fails to capture the finer
details of ET variations across the study area (see Appendix for
additional results).

Furthermore, as demonstrated in the last row of Fig. 4, the
SAR2ET model has successfully proven its capability to accu-
rately estimate ET by capturing ground terrain signals through
the use of cloud-penetrating SAR images, even in the presence
of clouds.

Fig. 5 shows a comparison of ground truth and predicted mean
ET by date on four study areas (see Fig. 2). Each study area is ex-
plained with two subfigures. In the subfigure on top, the ground
truth mean ET (green circle) is shown as well as the mean ET
predicted by two SAR2ET models. The first model was trained
with SAR only (red triangle), while the second model was trained

with SAR, ERA5, and DEM data combined (blue square). In
the bottom subfigure, the residual error which refers to the
difference in errors obtained using both models, are presented.
Based on the figure, it can be concluded that the SAR2ET model
trained with SAR, ERA5, and DEM outperforms the model
trained with only SAR in almost all cases and regions by better
capturing the trend in ET change throughout the year and making
accurate predictions matching the ground truth mean ET’s with
smaller deviations. It is also clear from the residual error that
the model trained with a combination of SAR, ERA5, and DEM
consistently achieves a significantly smaller loss compared to the
model trained with SAR only. Another observation is that as the
sample size increases (indicated by larger circles), the mean of
the predictions tends to align with the mean of the target values.
Conversely, with a smaller number of examples, the variance
tends to be higher. Overall, Fig. 5 indicates that the SAR2ET
model, which combines meteorological and topographical fea-
tures with SAR, produces more accurate predictions, consistent
with the quantitative and qualitative results presented.

D. Analysis

In this section, we provide two important additional analysis
on 1) the importance of SAR incomparison to other data sources,
and 2) the impact of soil texture and vegetation on SAR2ET
results.

SAR versus auxiliary data sources: The results so far show that
the best results are obtained when SAR is used in combination
with auxiliary data sources. An important question is the role
of SAR in overall achievements, considering that the auxiliary
sources already provide a rich set of meteorological and topo-
graphical indicators. To address this question, Table V presents
a comparison of the models using only SAR, only auxiliary
sources and their combination. Here, auxiliary sources refer
to a full combination of ERA5, SMAP, DEM, and SoilGrids.
We can observe that auxiliary-only model yields a larger MSE
(1.06 mm/day) and MAE (0.77 mm/day) and a lower R2 (0.58)
when compared to the SAR-only model. This highlights the fact
the inclusion of SAR itself is a crucial component for the con-
struction of the SAR2ET model. The significant achievements of
the final result, combining SAR and auxiliary sources, highlight
the complementarity of these sources of very different nature.
Consistent observations can similarly be made in the montly
comparison presented in Table VI for these three main model
variations. These results again highlight the value of combining
SAR with dynamic and static data sources in SAR2ET modeling.

Impact of soil texture and vegetation: Fig. 6 presents an anal-
ysis of the best-performing SAR2ET model, which leverages
a combination of static and dynamic data sources, DEM and
ERA5, in addition to SAR. We first group all test examples
according to the soil texture and NDVI features, then, calculate
the R2 scores for each group and plot them as line graphs. This
allows us to observe the trends in model performance in relation
to the the soil texture indicators and NDVI values. Each plot
corresponds to a soil type, and each plot curve corresponds to
an NDVI range, as indicated in the colorbars.
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Fig. 4. Multiple examples of test patches alongside their corresponding ET predictions from different SAR2ET models. Each row represents a different example,
with the columns presenting an RGB image (captured using S2) of the patch area, the ground truth ET of the same area, and the ET predictions from SAR2ET
models trained using auxiliary data sources only, SAR-only, and the highest performing model trained with SAR, ERA5, and DEM. (Best viewed in color. Red
indicates higher ET while blue indicates lower ET in terms of mm/day.).

TABLE VI
COMPARISON OF SAR VERSUS AUXILIARY DATA SOURCES WITH PER-MONTH RESULT, IN TERMS OF R2
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Fig. 5. Plots comparing ground truth and predicted mean ET (mm/day) by date on four study areas. In each figure, the top subfigure shows ground truth and
predicted mean ET’s by dates (predicted by two SAR2ET models; the one trained with SAR only and the one trained with SAR, ERA5, and DEM combined and
the bottom subfigure shows the residual error which refers to the difference in errors obtained using the model trained with SAR, DEM, ERA combined versus the
model trained with SAR only. The size of the green circles (indicator of ground truth mean ETs) indicates the number of samples collected; bigger circles represent
larger sample sizes. (Predictions that are closer to the center of the circle is better.) (a) Aegean region (A). (b) Balkans (B). (c) Marmara region (M). (d) Central
anatolia (CA).

One prominent trend that we spot in Fig. 6 is the model’s
sensitivity to vegetation activity. It can be seen that as NDVI
values increase, the SAR2ET model’s predictions for ET im-
prove consistently. This relation suggests that the model’s accu-
racy is positively correlated with the level of vegetation cover,

irrespective of the soil texture information, which is in line
with the observations in Table III. Furthermore, when exam-
ining specific soil texture parameters, such as clay, silt, and
bulk density (bdod), a notable trend emerges. The SAR2ET
model significantly performs better in predicting ET in highly
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Fig. 6. Performance of the best-performing SAR2ET model with varying soil texture parameters and NDVI in terms of R2 on the test set. (Best viewed in color.)
(a) Clay. (b) Sand. (c) Silt. (d) Bulk density.

vegetated areas when there is a higher concentration of these soil
components. Conversely, the model’s performance is notably
enhanced when the soil contains a lower proportion of sand in
highly vegetated regions. This suggests that, for these areas, a
decrease in the amount of sand content and an increase in the
amount of clay content contribute to improved ET predictions
due to the soil’s water holding capacity.

V. CONCLUSION

The aim of this research was to understand how Sentinel-1
learns ET variability over croplands. To do this, we have ex-
plored end-to-end deep learning-based models for the estimation
of ET values by harnessing the capabilities of SAR imagery.
Toward this goal, we have proposed a carefully constructed
benchmark to study SAR2ET in a systemic way based on SAR
and auxiliary nonoptical meteorological and topographical data
sources. We have also proposed a deep learning-based model
that allows studying a variety of data source combinations.

The quantitative results highlight that SAR provides essential
information for predicting ET values over croplands, and the
potential is boosted by combining auxiliary data sources. The
analyses over a time period and a set of regions show the con-
sistency of model behavior across time and regions. Overall, we
believe that the proposed SAR2ET model can be a valuable tool
for agricultural monitoring, especially in areas with challenging
weather conditions that limit the use of optical satellite data.

We also believe the presented benchmark dataset provide a
medium to accelerate the research in advancing SAR-based ET
estimation.

Although the study provides valuable guidance for having
regular ET over croplands, specifically for rainy regions, and
emphasizes the critical role of comprehensive data integration
in advancing our understanding of water-related processes in
the environment, it is important to note that the accuracy of
the model is directly proportional to the quality of its target
variable, EEFlux. In this case, under clear sky conditions, high
spatial resolution LST-based ET data are more accurate, as LST
provides direct information about the amount of energy available
for evaporation and transpiration processes. In addition, the good
performance of the model is directly linked to the SAR signal’s
inherent sensitivity to the structure and water content of the
soil-vegetation volume. The model may have limitations when
applied to other land uses, such as urban-ET studies.

Inspired by the performance of the SAR2ET model, our next
research will consider further improving the performance of the
model by adding crop type information and SAR coherence as
additional data modalities [25], [40], [41].

APPENDIX

A. Data Preprocessing Steps

In this section, we present all data preprocessing steps applied
to data employed in this study (see Section-I), collectively.



14802 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 7. Additional examples of test patches alongside their corresponding ET predictions from different SAR2ET models. Each row represents a different example,
with the columns presenting an RGB image (captured using S2) of the patch area, the ground truth ET of the same area, and the ET predictions from SAR2ET
models trained using auxiliary data sources only, SAR-only, and the highest performing model trained with SAR, ERA5, and DEM. (Best viewed in color. Red
indicates higher ET while blue indicates lower ET in terms of mm/day.).

Downloading ground truth ET: We began by downloading all
the available ET rasters from EEFlux that covered the year 2021
(March 1 to September 30, more specifically), for study regions
shown in Fig. 2. In total, we downloaded 121 ET rasters for this
year. We then upsampled the rasters to 10 m, which was a higher
resolution than the original 30 m. These ET rasters served as our
reference data points, or target ETs, for the rest of the dataset
creation process; we obtained SAR and other auxiliary data from

various sources and aligned and coregistered them for each of
these 121 ET rasters.

Downloading SAR: We used GEE platform to obtain SAR
rasters from Sentinel-1 (S1) ground range detected products
with a 10-m resolution. First, we downloaded all the SAR
rasters available within the time frame covering one week before
and after the sensing date of each target ET. We selected the
parameters of log-scaled VV, log-scaled VH, and CR for both
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Fig. 8. Additional examples of test patches alongside their corresponding ET predictions from different SAR2ET models. Each row represents a different example,
with the columns presenting an RGB image (captured using S2) of the patch area, the ground truth ET of the same area, and the ET predictions from SAR2ET
models trained using auxiliary data sources only, SAR-only, and the highest performing model trained with SAR, ERA5, and DEM. (Best viewed in color. Red
indicates higher ET while blue indicates lower ET in terms of mm/day.).

the ASC and DSC orbit directions, resulting in data images that
have six channels in total. Then, we filtered out any backscatter
values with an incidence angle below 30◦ or above 42◦. We
also removed backscatter values lower than −30◦ through edge
filtering and applied spatial smoothing using a 5 × 5 average
smoothing kernel. Finally, the SAR rasters are mosaicked based
on their proximity to the date of ET data to obtain a single data
image at the end to fill in any gaps that may have been created
due to incidence angle filtering and edge filtering.

Downloading ERA5: We utilized GEE platform to download
meteorlogical data rasters from ERA5-Land Daily Aggregated

dataset corresponding to the date of target ET, in order to obtain
meteorological data for each target ET. We then upsampled
the rasters to 10-m resolution (original resolution was around
11 km). Our selection of meteorological parameters for the
project included temperature (measured 2 m above the surface),
dewpoint temperature (measured 2 m above the surface), to-
tal precipitation, U and V components of wind (measured 10
mabove the surface), surface net solar radiation, and surface
pressure.

Downloading SMAP: We utilized GEE platform to download
SM rasters from SMAP dataset corresponding to the date of
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target ET, in order to obtain SM data for each target ET. We then
increased the resolution of these rasters to 10 m, as the original
resolution was around 9 km.

Downloading DEM: We used GEE platform to download
DEM rasters from the ALOS World 3-D dataset. Later, we up-
sampled the rasters to 10-m resolution, as the original resolution
was 30 m. For our project, we selected various topographical
parameters, including height, slope, aspect, and hillshade. We
converted the aspect parameter into two components, “cos” and
“sin,” to ensure numerical stability.

Downloading SoilGrids: We utilized GEE platform to acquire
soil properties rasters from the SoilGrids dataset. Subsequently,
we increased the resolution of the rasters to 10 m, since the
original resolution was 30 m. For our project, we chose various
soil property parameters, such as bulk density (bdod), clay, sand,
and silt ratios of the fine earth component, all at a depth of 0–5 cm
below the surface.

Downloading NDVI: We used GEE platform to obtain NDVI
rasters from Sentinel-2 with a 10 m resolution. First, we down-
loaded all the available NDVI rasters within a time window of
one week before or after the sensing date of the target ET. Then,
we applied a cloud filtering method based on the QA band to
discard rasters with more than 10% cloud coverage. Finally, we
created a single data image by mosaicking NDVI rasters based
on their proximity to the ET data date to prevent missing pixel
values after applying cloud filtering.

Downloading cropland masks: We utilized the GEE platform
to obtain cropland masks from the DW dataset in 10-m res-
olution. Initially, we downloaded all the available land cover
masks covering the year 2021. Subsequently, we performed a
pixel-wise mode operation in the time direction and accepted all
the pixels classified as cropland consistently throughout the year
as cropland pixels. Since the cropland mask is a binary mask,
the remaining pixels were considered noncropland pixels.

Dataset construction: After we obtained 121 rasters from dif-
ferent data sources, which were spatially and temporally aligned,
we then proceeded to extract patches of size 128×128 pixels
from these rasters. During the extraction process, we made
sure that the patches did not contain any invalid pixel values,
such as no data and nonterrain pixels, or cloud pixels if the
data source was optic satellite-based. We also excluded patches
that did not contain any crop pixels, as determined by cropland
masks. Once we completed the extraction process, we divided
the data into three sets: train, validation, and test sets. We used
a random splitting strategy that employed a 70%, 15%, and
15% ratio for the train, validation, and test sets, respectively. We
ensured that the splitting strategy was applied uniformly to each
individual ET raster and its corresponding rasters from different
data sources. This ensured that the patches were distributed
proportionally across different regions and dates for each split.

B. Additional Qualitative Results

In this section, we present additional figures, Figs. 7 and
8, illustrating the comparison between ground truth ET and
predicted ET’s made by different SAR2ET models. Each row
shows a different example belonging to the test set, in the same

format as in Fig. 4. The first column shows true-colored satellite
imagery obtained from S2, while the next column shows the
corresponding ground truth ET’s. The remaining columns show
predictions made by multiple SAR2ET models that are trained
with different sets of data, as indicated at the top of each column.
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