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Abstract—Contextual information can effectively aid deep-
learning models in extracting interclass and intraclass difference
features in remote sensing images. This article presents a novel
approach called the adaptive attention network (AANet) for se-
mantic segmentation in high-resolution remote sensing images.
The proposed AANet aims to enhance the segmentation perfor-
mance while minimizing the network’s computational and para-
metric aspects. Furthermore, the AANet is designed to facilitate
real-time segmentation. The AANet involves the construction of
three distinct modules, namely the multiscale channel attention
module (MCAM), the multidimensional spatial attention module
(MSAM), and the contextual information adaptive fusion module
(CIAFM). MCAM enhances a multiscale approach to effectively
capture contextual information from neighboring channels and
category information. MSAM is designed to extract and combine
detailed information from each dimension of the spatial domain.
CIAFM focuses on the complementary nature of channel and
spatial context information and the correlation between pixels
and categories. The methodology employed in this article involved
conducting experiments on the ISPRS Vaihingen, ISPRS Potsdam,
and multiobject coastal supervision semantic segmentation dataset
(MO-CSSSD) datasets alongside a comparative analysis with con-
ventional semantic segmentation models. The results of the article
indicate that our approach demonstrates exceptional performance
on the ISPRS Vaihingen dataset, ISPRS Potsdam dataset, and
MO-CSSSD dataset, achieving mean intersection over union scores
of 83.17%, 85.67 %, and 89.68 %, respectively.

Index Terms—Adaptive attention, contextual information, high-
resolution remote sensing imagery, multidimensional spatial
attention, multiscale channel attention.
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I. INTRODUCTION

EMANTIC segmentation of remote sensing images, which
S aims at assigning a specific label to each pixel in the image,
has become one of the most essential methods for the intelligent
interpretation of ground information and plays a crucial role
in several application scenarios, such as land cover mapping
[1], [2], [3], building extraction [4], [5], [6], environmental
protection [7], [8], and economic assessment [9], [10].

In recent years, with the rapid development of deep learning,
the convolutional neural network (CNN) has demonstrated pow-
erful hierarchical representation abilities, thanks to their charac-
teristics such as local perception, parameter sharing, and multi-
layered structure. As a result, CNN has become the mainstream
technology in the field of semantic segmentation. Fully convolu-
tional neural network (FCN) [11] proved the first effective end-
to-end CNN-based semantic segmentation method and laid the
foundation for fully convolutional semantic segmentation. Al-
though FCN achieved satisfactory results, the oversimplification
of its decoder design hindered its ability to provide more compre-
hensive contextual information for semantic segmentation tasks
in remote sensing imagery. Many improved methods for extract-
ing global context information have been proposed on CNN-
based architectures. For instance, UNet [12] is constructed using
contraction paths to extract features and expansion paths to inte-
grate high-dimensional and low-dimensional features to regain
the native resolution. It provides more contextual information
for image segmentation through skip connections. DeepLabV3
[13] is a CNN-based model that employs atrous convolution
to capture global context information by expanding the size of
the receptive field of the convolution. PSPNet [14] utilizes the
technique of pyramid pooling to extract global information from
images. These methods can capture local contextual information
but offer limited insights into a global context. The global and
local context information is delineated in Fig. 1. The variability
and similarities of objects in remote sensing images present a
challenge for their processing, dealing with minor differences
between classes but large ones within each. The undertaking
of semantic segmentation for remote sensing images presents
a significant challenge. By incorporating the global context
information of an image into the semantic segmentation task for
remote sensing images, the model gains a more comprehensive
understanding of the interclass and intraclass difference features,
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Fig. 1.

thereby assisting in addressing the challenges encountered when
processing remote sensing images.

Recently, attention mechanisms have brought new ideas to
extract global contextual information. Channel attention can
provide more accurate semantic category information. SENet
[15] uses a global average pooling operation to compress all
channel information into scalar features. These nonlinear fea-
tures are subsequently processed using a multilayer perceptron.
The activation function Sigmoid is utilized to recalibrate the fea-
ture information, which enhances significant areas while dimin-
ishing nonimportant spots. The FcaNet [16] smartly combines
the discrete cosine transform [17] with the channel attention
mechanism to improve the squeeze module in SENet. When
considering the same network complexity, the segmentation
accuracy exhibits a 1.8% improvement compared to SENet.
Spatial attention is an essential technology in deep CNNs to
extract spatial context information. It strengthens the network’s
ability to obtain representative features in the feature map by
screening critical areas. For example, CCNet [18] uses the
relationship between space and channels further to extend the
attention mechanism to the cross-channel dimension, enhances
the CNN’s ability to interact with images across channels and
regions, and captures contextual information between diverse
channels, scales, and directions through cross paths. Although
these attention models have achieved significant progress, they
often introduce a lot of redundant noise when extracting global
contextual information across channels, or they may ignore
relevant information in different dimensions when extracting
spatial contextual information. As a result, the model’s ability
to segment object categories is limited.

The complementarity and interaction of channel and spatial
context information are exceptionally critical for semantic seg-
mentation. Therefore, rational utilization of the related informa-
tion can significantly enhance the segmentation performance of
the network. In response to this supposition, many researchers
have proposed hybrid attention mechanism networks. For ex-
ample, Jiang et al. [19] added a spatial attention module and a
channel attention module at the end of the UNet architecture.

Description of global vs. local contextual information. Local context information is learned by modeling with convolution operations (yellow) and global
context information is learned by establishing remote window dependencies (red).

These two modules obtain the spatial and channel contextual
information in a parallel manner and can better extract the feature
information of interest. DANet [20] combines the channelwise
contextual information and spatial contextual information ex-
tracted from two pathways by weighting them together, lead-
ing to promising results. These hybrid attention mechanism
networks fuse spatial and channel context information through
weighted summation or multiplication, but they do not fully
exploit the complementary nature of channel and spatial context
information, thereby impacting the network’s performance in
semantic segmentation tasks.

Inrecent years, the self-attention mechanism, which is of great
interest in natural language processing, has been introduced
into computer vision and achieved good results, especially in
semantic segmentation. As an illustration, the module proposed
by [21] encompasses a global self-attention mechanism and a
local window self-attention mechanism. This design enables the
module to effectively capture long-range semantic information
and local details. NLNet [22] adopts a nonlocal attention mecha-
nism to learn the relationships between pixels, thereby providing
global contextual information for semantic segmentation tasks.
Because networks based on self-attention mechanisms process
images pixel by pixel, this would lead to significant resource
consumption. Therefore, standard self-attention mechanisms
(SSAMs) are not suitable for high-resolution image semantic
segmentation applications.

In order to tackle the shortcomings of the approaches dis-
cussed above and to cope with the obstacles of processing
high-resolution images, this article suggests an adaptive at-
tention network (AANet) for the semantic segmentation of
high-resolution remote sensing imagery. The AANet network
utilizes an encoder—decoder architecture. The encoder part con-
sists of ResNet [23], a lightweight CNN-based network, and the
decoder part consists of several improved modules, including
our proposed Multiscale channel attention module (MCAM),
multidimensional spatial attention module (MSAM), and con-
textual information adaptive fusion module (CIAFM). Among
them, MACM utilizes a multiscale strategy to extract adjacent
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contextual and category information in the channel to enhance
the discriminative ability of pixel categories in remote sensing
image segmentation. MSAM performs attentional weighting in
different dimensions to extract spatial contextual information in
critical regions. CIAFM uses an improved self-attention mech-
anism to deeply fuse the contextual information of the channel
with the space and utilize the category information to guide pix-
els for classification. This approach allows the model to further
mine interclass and intraclass features in images while reducing
the amount of computation and the number of parameters. Our
proposed innovative modules and network are comprehensively
evaluated experimentally on the widely used ISPRS Vaihingen
and Potsdam datasets. The experimental findings demonstrate
that AANet exhibits notable benefits in comparison to other
popular lightweight networks for the purpose of remote sensing
imagery segmentation tasks.

The main contributions of this article are summarized as

follows.

1) Two improved parallel attention modules (MCAM and
MSAM) oriented to channel and pixel space have been de-
signed based on adaptive strategies to effectively fuse the
feature information from multiple scales and dimensions,
and minimize redundancies and suppress the influence of
nonobject noise.

2) An enhanced lightweight self-attention mechanism
(CIAFM) has been constructed to deeply integrate spatial
and channel contextual information generated by pro-
posed modules for the key information screening between
categories and pixels, and to improve the segmentation
ability of the model and optimize the computational com-
plexity.

3) We proposed a novel AANet for semantic segmentation in
high-resolution remote sensing images to ascend the seg-
mentation performance while minimizing the network’s
computational and parametric aspects for facilitating real-
time segmentation.

II. RELATED WORK
A. Multiscale Semantic Segmentation Networks

In the semantic segmentation task of remote sensing images,
considering the significant differences in the sizes of ground
objects, adopting the multiscale strategy can effectively extract
the feature information of target objects in the image, especially
for small and large targets, thereby significantly improving the
model’s performance. Deeplabv3+- [24] has achieved tremen-
dous success on public datasets by using parallel convolution op-
erations with different dilation rates to extract multiscale feature
information from the image and connect the obtained multiscale
feature information. PSPNet [14] uses a pooling pyramid to fuse
the hierarchically extracted multiscale feature information; this
design captures the features of objects with varying sizes in
space. It enables rich semantic details to interact with rich spatial
information. Nie et al. [25] introduced a cross-scale interac-
tion module to extract semantic features and uses convolutions
with different dilation rates to extract multiscale boundary in-
formation. To capture more comprehensive multiscale details,
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various methods combined with attention mechanisms have
been proposed. For instance, Liu and Lin [26] combined the
SENet module, which extracts channel context information, with
parallel convolutions of different receptive fields to capture mul-
tiscale features in the image, demonstrating significant effects
on remote sensing datasets. Although networks incorporating
channel attention mechanisms like SENet can effectively extract
features, the dimensionality reduction operation leads to the loss
of detailed channel information. ResUNet-a [27], using a U-
Net backbone architecture, leverages multiple parallel residual
atrous convolutions and spatial pyramid components to extract
multiscale and contextual information from remote sensing im-
ages. In the HRNet-based [28] HRCNet [29] network, the LCA
module extracts channel correlations, while the LSA module
models and learns spatial information from the images. These
extracted features are then combined using a weighted addition
operation. Additionally, the FEFP module, which incorporates
techniques, such as FPN and ASPP, is employed to learn multi-
scale features and contextual information from the images. PICS
[30], which employs DeepLabV3+ with a ResNet101 backbone
as its segmentation network, captures information at multiple
scales using several parallel convolutions with different dila-
tion rates. It also integrates multiple semisupervised paradigms
to generate high-quality pseudolabeled samples. Additionally,
PICS introduces a novel loss-based sample evaluation and se-
lection method, further reducing the potential risk of error accu-
mulation due to inevitable misclassifications. Zhang et al. [31]
has designed two dual-attention modules with multiscale spatial
attention and channel attention to extract multiscale feature
information, contributing to target object recognition. Based on
the transformer [32] architecture, Xiao et al. [33] has integrated
a self-attention mechanism with an automatically adjustable re-
ceptive field, enabling feature extraction from target objects and
capturing long-distance dependencies simultaneously. Although
introducing transformer technology into multiscale networks
enhances the model’s ability to extract features, it also adds
computational pressure to the model.

In this article, context information of neighboring channels
is extracted by convolutions with different receptive fields. The
extracted information is then weighted and summed to obtain
the final feature representation. This approach not only mitigates
the impact of channel dimension reduction but also reduces the
complexity of the network.

B. Global Contextual Information Modeling

The complex diversity and similarity of features in remote
sensing images lead to interclass and significant intraclass
differences. Therefore, for the semantic segmentation task of
remote sensing images, relying solely on local context infor-
mation makes it difficult to accurately predict the category of
each pixel. If global relations are introduced, this task will
become much more straightforward. As a result, researchers
have proposed various methods to extract global features, and
among these methods, a common approach is to incorporate
attention mechanisms into network architectures. For example,
Guo et al. [34] adopted a network architecture composed of
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multiple adaptive global average pooling layers with different
size scales to extract rich spatial information. ECANet [35] has
demonstrated the significant impact of channel dimensionality
reduction on attention mechanism networks. Extracting adja-
cent contextual information through interchannel interactions
not only enhance network performance but also significantly
reduces the network’s parameter and computational overhead.
Lietal. [36] introduced a memory-efficient and computationally
efficient linear attention mechanism into the skip connections of
the UNet network architecture to extract global context informa-
tion. Li et al. [37] proposed a novel kernel attention mechanism
that reduces computational requirements and effectively extracts
and utilizes global dependencies. In these attention networks that
extract global contextual information, some have not noticed the
importance of local knowledge when extracting global relations.
At the same time, others have resulted in a large amount of
redundant information when extracting channel information.
Therefore, the application of these networks in high-resolution
image segmentation is limited.

Researchers have also proposed some hybrid architecture
methods to address the issues above. CBAM [38] concatenates
the channel and spatial attention modules to form a hybrid
attention module, which effectively extracts spatial and channel
context. HMANet [39] introduces the CAA, CCA, and RSA
attention modules. The CCA, combined with the CAA, is used to
extract channel and category information, adaptively integrating
the category information into the channel features. The RSA
module learns spatial pixelwise correlations through regional
shuffling. Finally, the extracted channel and spatial information
are concatenated to produce the output features. Inspired by the
self-attention mechanism, DMNet [40] introduces the PCRM
and CCRM modules, which are designed to capture bidirectional
semantic associations in the spatial and channel dimensions,
respectively. These modules suppress category information spe-
cific to the support image itself, retaining more generalized com-
mon category semantic information. Additionally, the CSRM
module is designed to extract specific semantic information to
aid image segmentation, effectively addressing the issue of large
intraclass variance. Fu et al. [20] used two independent attention
branches to extract spatial and channel features. These are then
weighted and summed to obtain global dependencies. Wang et al.
[41] used self-attention and a CNN-based unit to extract global
context and local detail information from remote sensing images.
Finally, the extracted global and local information is processed
through a feature refinement module to obtain useful results. Li
et al. [42] utilized a spatial pathway to preserve spatial details
and a context pathway to extract global contextual information
from the image. Finally, a fusion module is developed to deeply
integrate the spatial detail and context information. Long et al.
[43] employed a dual encoder consisting of a self-attention-
based encoder and a lightweight CNN-based encoder to extract
global and local context. The self-attention-based encoder uses
a sliding window mechanism to capture global context, while
the CNN-based encoder focuses on local context.

Despite having so many advantages, converting each pixel
into a sequence to compute dependencies between positions
can be computationally expensive compared to convolutional
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operations, and it needs to take into account the complementarity
between different dimensions in space. This article proposes
an AANet for semantic segmentation in high-resolution remote
sensing images. AANet utilizes a lightweight ResNet18 as the
encoder and employs multiple modules in the decoder. The
MCAM extracts adjacent channel details using an improved
multiscale strategy. The MSAM pools feature and adaptively
fuse information across different dimensions in space. The
CIAFM employs a lightweight self-attention mechanism to
deeply integrate channel and spatial context. Additionally, cat-
egory information is utilized to guide pixel classification.

III. METHODOLOGY
A. Network Architecture

By increasing the attention on key regions, contextual infor-
mation can effectively address the issue of slight interclass vari-
ance and significant intraclass variance caused by the abundance
of detailed features in remote sensing images. This article pro-
poses an AANet for semantic segmentation of high-resolution
remote sensing images, as illustrated in Fig. 2. The network we
proposed adopts an encoder—decoder architecture to fully utilize
the hierarchical information extracted by the encoder. Many
semantic segmentation methods for remote sensing images [44],
[45], [46], [47], [48] use ResNet as the encoder of the network
because it addresses the issues of gradient vanishing and model
degradation during the training of deep neural networks by
introducing residual blocks.

To ensure the efficiency of network inference, the proposed
method in this article selects the lightweight version of ResNet,
ResNet18, as the encoder of the network. This choice is made
because ResNetl8, compared to other deeper ResNet models,
has lower computational complexity while maintaining model
performance. The decoder of the network proposed in this article
consists of multiple stages, each containing three novel modules:
the MCAM for extracting channel contextual information and
category information, the MSAM for enhancing attention on
critical regions, and the CIAFM for exploring the complemen-
tarity between channels and spatial dimensions.

B. Multiscale Channel Attention Module (MCAM)

Different channel feature maps correspond to diverse seman-
tic response information, and interdependencies exist between
adjacent channels. Utilizing the correlation information between
channels can enhance the representation of semantics, thereby
achieving better segmentation results. As shown in Fig. 3, we
propose the MCAM. MCAM utilizes a multiscale strategy to
address the issue of significant size differences among objects
in remote sensing images. Specifically, MCAM employs convo-
lutional operations with different receptive field sizes to extract
global information from adjacent channels. This approach helps
the model perceive target features of different scales. Addition-
ally, MCAM extracts category information between channels
through convolutional and normalization operations. This can be
used to guide pixel classification, further enhancing the model’s
ability to explore interclass and intraclass differing features.
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Fig. 2.  Overview of the AANet.
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Cx1x1

Fig. 3. Multiscale channel attention module.

We apply both average pooling and max pooling operations
with a global receptive field to the feature map X € RC*H*W
resulting in X, € RE*™! and X, € RE*'*1 The average
pooling operation and the max pooling operation can be rep-
resented as follows:

X, = avgpool (X) (1)

‘ Average pooling ‘ Max pooling -Fully Connected

CB Convld + BN @ softmax activation function

X}, = maxpool (X) )

where avgpool is average pooling and maxpool is max pooling.
ECANet [31] describes the relationship between the size of
the convolution kernel and the number of channels, and its
calculation process is shown in (3). A single-scale approach
is used in ECANet to extract contextual information in the
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channel, making it challenging to capture target features with
large size differences in remotely sensed imagery. Therefore, this
article has improved the single-scale convolution in ECANet by
designing a multiscale module that replaces the single receptive
field convolution with multiple parallel convolutions of different
receptive fields. This aims to extract contextual information from
adjacent channels at various scales, facilitating the perception of
target features at different sizes in the image. Due to the wide
range of sizes for target objects, we choose to use convolution
with exponentially increasing kernel sizes to achieve multiscale
perception of target objects at different levels in the image and
to learn more abstract features during the training process. The
exponentially increasing kernel sizes are calculated as follows:

logoC' + 1
So = ‘( omC - 1 3
2 odd
S; = 9i+logz(So-1) +1,(0 = 1,2,3...n) (4)

where C' represents the number of channels, Sy denotes the
initial convolution kernel size, S; denotes the size of the ith
convolution kernel after incremental calculation (where S; <
(), and “odd” indicates selecting the nearest odd value.

In order to capture the multiscale features in the channel, we
compute the coarse-grained global feature information X, and
X}, to obtain X, € R3¢*1*1 a5 follows:

X, = Concat (convld(X,),,convld(Xy),) . (1=1,2,3,4)
(&)

where Concat is the splicing operation and conv1ld(X), repre-
sents the ith one-dimensional (1-D) convolution operation. To
further smooth the local feature information, we recalibrate the
aggregated features using a 1-D convolution with a kernel size
of 1 and then extract the final neighboring channel contextual
information X; € R*!*! from the recalibrated global feature
using fully connected layers. The complementary nature of
categories and spatial pixels can effectively assist in image
segmentation. To obtain N category features from the channels,
we employ two sets of 2-D convolution operations and use 1-D
to extract category information from the channel. Subsequently,
we add the weights of the two types of category details, perform a
transpose operation, and multiply the transposed category result
with the local channel context to obtain the output of MCAM.

MCAM can provide channel context and N category infor-
mation, which can be deeply integrated with spatial features,
thereby establishing a profound correlation between channels
and space, as well as between pixels and categories.

C. Multidimensional Spatial Attention Module (MSAM)

In remote sensing images, objects often have similar shapes
and contours due to their shared environment. Addressing this
high similarity issue relying on local spatial information is
challenging. Incorporating spatial global dependencies can ef-
fectively resolve the problem of high spatial similarity. Con-
sequently, this article proposes the MSAM for extracting and
integrating global contextual information across various dimen-
sions in space. The structure of MSAM is illustrated in Fig. 4.
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_ softmax activation function

Conv + BN + ReLu

Global average
pooling in high
dimensions

Global average
pooling in wide
dimensions

Fig. 4. Multidimensional spatial attention module.

To obtain feature information in different dimensions of
space, we use two global pooling operations of various sizes on
the input feature map X € RC*H*W (o extract the vertical and
horizontal dimension information in space, resulting in feature
maps Xg € RO*H*! and Xy € RE*P>W | respectively. Our
vertical pooling and horizontal pooling can be described as
follows:

Xy =
Xw =

V(X) (6)
H(X) @)

where V' is the vertical global average pooling. H represents
horizontal global average pooling. To adaptively integrate fea-
ture information across different dimensions in space and make
the pixel information in space easier to interpret, we execute a
coarse feature fusion for each dimension as follows:

Xpw = reshape (Xp) ® reshape (X ) (8)

where reshape represents size reshaping of the feature map and
® denotes matrix multiplication. Finally, we use the activation
function and convolution operation with a kernel size of 3 to ob-
tain fine-grained spatial feature information Xgy € RC*H*W,
and this step can be described as

Xsa = conv (0 (Xgw) ® X) )

where ® represents the feature map multiplication, o represents
the activation function, and conv denotes the 2-D convolution
with a kernel size of 3. MSAM extracts the feature information
of different dimensions in the space and does the adaptive
fusion, which increases the model’s focus on the key regions
and suppresses the interference of useless features.

D. Contextual Information Adaptive Fusion Module (CIAFM)

Previous article has demonstrated that the relationship be-
tween channels and spatial features, as well as between cate-
gories and pixels, can significantly improve the segmentation
performance of remote sensing images. As shown in Fig. 5,
this article proposes the CIAFM to explore the interaction be-
tween spatial and channel information, enabling the learning of
relevant pixel-to-category features. This aids in enhancing the
model’s ability to capture interclass and intraclass distinguishing
features of objects in remote sensing images.
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Fig.5. Contextual information adaptive fusion module.

To deeply integrate contextual information from both chan-
nels and space, we use the spatial context information extracted
by MSAM and the channel and category information extracted
by MCAM as inputs to CIAFM. Inspired by the nonlocal
self-attention mechanism in [49], we propose an improved
lightweight self-attention mechanism. We use convolution with a
kernel size of 3 to obtain Q1 € RS *H*W and Q2 € RO*H*W
from the output of MSAM, where s is the reduction ratio of
channels C. At the same time, we use convolution with a kernel
size of 1 to obtain K € RN and V € RSN from the
output of MCAM. Then reshape Q1 to get Q1 € RE*HW The
feature map X, € RTW>*N containing the integrated channel
and spatial context information is computed using (10). This
process not only enables adaptive interaction between channel
context information and spatial context information but also
allows category information to guide pixel classification

QK

\/g

where o serves as the activation function, T represents transpose,
C is the number of channels, and s is the reduction ratio of
channel C. To further enhance the representation of spatial,
channel, pixel, and category features, we multiply X, with V' to
obtain the feature details Xy = R<*#W . Then, Xy, under-
goes convolution with a kernel size of 1 and reshaping to obtain
Xan € REHW, Finally, we concatenate X, with )2 along
the channel dimension, then we update the weights through
convolution with a kernel size of 1 to obtain the output feature
information Xciapm € RE*H*W of CIAFM. In this module,
we perform a linear transformation on the extracted channel and
category information to use as the /' and V' in the self-attention
mechanism. This operation reduces the computational cost of
the self-attention module. Specifically, the computational cost
of the SSAM is C' x HW x HW [49], where C represents the
number of channels, H means the height of the input feature, and
W denotes the width of the input feature. The computational cost
of our proposed self-attention mechanism is C' x N x HW,
where N is the number of categories. Because the number
of object categories in high-resolution remote sensing images
is generally between 3 and 8, IV is much smaller than HW.
Therefore, the self-attention mechanism proposed in this article
might significantly reduce the computational and parameter
overhead of the network.

CIAFM not only adaptively integrates long-range information
extracted from channels and spatial features but also learns the

Xp= o (10)
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correlation between categories and pixels, leading to further
improvement in the segmentation accuracy of remote sensing
images.

IV. DATASET AND SETTING
A. Dataset

In this article, the following three datasets are used to validate
the effectiveness of the proposed method.

ISPRS Vaihingen dataset: This dataset, provided by ISPRS,
was collected from aerial imagery of the German city of Vai-
hingen and consists of 33 high-resolution images. Each image
has an average size of about 2494 x 2064 pixels, contains red,
near-infrared, and green bands, has a sampling distance of 9 cm
on the ground, and contains six categories: impervious surface,
building, low vegetation, tree, car, and background. We use
images with ID: 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27, 29,
31, 33, 35, and 38 as the test set; images with ID: 30 as the
validation set and the rest of the images as the training set. The
original images were cropped to 512x512 pixels size.

ISPRS Potsdam dataset: This dataset, provided by ISPRS, was
collected from aerial imagery of the German city of Potsdam,
with a total of 38 high-resolution images. The Potsdam dataset
is available in the near-infrared, red, green, and blue bands,
and the imagery is annotated with six categories: impervious
surface, building, low vegetation, tree, car, and background. We
useimages withIDs: 2_13,2_14,3_13,3_14,4_13,4_14,4_15,
5_13,5_14,5_15,6_13,6_14,6_15,7_13 as the test set, image
with ID: 2_10 as the validation set, and the rest of the 22 images
(except for the incorrectly annotated 7_10 image) as the training
set. In our experiments, only three multispectral bands (red,
green, and blue) were used. Each original image was cropped to
512 x 512 pixel size.

Multiobject coastal supervision semantic segmentation
dataset (MO-CSSSD): This dataset is collected from aerial
imagery of the coastal areas in southern China, used for coastal
ecological environment monitoring. The dataset contains a total
of 10 574 RGB images with a resolution of 512x512 pixels,
including four categories: mangrove, aquaculture raft, aquacul-
ture pond, and background. The spatial resolution of the RGB
images is 0.58 m. According to the standard of dividing datasets
in machine learning, this dataset is divided into a training set,
validation set, and test set at a ratio of 6:2:2, that is 1100 images
for the test set, 1100 images for the validation set, and 8734
images for the training set.

B. Experimental Settings

All experiments were implemented using the deep-learning
framework PyTorch and run on NVIDIA GTX 3090 GPUs. To
make the experiments converge quickly, we used AdamW as
the training optimizer with an initial learning rate of 6e — 5, and
adopted a cosine strategy to optimize the learning rate.

C. Evaluation Metrics

In the experiments, overall accuracy (OA), mean intersection
over union (mloU), and mean F1 score (mF1) were used as
evaluation metrics to assess the performance of the proposed
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TABLE I
ABLATION STUDY OF EACH COMPONENT OF THE AANET

Dataset Method OA mF1 mloU
Baseline 90.08 87.12 77.71

Vaihingen Basel%ne + MSAM 90.68 88.47 79.78
Baseline + MSAM + MCAM 91.38 89.34 81.07

Baseline + MSAM + MCAM+ CIAFM  92.06 90.64 83.17

Baseline 88.81 90.30 82.50

Potsdam Basel%ne + MSAM 89.25 90.96 83.64
Baseline + MSAM + MCAM 89.88 91.39 84.33

Baseline + MSAM + MCAM+ CIAFM  90.84 92.16 85.67

The best values in the column are in bold.

network. The equations for calculating each evaluation metric
are as follows:

N
TP

OA = — Li=1 TP (11)

> oie1 (TP + FPy 4+ TNy + FNy,)

N
1 TPy

IoU = — 12
e Nkz::lTPk—kFPk—kFNk (12
mFl — 2 x precision x recall 1 (13)

e — X R—
precision + recall NV

where TPy, FPy, TNy, and FNj, indicate the true positive,
false positive, true negative, and false negative, respectively, for
objects indexed as class k. OA is calculated for all categories,
including the background.

V. RESULTS AND DISCUSSION
A. Ablation Study

1) Components of AANet: To validate the performance of
each component proposed in this article, we conducted a series
of ablation experiments on the ISPRS Vaihingen and ISPRS
Potsdam datasets. In this round of experiments, all parameters
remained consistent except for the network structure.

Baseline: The baseline network is constructed using the
ResNet backbone as part of the proposed network in this article.
It solely extracts contextual information during the encoding
process and progressively combines with skip connections dur-
ing the decoding phase before upsampling.

MSAM: Four MSAMs were incorporated into the baseline. As
shown in Table I, when MSAM is incorporated into the baseline
network, there is a noticeable improvement in evaluation met-
rics, such as mloU. The improvement in the ISPRS Vaihingen
and ISPRS Potsdam datasets are 2.07% and 1.14%, respectively.
These results demonstrate that MSAM, by capturing contextual
information from multiple dimensions in the spatial domain and
modeling the correlations between them, provides crucial con-
text for the model, leading to improved segmentation accuracy.

The MCAM is added to the Baseline + MSAM, resulting in
an average 1% improvement in mloU. The MCAM eliminates
redundant noise within channels, extracts contextual and class
information, and enhances the network’s feature representation
capability. Significant improvements are also observed in mF1

and mloU compared to the Baseline + MSAM ablation experi-
ment.

CIAFM: We inserted a few CIAFMs into the Baseline +
MSAM + MCAM to generate the entire AANet (indicated as
the Baseline + MSAM + MCAM + CIAFM). As shown in
Table I, adding the CIAFM module led to an increase of at least
2% in mloU, demonstrating the effectiveness of the proposed
CIAFM.

2) Attention Module Comparison: We conducted extensive
attention module ablation experiments on the ISPRS Vaihingen
dataset to verify the effectiveness of the attention module pro-
posed in this article. We selected the same baseline with the
previous section as the backbone.

To visually demonstrate the improvement brought by our
proposed MCAM, we replaced the MCAM with the channel
attention module from scSE [50] and the channel attention
module proposed by ECANet, respectively. After replacement,
we denoted the two networks as Baseline + scSE + MSAM +
CIAFM and Baseline + ECA + MSAM + CIAFM, respectively.
As shown in Table II, the experimental results indicate that our
proposed network outperforms the Baseline + scSE + MSAM
+ CIAFM and the Baseline + ECA + MSAM + CIAFM
in all three metrics. The channel attention presented by scSE
extracts contextual information across the entire channel, which
may lead to many irrelevant feature details within the channel,
subsequently affecting the segmentation performance. MCAM
utilizes 1-D convolution to capture local neighboring context and
category features, eliminating redundant feature details within
the channel. This confers an advantage in image segmentation
tasks. The channel attention module proposed by ECA module
extracts locally adjacent channel contextual information, which
can avoid accumulating redundant feature details within the
channel. However, by adopting a single-scale strategy to extract
target features from images, it lacks the ability to adaptively
perceive the significant variations in target features caused by
the diverse scale differences in remote sensing images. Our
proposed MCAM adopts a multiscale strategy to extract adjacent
channel contextual information, addressing the limitations en-
countered by ECA module. Therefore, MCAM exhibits greater
potential in perceiving significant variations in target features
with diverse scale differences.

Similarly, we replaced the MSAM module proposed in this ar-
ticle with the spatial attention module introduced by coordinate
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TABLE II
ABLATION STUDIES OF DIFFERENT ATTENTION MECHANISMS ON THE ISPRS VAIHINGEN DATASET

Attention method OA mF1 mloU
Baseline+ scSE [50] + MSAM+ CIAFM 91.73 89.83 81.88
Baseline+ ECA [35] + MSAM+ CIAFM 91.73 89.91 82.02
Baselinet MCAM+ Coordinate [51] + CIAFM 91.50 89.44 81.26
Baselinet MCAM+ MSAM+ SUM 91.33 89.51 81.38
Baselinet MCAM+ MSAM + SSAM [22] 91.76 90.02 82.19
Baselinet+ CBAM [38] 91.87 90.16 82.39
Baselinet GLTB [41] 91.37 89.33 81.13
Baselinet MCAM+ MSAM+ CIAFM (ours) 92.06 90.64 83.17

The best values in the column are in bold.

[51], resulting in a comparison network, Baseline + MCAM
+ Coordinate + CIAFM. The experimental results, as shown in
Table II, demonstrate that our proposed MSAM, when compared
with the method after replacement, has improved by 0.56%,
1.20%, and 1.91% in terms of OA, mF1, and mloU, respectively.
The spatial attention module presented in coordinate calculates
attention weights by introducing coordinate information, which
facilitates the model in extracting crucial features from critical
regions. However, this module presents challenges in getting
further information from various spatial dimensions, leading to a
lack of retention of spatial details. Additionally, the introduction
of extensive coordinate information increases the computational
and parameter load of the model. MSAM, through pooling and
dot-product operations, extracts and adaptively fuses features
from various dimensions in the spatial domain, thereby retaining
richer spatial details. Consequently, in image semantic segmen-
tation tasks, MSAM can effectively provide crucial position
features for the model.

To validate the effectiveness of the proposed CIAFM self-
attention mechanism, we replaced CIAFM with a feature map
summation operation and constructed the Baseline + MCAM
+ MSAM + SUM network. The experimental results, as shown
in Table II, indicate that compared to AANet, the Baseline +
MCAM + MSAM + SUM network shows a decrease of 1.79%
in mloU, demonstrating that the summation operation cannot
fully leverage the spatial and channel contextual information,
thereby limiting the segmentation performance. In the same
way, we replaced CIAFM with a SSAM [22] and constructed
a new network: Baseline + MCAM + MSAM + SSAM. The
experimental results, as shown in Table II, indicate that com-
pared to AANet, the Baseline + MCAM + MSAM + SSAM
network has room for improvement in all evaluation metrics.
This is because CIAFM utilizes category information to guide
pixel-level classification within the spatial context. Above all,
the results demonstrate that our proposed CIAFM not only fully
leverages the correlation between space and channels, but also
indicates that CIAFM can utilize category information existing
between channels to guide spatial pixel classification.

The network proposed in this article adopts a hybrid architec-
ture, which includes MCAM, MSAM, and CIAFM. To validate
whether this modular design approach can effectively improve
the image segmentation performance, we replaced the MCAM,
MSAM, and CIAFM with the hybrid channel-attention and spa-
tial attention module proposed by CBAM and the global-local

transformer block proposed by UNetFormer, respectively. As
a result, we obtained two new networks: Baseline + CBAM
[38] and Baseline + GLTB [41]. The experimental results in
Table II demonstrate that, while the Baseline + CBAM network
has achieved satisfactory results, the sequential connection of
channel and spatial attention in CBAM leads to the neglect
of spatial details when extracting channel context information
and the loss of channel features when extracting spatial context
information. This might cause inadequate output to leverage the
relevant relationship between space and channels. Therefore,
compared to AANet, the capability of Baseline + CBAM to
extract contextual information needs to be improved. Compared
to Baseline + GLTB, AANet showed improvements of 0.69%,
1.31%, and 2.04% in OA, mF1, and mloU, respectively. In con-
clusion, this article has demonstrated that the attention modules
in AANet can fully leverage the contextual information of both
space and channels and effectively extract and fuse the correlated
relationships between space and channels.

3) Encoder Module Comparison: To explore the impact of
encoders on the overall network, we replaced the ResNetl8
encoder of the proposed network with vision transformer and
ResNet50, respectively, constructing two networks: VITAANet
and ReAANet. The experimental results are shown in Table III.
As shown in Table III, the networks using vision transformer
and ResNet50 as encoders achieved better performance, albeit
with increased network complexity. For example, on the ISPRS
Vaihingen dataset, VITAANet achieved mloU, mF1, and OA
scores that were 0.77%, 0.47%, and 0.23% higher than AANet,
respectively. However, the number of parameters and FLOPs
were also higher by 94.21M and 160.93G, respectively. Bal-
ancing network accuracy and complexity, we ultimately chose
ResNet18 as the network’s encoder.

B. Comparison of Computing Complexity

In practical applications, algorithm complexity is an essential
metric for evaluating its performance. We compared AANet with
lightweight networks based on parameter count, computational
complexity, mF1, and mIoU on the ISPRS Vaihingen test set.
The comparison results are shown in Table IV. Compared to the
lightweight network BiSeNetV?2 [52], which has the most minor
parameter count and computational complexity, our network
shows significant improvements in OA and mloU. Specifically,
on the ISPRS Vaihingen dataset, we achieved an increase of
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TABLE III
ABLATION STUDY ON DIFFERENT ENCODERS ON THE ISPRS VAIHINGEN TEST SET AND ISPRS POTSDAM TEST SETS

Method Backbone Parameters(M) FLOPs(G) OA mF1 mloU
VITAANet ViT 106.93 176.80 92.29/91.56 91.09/92.93 83.94/87.01
ReAANet ResNet50 26.71 31.32 92.35/91.50 91.08/92.83 83.90/86.84
AANet ResNet18 12.72 15.87 92.06/90.84 90.64/92.16 83.17/85.67
The best values in the column are in bold.
TABLE IV
QUANTITATIVE COMPARISON RESULTS ON THE ISPRS VAIHINGEN TEST SET AND THE ISPRS POTSDAM TEST SET WITH STATE-OF-THE-ART LIGHTWEIGHT
NETWORKS
Method Backbone Parameters(M) FLOPs(G) OA mF1 mloU
DANet [20] ResNet18 12.59 74.23 90.15/89.95 89.04/91.36 80.60/84.30
PSPNet [14] ResNet18 24.42 98.21 91.28/89.60 89.23/91.01 80.91/83.71
BiSeNetV1 [53] ResNet18 40.90 23.10 91.07/89.69 88.32/91.00 79.53/83.70
BiSeNetV2 [52] - 5.10 11.19 90.18/88.15 86.87/88.93 77.35/80.25
MANet [37] ResNet18 11.98 22.19 91.43/90.35 89.87/91.70 81.93/84.88
ABCNet [42] ResNet18 13.39 15.62 91.78/90.33 89.82/91.51 81.84/84.58
BotNet [54] ResNet18 13.05 11.44 91.05/89.72 87.91/91.03 78.96/83.79
UNetFormer [41] ResNet18 11.68 11.74 91.81/90.75 90.34/92.07 82.69/85.51
AANet (ours) ResNet18 12.72 15.87 92.06/90.84 90.64/92.16 83.17/85.67

The best values in the column are in bold.

1.88% in OA, 3.77% in mF1, and 5.82% in mloU. On the ISPRS
Potsdam dataset, we gained a rise of 1.69% in OA, 3.23% in
mF1, and 5.42% in mloU. Furthermore, the proposed method
in this article outperforms the state-of-the-art lightweight net-
work UNetFormer on two public datasets. The AANet network
utilizes a multiscale strategy to extract contextual information
from neighboring channels, eliminating redundant noise within
the channels. It employs pooling and dot-product operations to
extract and adaptively fuse spatial details across dimensions,
providing crucial feature information for the model. The im-
proved self-attention mechanism is used to explore the comple-
mentary nature of channel and spatial contextual information,
enhancing the feature representation capability of the network.
Therefore, compared to networks of similar scale, the proposed
AANet demonstrates significant improvements in segmentation
accuracy.

C. Quantitative Comparison of Diverse Lightweight Methods

We compared our proposed method with eight excellent
lightweight networks on the ISPRS Vaihingen and ISPRS Pots-
dam test sets. These networks include: DANet [20], which uses a
parallel dual attention mechanism to extract spatial and channel
contextinformation; PSPNet [14], which employs pyramid pool-
ing modules to capture feature information at different scales
in images; BiSeNet_V1 [53], featuring a dual-stream network
structure with spatial and context paths; BiSeNet_V2 [52],
which introduces more cross-modal information and effective
feature fusion mechanisms in the dual-stream network architec-
ture; MANet [37], which develops a novel kernel attention mech-
anism for extracting context information in images; ABCNet
[42], which preserves spatial detail information and image con-
text information separately using a dual-path approach; BotNet
[54], which replaces spatial convolutions with global attention

in the last three bottleneck blocks of ResNet; and UNetFormer
[41], which designs a brand new transformer decoder and utilizes
feature refinement head (FRH) to refine output features.

The experimental results on the ISPRS Vaihingen dataset are
shown in Table V. Due to the utilization of class information
to guide pixel classification within the CIAFM and the deep
integration of contextual information across channels and spatial
dimensions, we have effectively leveraged the interrelationships
between different contextual features. As a result, our method
has achieved optimal performance in distinguishing between
the challenging categories of trees and cars, yielding respective
accuracies of 81.53% and 79.39%.

Because of adopting a dual-branch approach without in-
teraction in BiSeNet_V2, which extracts detail and semantic
information separately before fusing them, the effectiveness of
this method in extracting image information is somewhat unsat-
isfactory. In this article, the decoder part utilizes the CIAFM at
each stage to deeply integrate and extract the complementarity
between spatial and channel contexts, making full use of the hier-
archically extracted features from the encoder. Thus, the method
proposed in this article scores high compared to BiSeNet_V2,
the lightest of the comparative networks in terms of IoU on
each category, and overall metrics. Compared to UNetFormer,
the lightweight network that achieved the best performance last
year, our approach shows an improvement of 0.25% in OA,
0.30% in mF1, and 0.48% in mloU. Additionally, compared to
ABCNet, MANet, and BotNet of the same scale, our approach
exhibits an average improvement of 1.2% in IoU values for each
category and significant enhancements in terms of mF1, OA,
and mloU.

In addition, we provide visual experimental results on the
ISPRS Vaihingen dataset, as shown in Fig. 6. From the images
in the first, second, and third rows in Fig. 6, it can be observed that
our proposed method performs remarkably well in segmenting
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TABLE V
QUANTITATIVE COMPARISON RESULTS ON THE ISPRS VAIHINGEN TEST SET WITH STATE-OF-THE-ART LIGHTWEIGHT NETWORKS

Method Backbone Impervious Building LOW. Tree Car OA mF1 mloU
surfaces vegetation

DANet [20] ResNet18 90.01 89.23 70.90 80.32 72.54 91.15 89.04 80.60
PSPNet [14] ResNet18 90.17 89.21 71.02 80.89 73.26 91.28 89.23 80.91
BiSeNetV1 [53]  ResNetl8 90.06 88.67 70.81 80.11 68.01 91.07 88.32 79.53
BiSeNetV2 [52] - 88.61 86.39 69.56 79.48 62.70 90.18 86.87 77.35
MANet [37] ResNet18 90.56 90.23 70.56 80.68 77.59 91.43 89.87 81.93
ABCNet [42] ResNet18 90.88 89.72 72.82 81.49 74.30 91.78 89.82 81.84
BotNet [54] ResNet18 89.98 88.83 70.71 79.98 65.30 91.05 87.91 78.96
UNetFormer [41]  ResNet18 91.05 90.79 71.61 81.16 78.85 91.81 90.34 82.69
AANet (ours) ResNet18 91.50 91.09 72.35 81.53 79.39 92.06 90.64 83.17

The best values in the column are in bold.
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Fig. 6. Results of visualization experiments on the ISPRS Vaihingen dataset.

the highly challenging car category. In the examples in the last
three rows, it is evident that our proposed method more easily
distinguishes between tree and low vegetation categories. This is
because our strategy utilizes the category information contained
in the channels to guide the classification of pixels in space, thus
better capturing the objects’ shape, contour, and other features
during segmentation. Our method utilizes a multiscale strategy
to extract contextual information from neighboring channels,
effectively eliminating redundant channel noise.

Table VI presents the experimental results on the ISPRS
Potsdam dataset. It is evident that our method has achieved sig-
nificant results across various evaluation metrics. Specifically,
compared to the computationally and parameterwise minimal
BiSeNet_V2, our network achieved the highest scores for each
category, demonstrating that our network has improved seg-
mentation performance with an appropriate increase in network
complexity. In comparison to networks with roughly the same
complexity, such as ABCNet, MANet, DANet, and BotNet, our
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TABLE VI
QUANTITATIVE COMPARISON RESULTS ON THE ISPRS POTSDAM TEST SET WITH STATE-OF-THE-ART LIGHTWEIGHT NETWORKS

Method Backbone Impervious Building LOW. Tree Car OA mF1 mloU
surfaces vegetation
DANet [20] ResNet18 86.18 90.43 75.83 78.30 90.78 89.95 91.36 84.30
PSPNet [14] ResNet18 85.84 89.38 74.86 78.24 90.25 89.60 91.01 83.71
BiSeNetV1 [53]  ResNetl8 85.97 90.65 75.84 77.02 89.05 89.69 91.00 83.70
BiSeNetV2 [52] - 83.83 88.14 72.70 74.78 81.79 88.15 88.93 80.25
MANet [37] ResNet18 86.15 91.50 76.69 79.03 91.04 90.35 91.70 84.88
ABCNet [42] ResNet18 86.74 91.62 76.15 78.04 90.33 90.33 91.51 84.58
BotNet [54] ResNet18 86.49 91.37 75.15 76.49 89.45 89.72 91.03 83.79
UNetFormer [41]  ResNetl8 87.69 92.05 77.04 79.32 91.47 90.75 92.07 85.51
AANet (ours) ResNet18 87.67 91.93 77.19 79.73 91.80 90.84 92.16 85.67

The best values in the column are in bold.
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Fig. 7. Results of visualization experiments on the ISPRS Potsdam dataset.

proposed network demonstrates superiority. While UNetFormer,
which achieved the best performance among lightweight net-
works last year, exhibits good segmentation performance, our
network surpasses it in most evaluation metrics. Due to the
feature refinement module in UNetFormer, which integrates
semantic and spatial detail information at a deep level, the
network reduces the semantic gap between the two features and
further improves semantic accuracy. As a result, the network we
propose still has room for improvement.

We have provided visual experimental results, as shown in
Fig. 7, from which it is evident that the segmentation perfor-
mance of the proposed method in this article is superior to
other networks. As depicted in the example images from the
first to the fourth rows in Fig. 7, our proposed method excels
in extracting comprehensive feature information for cars, low
vegetation, and trees, leading to a more precise segmentation.
This can be attributed to our adoption of a multiscale strategy,
which enables adaptive extraction of feature information from
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Fig. 8. Results of visualization experiments on the MO-CSSSD dataset.
TABLE VII
QUANTITATIVE COMPARISON RESULTS ON THE MO-CSSSD TEST SET WITH STATE-OF-THE-ART LIGHTWEIGHT NETWORKS
Method Backbone Mangrove Aquaculture - Aquaculture Background OA  mFl mloU
raft pond
DANet [20] ResNet18 89.59 86.86 80.16 98.50 98.61 93.93 88.78
PSPNet [14] ResNet18 88.95 86.77 81.00 98.50 98.61 9395 88.81
BiSeNetV1 [53] ResNet18 88.55 86.09 76.55 98.26 98.38 93.07 87.36
BiSeNetV2 [52] - 82.37 47.46 63.53 96.90 97.09 82.71 72.56
MANet [37] ResNet18 87.73 89.70 79.38 98.36 98.48 9393 88.79
ABCNet [42] ResNet18 87.94 87.51 76.61 98.25 98.37 93.20 87.58
BotNet [54] ResNet18 84.83 82.60 75.76 98.09 98.22 91.88 85.32
UNetFormer [41]  ResNetl8 88.53 89.91 79.00 98.42 98.53 94.02 88.96
AANet (ours) ResNet18 88.97 89.82 81.38 98.53 98.63 94.45 89.68

The best values in the column are in bold.

remote sensing images. In less complex settings, our method
demonstrates enhanced capability in distinguishing between the
categories of low vegetation and trees, as illustrated in the last
two rows of Fig. 7. This is facilitated by our proposed network’s
effective utilization of the correlation between channels and
spatial information, thereby effectively mitigating interference
from background features.

Table VII presents the experimental comparison results of
each model on the MO-CSSSD test set. As shown in Table VII,
the AANet method proposed in this article achieves the best
experimental results in most aspects. For example, it obtains
mloU scores of 88.97%, 81.38%, and 98.53% for the man-
grove, aquaculture pond, and background categories, respec-
tively. Compared with ABCNet, MANet, BotNet, and DANet
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TABLE VIII

QUANTITATIVE COMPARISON RESULTS ON THE ISPRS VAIHINGEN TEST SET AND THE ISPRS POTSDAM TEST SET WITH STATE-OF-THE-ART LIGHTWEIGHT
NETWORKS

Impervious o Low
Method Backbone P Building . Tree Car OA mF1 mloU
surfaces vegetation
UNetFormer ResNet18 93.56/87.94 90.23/92.78 72.55/77.55 80.72/79.48  76.85/92.73  92.82/91.04  90.37/92.40 82.78/86.10
AANet ResNet18 93.38/86.54 90.32/92.21 70.93/77.53 81.02/79.75  79.29/92.33  92.74/90.62  90.49/92.16 82.99/85.67

The experimental results were measured using a 1024 x 1024 input.

methods of the same volume, our AANet achieved the highest
score. As shown in Table VII, the UNetFormer, which developed
a novel transformer encoder, achieved an mloU of 89.91%
in the aquaculture raft category. This is because UNetFormer
optimized the feature information of the final output by utilizing
the FRH. It is noteworthy that our proposed AANet falls short
of the best value by 0.09% in the aquaculture raft category.
However, it achieved the best results in the other three categories
and in overall OA, mF1, and mloU.

The visualization results of DANet, PSPNet, MANet, ABC-
Net, BotNet, UNetFormer, and AANet on the MO-CSSSD test
set are shown in Fig. 8. From the legends in the first, second, and
fifth rows of Fig. 8, it is evident that the AANet proposed in this
article produces segmentation contours in the aquaculture pond
category that are closer to the real labels. This benefit comes
from our proposed MCAM module, which adopts convolution
with kernel sizes adaptive to channels to extract multiscale
information from images. From the legends in the third, fourth,
and fifth rows of Fig. 8, it is clearly visible that the AANet
method proposed in this article achieves better segmentation
effects in the mangrove and aquaculture raft categories, with
clearer contours. These improvements in segmentation results
are primarily due to the category information extracted from
channels guiding the pixel information extracted in space. The
superiority of our method is demonstrated through the various
legends in Fig. 8.

We conducted comparative experiments by providing larger
sized images used in UNetFormer as network inputs, and the
results are shown in Table VIII. UNetFormer proposes the
FRH that narrows the semantic gap between the rich spatial
information features output from the first stage of the encoder
and the deep global and local semantic information features. This
results in superior performance in segmenting certain categories
compared to our method. However, our method can adaptively
capture category information from channels, which makes it
perform exceptionally well on tree and car categories. While
larger inputs will likely help improve accuracy in UNetFormer,
they may also result in higher computational effort.

VI. CONCLUSION

This article proposes the AANet for semantic segmentation
in high-resolution remote sensing images. Due to the fact that
contextual information enhances the ability to identify object
categories in semantic segmentation tasks, we designed the
MCAM. This module utilizes a multiscale strategy to extract
contextual information from adjacent channels, enabling the

perception of features from objects of different sizes and elim-
inating redundant noise within the channels. By incorporating
MCAM, our network can better capture the characteristics of
objects at different scales and effectively suppress the influence
of noise. In addition, we also developed the MSAM. MSAM
utilizes pooling and dot product operations to extract and fuse
contextual information from diverse dimensions in the spatial
domain, which increases the model’s attention to critical regions
and suppresses interference from the background. To effec-
tively utilize the correlation between contextual information,
we proposed the CIAFM. This module employs an improved
self-attention mechanism to deeply integrate channel and spatial
contextual information while reducing network complexity. This
enables the network to be used for real-time segmentation of
high-resolution images. In future article, we will continue to
explore the contextual information and its correlations present
in high-resolution images.
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