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Abstract—Accurate surface deformation (SD) predictions are
critical for early warning and timely remediation of infrastruc-
ture damage. However, the current SD prediction models do not
integrate the multiscale features of InSAR SD and environmental
factors (EFs), which make their prediction results inaccurate. To
address these limitations, we proposed a bidirectional gated re-
current unit (BiGRU) multioutput SD prediction network (GLER-
BiGRUnet), which mainly included global–local feature extraction
(GLFE), multifactor cross-attention residual (MCAR), and local
residual module embedded in self-attention mechanism (RCSA)
modules. Specifically, dense and one-dimensional convolutional
layers were concatenated in the GLFE module to extract global–
local SD features. The long time-series dependence between EFs
and SD was learned in the MCAR module using the multihead
cross-attention mechanism to obtain the corresponding attention
weight feature matrix. The residual connection and self-attention
mechanisms were used in the RCSA module to merge the multiscale
features and enhance the model fitting ability. We chose four typical
regions in the permafrost area of Qinghai–Tibet Railway as the
scene for the experiment. The spatial distribution and local profile
exhibited relatively small discrepancies between the prediction re-
sults of the GLER-BiGRUnet model and the InSAR SD. Meanwhile,
the average root-mean-square error of the GLER-BiGRUnet model
in the four typical regions was 0.19 mm, and the proposed model
had the best evaluation index compared with other SD prediction
models. Additionally, the prediction trend of SD of the proposed
GLER-BiGRUnet model was consistent with the original InSAR
SD, and the prediction results were more stable than those of the
other prediction models. The SD prediction model proposed in this
article contributes to early warning of SD.

Index Terms—Deformation prediction, GLER-BiGRUnet,
multiscale features, Qinghai–Tibet railway (QTR).
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I. INTRODUCTION

A S A common geological hazard [1], surface deformation
(SD) can destabilize infrastructure [2], threaten people’s

lives and properties [3], [4], and impede the sustainable devel-
opment of regional economies [5], [6]. It can be seen that it is of
great significance to construct the accurate SD prediction model
for early warning of damage caused by SD. Current research
on SD prediction can be divided into two categories based
on whether or not environmental factors (EFs) are considered.
The first one is to construct the SD prediction model only
based on GPS, leveling data, or multitemporal interferometric
synthetic aperture radar SD monitoring data. For example, Yi
et al. [2] constructed a long short-term memory (LSTM) [7]
prediction model based on persistent scatterer interferometric
synthetic aperture radar [8] SD monitoring data. The results
showed that the LSTM had a better performance in short-term
prediction. He et al. [4] proposed a CNN-PhLSTM model based
on the SD monitoring results obtained by small baseline subset
interferometric synthetic aperture radar (SBAS-InSAR) tech-
nology [9]. And the results showed that the CNN-PhLSTM
prediction model outperforms the support vector regression and
CNN-LSTM models in several evaluation indices, and its long
time-series prediction results were more in line with the original
InSAR SD trend. Peng et al. [10] used independent component
analysis to isolate the independent deformation signals from the
original InSAR sequences and constructed an LSTM prediction
model. The prediction results in both deformation regions were
more accurate than LSTM. However, the above studies did
not consider the long time-series dependence between the SD
monitoring data and EFs, making the prediction results lack
credibility and validity. In addition, the SD prediction models
constructed without considering the changes of EFs assumed
that the EFs [normalized difference vegetation index (NDVI),
land surface temperature (LST) and precipitation, etc.) and the
geological conditions in the subsidence area were constant when
predicting the SD [10], which leads to poor prediction accuracy.

The second type of SD prediction model takes into account
the relationship between EFs and SD in the subsidence area.
For example, Wang et al. [11] based on the self-attention (SA)
mechanism in transformer [12] comprehensively considered the
relationship between EFs and SD, and more accurately modeled
nonseasonal and seasonal signals to achieve the prediction of SD
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around Salt Lake; Yuan et al. [1] used the geographically and
temporally weighted regression method to obtain the relative
weights of EFs with SD monitoring data. Meanwhile, con-
structed an SD prediction model based on LSTM and attention
mechanism, which can take into account the spatiotemporal non-
stationary relationship, and obtained better predictions than the
first type of prediction model. However, the above SD prediction
models do not consider the multiscale characteristics of InSAR
SD and EFs.

Thaw settlement [13], thaw slumping [14], and thermokarst
lakes [15] on the Tibet Plateau in recent years have been impact-
ing the safe operation and stability of Qinghai–Tibet Railway
(QTR) and other infrastructures, attributed to permafrost degra-
dation [16], [17], [18]. It is also threatening the level of food
safety, healthcare, etc., of people along the QTR [19]. Therefore,
we chose four typical regions in the permafrost area of QTR as
the scene for the experiment.

We proposed a bidirectional gated recurrent unit (BiGRU)
multioutput SD prediction network (GLER-BiGRUnet), which
mainly included global–local feature extraction (GLFE), mul-
tifactor cross-attention residual (MCAR), and local residual
module embedded in self-attention mechanism (RCSA) mod-
ules. GLFE with the dense and one-dimensional convolutional
layer (Conv1D) modules was first introduced to extract the
global–local information of SD and EFs. Then, the multihead
cross-attention (MHCA) [20] mechanism was introduced to
obtain the dependencies between SD and EFs. Meanwhile, the
residual connection [21], BiGRU [22], and SA mechanism were
introduced to learn multiscale, bidirectional, and critical SD and
EFs’ features. Finally, the SD trends of four typical regions in the
permafrost area of QTR were predicted for the next two years.
The objectives of this article are as follows:

1) to construct a GLER-BiGRUnet SD prediction model that
can learn the multiscale features of InSAR SD and EFs in
permafrost region;

2) to validate the feature learning ability and prediction per-
formance of the GLER-BiGRUnet model by comparing
the differences in spatial distributions and local details of
the real and predicted data;

3) to predict the SD trend in the next two years of the
four typical regions using the GLER-BiGRUnet model
and compare the prediction accuracy and the stability of
prediction results with other prediction models.

II. MATERIALS

A. Time-Series InSAR Deformation Monitoring Data

As a means of Earth observation, InSAR technology is ca-
pable of inverting SD results with high efficiency and accu-
racy, and can provide reliable time-series data support for SD
prediction missions. Therefore, we acquired 88 Sentinel-1A
images (Frame: 475 and Path: 77) from the European Space
Agency for the Salt Lake to Wuli segment from 2019 to 2022.
The images were all in descending orbit, interferometric wide
mode, VV polarization, and with incidence and azimuth angles
of 34.69° and 90°, respectively. The InSAR deformation data
of the Salt Lake to Wuli section [see Fig. 1(b)] were obtained
using the SBAS-InSAR technique based on the environment

for visualizing images, SARscape 5.6.2 platform. In addition,
we used (1) to convert the results of deformation monitoring in
the line-of-sight (LOS) direction dLOS to those in the vertical
direction dv [23] and used them for subsequent work. Table I
lists some important parameter settings and data information for
SBAS-InSAR

dv =
dLOS

cos θ
(1)

where the θ is the incidence angle.

B. Experimental Scene

After analyzing the SD monitoring results and Google Earth
images, four typical regions (A, B, C, and D) in the Salt Lake to
Wuli segment were selected for SD prediction [see Fig. 1(c)–(f)].
At the same time, the four typical regions selected in this article
have different geographical environment characteristics and the
number of InSAR deformation characteristics, which can im-
prove the generalization performance of the model on different
deformation feature datasets. These typical regions were charac-
terized by severe ground subsidence, large thermokarst lake, and
traversed by the QTR. Among them, the lateral thermal erosion
induced by thermokarst lake leads to the degradation of periph-
eral ice-rich permafrost [30], which further extends thermokarst
distribution. However, the expansion of the thermokarst lake
will increase soil temperature and lower the upper limit of the
permafrost. This will trigger uneven ground subsidence on the
land surface near the thermokarst lake, which, in turn, will lead
to instability of the railway roadbed closer to the thermokarst
lake. Additionally, the continuous operation of the QTR and the
laying of oil pipelines and power transmission facilities in recent
years [19] have disrupted the thermal state of the permafrost
layer [31], which seriously threatens the QTRs safe operation
[32].

C. Environmental Factors

In MHCA, the input of EFs for the time series is sufficient and
necessary to obtain the response relationship between EFs and
SD at each time step. Meanwhile, the changes of LST and NDVI
as well as continuous precipitation events will affect the degree
of permafrost degradation and reduce the stability of slopes [34],
[35], [36], thus triggering the occurrence of ground subsidence.
Therefore, we chose these three EFs as the input of the model.
Detailed information on these EFs is presented in Table II. The
pixel size of all EFs is resampled to 15 × 15 m.

D. Dataset Making

To fill in the missing Sentinel-1A images on 24 April 2022,
we first extracted the raw InSAR SD and EFs images [see
Fig. 2(a)] using the InSAR observations [see Fig. 2(b)]. Then,
we performed time-series differencing of InSAR SD, LST, and
NDVI [10], and monthly filling of precipitation. In this case,
the interpolated InSAR SD data contain both surface uplift and
subsidence data. The above operation made the EFs and InSAR
SD strictly aligned at the time step so that the MHCA mechanism
can obtain the dependence between the InSAR SD features and
the EFs at each time step. The monthly padding is an operation
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Fig. 1. Geographic location of four typical regions. (a) Data of permafrost distribution comes from Zou et al.’s article [33]. (b) Location of four typical regions.
(c), (d), (e), and (f) are the distribution of SD velocity in regions A, B, C, and D, as well as the distribution of thermokarst lake and surface runoff in the region (the
missing location of InSAR SD monitoring data in the figure), respectively (geographic map is ESRIWorldImage).

Fig. 2. Dataset production process.

that populates the monthly mean precipitation to the current
month’s InSAR time step. The time-series difference formula is
given as follows:

Ŷi = Yi−1 +
(Yi+1 − Yi−1)
(Ti+1 − Ti−1)

(Ti − Ti−1) (2)

where Ti−1 and Yi−1 are the previous time point and the cor-
responding data, respectively, Ti+1 and Yi+1 are the latter time

point and the corresponding data, respectively, andTi is the point
in time where the interpolation is required.

Then, we used the standard scaling method to compress the
data features of InSAR SD and EFs [see Fig. 2(c)] to have a mean
and standard deviation of 0 and 1. Next, the last ten time-step
data were taken as the test set. Then, the remaining data were
segmented into compression results along the time-step dimen-
sion in a multistep to one-step overlapping time-series segmenta-
tion pattern [4], [37]. Finally, the remaining compression results
were evenly sampled into training and validation set in 7:3.
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TABLE I
EFS IN THE EXPERIMENTAL SCENE

TABLE II
EFS IN THE EXPERIMENTAL SCENE

III. METHODOLOGY

A. SD Prediction Model

In this article, we constructed a BiGRU multioutput SD
prediction network (GLER-BiGRUnet). The network contained
an innovative GLFE module, MCAR module, and local resid-
ual module embedded in a self-attention mechanism (RCSA).
Moreover, the dimension raising module utilized the tandem
structure of time-distributed dropout (TD-Dropout) and time-
distributed density (TD-Dense) to suppress model overfitting

and restore the dimension of RCSA module output results. The
details of the main modules in GLER-BiGRUnet are described as
follows.

1) GLFE Module: Choosing reasonable feature extraction
methods is vital for enhancing the efficiency of model feature
learning and enhancing the generalization ability during neural
network training. In the SD time-series prediction task, existing
studies generally directly pass the original feature dimensions
through the dense layer for downscaling and global feature
extraction [38], [39], [40]. However, the discrepancy between
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Fig. 3. Principles of feature extraction for dense and Conv1D layers.

the original feature dimension and the input dimension of the
RNN layer is too large, which may result in the omission of local
deformation features. This leads to insufficient model fitting and
affects the prediction accuracy.

Therefore, a GLFE module was constructed by combining
a dense-connected layer (Dense) and a Conv1D in this article
(see Fig. 3). This module aims to capture both the global and
local features of time-series InSAR SD and the EFs [41]. The
activation functions used for InSAR SD and LST in the dense
and Conv1D layers were TanH, while ReLU was applied for
precipitation and NDVI. Additionally, when stacking Conv1D
into two layers, the model tended to overfit. This could be
because the two Conv1D layers extracted outlier features or
noise, resulting in a decrease in the model’s generalization ability
on the validation set.

This module acts on the deformation feature dimension and
the formulae for the module are shown in (3) and (4)

outputDense = activationDense (inputDense ·W + b) (3)

where inputDense is the feature vector for the time-series InSAR
data and EFs, W is the weighting matrix, and b is the bias vector

GLFE = outputConv1D [i] =

activationConv1D

⎛
⎝ k−1∑

j = 0

outputDense [i+ j] · kernel [j] + b

⎞
⎠
(4)

where i is the corresponding element of the output result of
conv1D, j is the corresponding location of Conv1D, k is the
size of Conv1D, kernel[j] is the weight of the convolution
kernel at position j, outputDense[i : i+ k] is the window of
outputConv1D[i], and b is the bias vector. In this article, k is set
to 3.

2) MCAR Module:

EFs = Concat (GLFELST,GLFENDVI,GLFEPrecipitation) (5)

where GLFELST, GLFENDVI, and GLFEPrecipitation represent the
outputs of LST, NDVI, and precipitation through the GLFE
module, respectively.

In Line 1 of the MCAR module, the SD and EFs data
processed by the GLFE module were inputted together into
MHCA (see Fig. 5) to learn the relationship between the SD
and EFs across different heads of attention [see Fig. 4(c)]. The
EFs processed by the GLFE module were input into BiGRU for
modeling in Line 2. Among them, MHCA first maps the SDs
and EFs into several different representation spaces [12] through
the weight matrices (WQ

i , WK
i , and WV

i ) of the eight attention
heads and obtains the corresponding query (Qi), key (Ki), and
value (Vi) vectors, which are computed as follows:⎧⎨

⎩
Qi = (GLFESD) ·WQ

i

Ki = (EFS) ·WK
i

Vi = (EFS) ·WV
i .

(6)

Next, a highly optimized matrix multiplication based on
dot-product cross attention was used for each attention head
to calculate the cross-attention score between Qi and Ki [12].
The cross-attention score was also scaled by the square root of
the dimension dK of the Ki vector to ensure the stability of the
gradient [42]. The formula is calculated as follows:

ScaledAi
=

Qi ·KT
i√

dK
. (7)

Subsequently, ScaledAi
was converted to cross-attention

weights by the softmax function [43], and the output of each
attention head was obtained by weighted summation of Vi

vectors. The formula is shown as follows:

headi = softmax (ScaledAi
) · Vi. (8)

Then, the output of all attention heads was concatenated.
And used the weight matrix W 0 to map the connection results,
ensuring that the connection results had the same dimensions
as the SD. Finally, the attention weight feature matrix (AWFM)
(AWFMMHCA) was obtained. The calculation formula is shown
as follows:

AWFMMHCA =
8∑

i=1

Concat (headi) ·W 0. (9)

Then, the output of the MHCA was passed through the TD-
Dense layer and the TD-Dropout layer to prevent overfitting of
the model (see Fig. 6). Simultaneously, the number of parameters
input to the BiGRU layer was reduced to enhance the model’s
generalization ability. Subsequently, these results were fed into a
three-layer BiGRU to further explore the time-series dependen-
cies within the sequence of InSAR SD from both forward and
backward directions [26], and to better extract the InSAR SD
features. Finally, the outputs of the BiGRU in Line 1 and Line 2
were each passed through a TD-Dropout layer to suppress model
overfitting.

In this article, the input of BiGRU in Line 1 was the AWFM
output from the MHCA module, and Line 2 was the output of EFs
in the GLFE module [see Fig. 4(c)]. With the forward–backward
BiGRUs, the model’s ability to interpret and express the at-
tentional weights between different time steps can be further
improved, and richer and more accurate feature representations
can be extracted. Assuming that the sequence length of the input
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Fig. 5. Structure of the MHCA, and the number of its heads is 8.

Fig. 4. Flowchart of SD prediction module.

Fig. 6. Structure of the BiGRU.
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Fig. 7. Structure of the SA mechanism.

BiGRU is the time step T, the input and output of the current
time step are xt and yt, the hidden states of the forward and
backward are h→t and h←t , and the formula of the BiGRU is
given as follows:

Forward:⎧⎪⎪⎨
⎪⎪⎩
z→t = σ

(
W→

z xt + U→z h→t−1 + b→z
)

r→t = σ
(
W→

r xt + U→r h→t−1 + b→r
)

h̃→t = tanh
(
W→xt + U→

(
r→t � h→t−1

)
+ b→

)
h→t = (1− z→t ) � h→t−1 + z→t � h̃→t .

(10)

Backward:⎧⎪⎪⎨
⎪⎪⎩
z←t = σ

(
W←

z xt + U←z h←t+1 + b←z
)

r←t = σ
(
W←

r xt + U←r h←t+1 + b←r
)

h̃←t = tanh
(
W←xt + U←

(
r←t � h←t+1

)
+ b←

)
h←t = (1− z←t )� h←t+1 + z←t � h̃←t .

(11)

Output of BiGRU:

yt = Concat (h→t , h←t ) (12)

where→ represents the forward GRU,← represents the back-
ward GRU, zt is the update gate, rt is the reset gate,� represents
the elementwise multiplication, Wz , Wr, W and bz , br, b are the
weight matrix and bias vector of the current time step, and Uz ,
Ur, and U are the weight matrices of previous or next time step.

3) RSAM Module: In this module, the output of the GLFE
module was input to the RCSA module together with the output
of the BiGRU through residual addition [21] [see Fig. 4(d)].
This prevents the gradient from disappearing, preserves the
long-range and multiscale SD features, and enhances the model
fitting capability [44]. Subsequently, the addition results were
fed into the SA mechanism (see Fig. 7), facilitating further fea-
ture extraction and association learning to enhance the accuracy
and robustness of SD prediction. Finally, the outputs of the SA
mechanism and the results of residual addition were concate-
nated via a constant mapping residual connection [see Fig. 4(d)]
to enhance the feature sharing capability, learning efficiency, and
parameter sharing of the model and reduce overfitting [45]. The
formulae for the residual addition and SA mechanisms are as
follows:

InputSA = Add (GLFE,MCAR) (13)⎧⎨
⎩
Q = (InputSA) ·WQ

K = (InputSA) ·WK

V = (InputSA) ·WV
(14)

SAweights = softmax

(
Q ·KT

√
dK

)
(15)

RSAM = Concat (InputSA,SA) (16)

where WQ, WK , and WV represent the weight matrices of
InputSA, and dK is the dimension of the K vector.

B. Model Training and Evaluation Indicators

1) Loss Function and Metrics: The correct selection of the
loss function is crucial for the training and performance of SD
prediction models. Two loss functions commonly used in re-
gression tasks are mean absolute error (MAE) and mean squared
error (MSE) [40], [46]. However, MAE is detrimental to gradient
descent and insensitive to outliers during optimization, and MSE
is sensitive to outliers but may lead to unstable optimization [47].
In this article, although the SBAS-InSAR SD results have gone
through a series of time-series differencing and normalization
operations, they are unable to completely avoid the influence
of outliers on model training and fitting. In addition, in the
process of model training, we often hope that the deformation
features are learned completely and, at the same time, high fitting
accuracy can be obtained.

Therefore, in this article, a logarithmic hyperbolic cosine
function (LogCosh) [4] was chosen as the base loss function.
This function made the model more stable during training
(smooth and quadratically differentiable at the closed-form solu-
tion) and had a certain degree of robustness to outliers [47], [48].
Considering that this article was a multioutput model, we cus-
tomized the multiobjective average LogCosh (MOA-LogCosh)
and multiobjective average coefficient of determination (MOA-
R2) to train the model. The mathematical equation for both is
given as follows:

MOA− LogCosh (y, ŷ)

=
1

4

⎛
⎝ 4∑

i = 1

⎛
⎝ 1

n

n∑
j = 1

log (cosh (yi − ŷi))

⎞
⎠

i

⎞
⎠ (17)

MOA−R2 (y, ŷ)=
1

4

(
4∑

i = 1

(
1−

∑n
j = 1 (yj−ŷj)2∑n
j = 1 (yj−ȳj)2

)
i

)

(18)
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TABLE III
TRAINING HYPERPARAMETERS FOR GLER-BIGRUNET IN TYPICAL REGIONS

where n is the number of samples, yj and ŷj are the true and
predicted values of the ith observation, and ȳj is the mean value
of the observation yj .

2) Hyperparameter Setting: Choosing the correct hyperpa-
rameters can effectively improve the model performance and
convergence speed, avoid overfitting and underfitting, and also
improve the stability of the model. In this article, two data
enhancement techniques, random shuffling, and data repetition
were used to increase the diversity and number of samples (see
Table III), thus enhancing the generalization ability of the model
and reducing overfitting and underfitting. At the same time,
we also introduced the Callback function to reduce the learn-
ing rate when verifying performance stagnation and help the
model converge better, thus avoiding overfitting and underfitting.
Moreover, the Nadam optimizer was selected to improve model
accuracy and reduce root-mean-square error (RMSE) [49]. After
several trials, we determined the overall hyperparameter settings
of the model by considering the computational efficiency and
hardware conditions, as shown in Table III.

In addition, since the four typical regions are located in the
permafrost zone, they are characterized by frost heave and thaw
subsidence. Therefore, to ensure that the time-series overlap-
ping segmentation results have a certain periodicity [50] and
sufficient model training samples, the fast Fourier transform
[51] was used to calculate the time steps. Smaller frequencies
are generally chosen as the time step, and it should be ensured
that the time step chosen corresponds to the frequency with the
smallest absolute value of the phase spectrum. In addition, the
empirical value of the time step is generally around 15 [4], [39],
[52].

3) Evaluation Indicators: The RMSE, MAE, R2, and sym-
metric mean absolute percentage error (SMAPE) were utilized

Fig. 8. Evaluation index.

to evaluate the GLER-BiGRUnet model’s performance con-
structed in this article. The detailed formulae of each evaluation
index are shown in Fig. 8.

C. Long Time-Series Prediction Method

The multioutput GLER-BiGRUnet constructed in this article
was able to take into account the variation of EFs and achieve
long time-series prediction. Based on the well-trained SD predic-
tion model, we devised a cyclic prediction method considering
EFs, as illustrated in Fig. 9. The specific steps include the
following:

1) utilizing GLER-BiGRUnet to simultaneously perform
one-step predictions on InSAR SD, LST, NDVI, and pre-
cipitation [see Fig. 9(a)], and concatenating the prediction
results with the input sequences [see Fig. 9(b)];

2) inputting the concatenated InSAR SD and EFs into GLER-
BiGRUnet for one-step prediction [see Fig. 9(b)] and con-
catenating the prediction results with the input sequences;

3) iteratively applying the aforementioned cyclic prediction
mode [2], [37], [52] and performing inverse time-series
difference and antinormalization on the final SD [see
Fig. 9(d)] [4].
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Fig. 9. Prediction flow chart. (a) represents the first step of prediction;
(b) represents the second step of prediction; (c) represents the P-th step of
prediction; and (d) represents the processing and concatenation of the results
from each prediction step.

Fig. 10. Variation curves of Loss and R2 for regions A, B, C, and D are
represented in (a), (b), (c), and (d), respectively.

Since the revisit period of the Sentinel-1A satellite is 12 days,
and the long time-series prediction in this article starts from the
test set, the two-year SD prediction in this article requires 72
iterations, i.e., P = 72 in Fig. 9(d).

IV. RESULTS AND ANALYSIS

A. Prediction Performance of the Proposed Model

Based on the hyperparameters set in Table III, the proposed
GLER-BiGRUnet model in this article converges normally to
0 and 1 for both Loss and R2 on the four typical regions (see
Fig. 10). In addition, when the epoch was located in [4, 40],

the model overfitting in region A was serious and then eases,
and finally R2 gradually converges to 1 when epoch > 40.
In this process, the adjustment of the learning rate played a
key role in suppressing the overfitting, which indicates that the
hyperparameters in Table III were set reasonably. Meanwhile,
both Loss and R2 finally converge after 40 epochs of iteration
in regions B and D. Moreover, since the number of SD features
in region C (50 596) was two to three times that of regions A
(19 578), B (24 036), and C (24 726), the Loss and R2 finally
converge after the iteration of epoch 55.

The SD results for four typical regions on 23 June 2022
for comparative analysis with the predicted results from the
GLER-BiGRUnet model are shown in Fig. 11. From the first
and second columns in Fig. 11, the spatial distributions of the
original SD and the predicted SD in regions A–D were con-
sistent, meaning that the proposed prediction model had good
predictive performance for different types of SDs (surface uplift
and subsidence). In the third column, 50% of the residuals of
the original and predicted SD of the four typical regions were
located in the ranges of [−1.20, 0.81], [−1.13, 1.66], [−1.41,
0.89], and [−1.45, 1.71], and the mean values of the residuals
were better than ± 0.5 mm. In addition, the residual results of
regions A, B, and D in the third column were more in line with
the positive distribution, while the residual results of region C
were concentrated in the interval [−2.00, 2.00]. In the fourth
column, the fits between the true SD and the predicted SD of the
four profiles were better, and the residuals fluctuated around 0.
The above results indicated that the proposed GLER-BiGRUnet
model in this article was accurate in predicting the spatial
distribution as well as the local profiles in different regions.

B. Comparison With Other Time-Series Prediction Network
Models

To validate the prediction accuracy of the GLER-BiGRUnet
model, Conv1D-MHCA-BiGRU, MHCA-BiGRU, MHCA-
GRU, MHSA-BiGRU, MHSA-GRU [53], SA-BiGRU, SA-
GRU, BiGRU [54], and GRU [55] were selected (see Table IV).
In the model considering only InSAR SD, SA-GRU scored
worse than BiGRU for all evaluation metrics in regions A, B,
and D, while it outperformed BiGRU in region C. This may
be due to overfitting in regions with fewer SD features as the
model complexity increases. Conversely, in regions with more
SD features, the increase in model complexity helps the model
to learn the SD features better. In addition, a similar situation
exists in regions A and C for MHSA-GRU and SA-GRU.

Among the models considering the multiscale features of
SD and EFs, our proposed GLER-BiGRUnet model scores
higher on all evaluation metrics. At the same time, it does not
appear that models with higher model complexity have lower
evaluation metrics instead. In addition, the RMSE score of the
GLER-BiGRUnet model was 68% better than the MHCA-GRU
model (only considered EFs) in region A. In region C, the
GLER-BiGRUnet improved the RMSE score by 24% over the
Conv1D-MHCA-BiGRU, which did not consider multiscale SD
features. Moreover, the comparison among Conv1D-MHCA-
BiGRU, MHCA-BiGRU, and MHCA-GRU two-by-two showed
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Fig. 11. Comparison of typical region SD prediction results on spatial distribution and profile. The first and second columns are the original and predicted SD,
the third column is the mathematical statistics result of the difference between the data in the first and second columns, and the fourth column is the comparison
of the predicted results on the profile.

that considering local or bidirectional SD features enhances
prediction accuracy. Overall, the proposed GLER-BiGRUnet
had the highest prediction accuracy in different deformation
regions.

C. Prediction Results of SD

We used the proposed GLER-BiGRUnet model to predict the
SD trend of four typical regions along the QTR in the next two
years, and compared the prediction results with other models
(see Fig. 12). On the test set, the prediction results of models,
such as MHSA-BiGRU and GRU, have large discrepancies
with the InSAR SD, and the prediction trends were unstable
[see Fig. 12(b) and (f)]. Models, such as the MHCA-BiGRU,
have a significant lack of feature capturing ability at some
locations where the trend direction of the InSAR SD changes
[see Fig. 12(b), (d), (f), and (h)]. On the contrary, the proposed
GLER-BiGRUnet model was able to better fit the InSAR SD by

considering the local details as well as the multiscale features of
SD.

The prediction results of the model without considering the
EFs changes were unstable in the long time-series prediction for
the next two years. The predictions of the model without con-
sidering the multiscale features were significantly more stable,
but the predictions did not accurately reflect the future trends of
SD (see Fig. 12). Especially in region A, there was a large dis-
crepancy between the predictions of different prediction models.
However, compared with other prediction models, the proposed
GLER-BiGRUnet was able to learn the multiscale deformation
characteristics of region A with steeply increasing or decreasing
SD trends on 11 January 2021, 28 February 2021, and 29 April
2021 [see Fig. 12(a)]. This resulted in the highest agreement
between the GLER-BiGRUnet model predictions and the InSAR
SD trends. In addition, in regions B, C, and D, the InSAR SD
trend was smooth, and different prediction model’s prediction
results were more concentrated. Although the prediction results
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TABLE IV
COMPARISON OF THE GLER-BIGRUNET MODEL WITH OTHER PREDICTIVE MODELS ON DIFFERENT EVALUATION METRICS

Fig. 12. SD predictions from different models. (a), (c), (e), and (g) are the changes in the mean values of the original SD and the predicted SD for regions A, B,
C, and D, respectively. (b), (d), (f), and (h) are the changes in the mean values of the original and predicted SD on the test set for the four regions, respectively.
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of Conv1D-MHCA-BiGRU, MHCA-BiGRU, and MHCA-GRU
models were roughly the same as the deformation trend of In-
SAR, they still cannot predict the SD at some detailed locations.
On the contrary, the proposed GLER-BiGRUnet model had the
most stable prediction results in different regions and can best
represent the future development trend of SD in typical regions.

V. CONCLUSION

This article proposed a BiGRU multioutput SD prediction
network called GLER-BiGRUnet, which addresses the chal-
lenge of accurately long time-series prediction while preserving
multiscale SD and EFs by fully considering both InSAR SD
and EFs features. Specifically, the proposed GLER-BiGRUnet
model mainly consists of GLFE, MCAR, and RCSA module.
The GLFE module extracts the global–local features of SD
and EFs through the concatenation of Dense and Conv1D.
The MCAR module obtains the long time-series dependency
between SD and EFs by introducing MHCA and BiGRU, and
extracts the forward and backward feature information. The
RCSA module fuses the long-distance, multiscale SD and EFs
feature information through the residual concatenation and SA
mechanism. Based on the four typical regions in the permafrost
area of the QTR InSAR SD and EFs dataset, we verify the
effectiveness of the proposed GLER-BiGRUnet. The proposed
GLER-BiGRUnet model can predict long time-series SD, and
the prediction results have higher stability. In future work, we
encompass the generalization of the proposed GLER-BiGRUnet
to widen the applicability and effectiveness of GLER-BiGRUnet
across various scenarios.
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