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Pansharpening via Detail Guided and Global
Scale Convolution

Weisheng Li , Member, IEEE, Xudong Zhi, Yidong Peng , and Yijian Hu

Abstract—Pansharpening is a crucial step in various remote
sensing tasks, aimed at generating high-resolution multispectral
images from panchromatic and low-resolution multispectral im-
ages. While deep learning has shown promising results in improving
the accuracy of pansharpening, previous models often enhanced
accuracy by stacking a large number of trainable parameters,
making model training and application challenging. In this article,
we propose a pansharpening network based on detail guided and
global scale convolution, which can balance the parameter quantity
of the model and its accuracy. Specifically, our model utilizes the
global convolutional neural network (GCNN) module, which has
favorable time complexity and, to some extent, alleviates issues
such as insufficient receptive fields and excessive compression of
long-distance information found in traditional convolutional neural
networks. GCNN enables our model to capture global informa-
tion effectively. In addition, we introduce a detail guided residual
learning module that uses high-resolution image information to
enhance details and compensate for the loss of high-frequency
information during forward propagation. Furthermore, we design
a lightweight convolutional module named channel aggregation
learning that utilizes partial convolution for efficient interaction
of interchannel feature information. Moreover, we introduce fast
Fourier transform loss in the loss function to capture frequency
domain information loss, further improving model performance.
Extensive experiments on multiple datasets demonstrate the effec-
tiveness of our proposed method.

Index Terms—Cross scale convolution, detail guided, image
fusion, pansharpening, remote sensing.

I. INTRODUCTION

NOWADAYS, pansharpening is widely utilized in numer-
ous remote sensing tasks because it enables the provision

of high-resolution multispectral (HR-MS) images, allowing im-
age information to encompass both spatial and spectral informa-
tion. Consequently, these tasks employ pansharpening to obtain
HR-MS images, which are subsequently used for corresponding
remote sensing tasks, such as target detection [1], [2], [3] and
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semantic segmentation [4], [5] as well as practical applications
such as digital mapping and agriculture [6]. However, due to
technological and physical constraints, remote sensing satellites
are unable to directly acquire HR-MS images. Hence, we need to
employ deep learning (DL) to strike a balance between spatial
and spectral details, enabling the model to fuse panchromatic
(PAN) and low-resolution multispectral (LR-MS) images to
generate HR-MS images, a process known as pansharpening.

In the past several decades, many effective studies and models
have been dedicated to better integrating the information of LR-
MS images and PAN images to achieve the desired HR-MS
images for applications. According to different fusion methods,
they can be roughly categorized into four main types: component
substitution (CS), multiresolution analysis (MRA), variational
optimization (VO), and DL [7], [8], [9]. The following is a brief
overview of the four methods.

Based on CS algorithms, the upsampled LR-MS image is
typically transformed into a feature space to separate its spatial
components, which are then replaced by the PAN image to fill in
the missing spatial details. Well-known CS algorithms include
methods utilizing the intensity-hue-saturation [10] transform,
principal component analysis [11], and band-dependent spatial
detail [12].

MRA-based methods typically decompose the LR-MS image
into multiple resolutions, extract spatial detail information using
multiscale analysis, and replace it with the PAN image rich in
high-frequency detail information. Representative MRA meth-
ods include wavelet transform [13], [14], generalized Laplacian
pyramid [15], and intensity modulation based on smooth filter-
ing [16].

VO-based methods construct an appropriate mathematical
model with suitable regularization terms based on prior knowl-
edge or assumptions. The advantage of VO methods lies in
their ability to flexibly establish models according to task re-
quirements. Typical VO methods include Bayesian-based fusion
methods [17], establishing probabilistic models, and utilizing
sparse representation theory to inject PAN image detail infor-
mation into LR-MS images [18].

The above three methods are traditional learning approaches.
Among them, methods based on MRA are prone to spatial distor-
tion, leading to the loss of detailed texture information. Methods
based on CS have poor spectral fidelity and are susceptible to
spectral distortion. Methods based on VO have relatively high
computational costs and low processing speeds.

DL techniques have also been widely applied in the field of
remote sensing. By learning features and patterns from a large
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amount of remote sensing image data, they can better extract use-
ful information, thus achieving significant results in various re-
mote sensing applications. In the task of pansharpening, inspired
by image super-resolution methods, Masi et al. [19] designed
pansharpening by convolutional neural networks (PNN) with
a three-layer convolutional structure and achieved satisfactory
results in the field of pansharpening. PanNet, proposed by Yang
et al. [20], directly upsamples LR-MS images and adds them
to mixed feature images extracted from the high-pass filtering
domain to achieve spectral fidelity and spatial detail injection.
Yuan et al. [21] used multiscale convolution to extract receptive
fields to cope with different sizes of remote sensing targets. They
used multiscale residual blocks to extract deep-level features and
shallow-level features for summation (MSDCNN), achieving
superior performance. Jin et al. [22] proposed a convolutional
neural network that combines local and global contextual infor-
mation (LAGConv) for remote sensing and sharpening tasks. By
considering the interaction of local and global information, this
model achieves more accurate remote sensing and sharpening
effects. Fan et al. [36] designed a DL model based on transformer
for remote sensing and sharpening tasks, achieving fusion of
PAN and LR-MS images. Based on observations from three
following aspects:

1) The loss of detailed information during the propagation
process, possibly due to the continuous aggregation of
forward propagation information.

2) The interaction of complex channel information leads to
a vast number of parameters and computational overhead.

3) Convolutional neural network (CNN)-based methods of-
ten face limitations due to their fixed receptive fields and
information compression. In addition, they tend to focus
more on local information, thereby losing the aggregation
of long-distance information.

To address these issues, we propose a pansharpening network
based on detail guided and global scale convolution (DGGSC)
that integrates both global and local information. When mod-
eling the problem of super-resolution, Zhou et al. [31] utilized
high-resolution objects in images to guide the low-resolution
objects, but for pansharpening tasks, we have access to high-
resolution PAN images. Therefore, we can utilize a shared
encoder to extract features from the PAN images, which nat-
urally possess high resolution and clear texture details. We
use the PAN image features to refine the feature information
during the forward propagation process and increase feature
differences using power functions, enabling the model to more
easily capture differential information to correct for detail loss
during forward propagation. The shared encoder reduces the
number of parameters and enhances the perception of feature
information at different levels for the model, making the model
more generalized. In addition, to address the limitations of CNNs
in shallow networks due to fixed receptive fields, information
compression, and the inability to obtain long-range informa-
tion, we designed a lighter global convolutional neural network
(GCNN) module. This module ensures effective aggregation of
long-range information, enabling better integration of global in-
formation. Furthermore, the GCNN effectively addresses issues
with information compression during information propagation

in CNNs. In addition, it enlarges the receptive field of the model
and accelerates the transfer of feature information, which is very
beneficial for the transfer of features when the number of model
layers is small.

In addition, to enable better interaction of information in the
channel dimension, we utilized partial convolution [24] (PConv)
and pointwise convolution to design an efficient and lightweight
channel aggregation learning (CAL) module. In the channel
fusion module, efficient integration and interaction of channel
information have been achieved to improve the accuracy of the
model.

In summary, our contributions are as follows.
1) We designed a parameter-lightweight pansharpening

model that can effectively reduce the parameter quantity
of the pansharpening model while ensuring accuracy.

2) We introduced a GCNN module to expand the receptive
field and alleviate the overcompression of local informa-
tion. By incorporating a detail guided residual learning
(DRL) module, we compensate for the high-frequency
detail loss that may occur due to information aggregation
during forward propagation.

3) An efficient CAL module has been designed to facilitate
effective interaction of information between channels,
ensuring model performance.

The rest of this article is organized as follows. Section II re-
views related works. Section III provides a detailed explanation
of the proposed method. Section IV presents the experimental
results and analysis. Section V conducted ablation studies on the
model. Finally, Section VI concludes this article.

II. RELATED WORK

A. Residual-Based Injection DL Methods

Residual injection networks are widely used in DL, which
is an improvement on traditional aggregation-type networks
(PNN) [19]. They are roughly divided into two categories.

The first type concatenates the PAN image with the upsampled
LR-MS image along the channel dimension, extracts the fused
feature information through DL, and adds it to the upsampled
LR-MS image. He et al. [25] proposed an end-to-end DL archi-
tecture for pansharpening based on image detail injection. The
process of concatenation-type models is as follows:

Hx = L̂x + Vx · Concat(P, L↑) (1)

where Hx represents the xth band of the HR-MS image.
L̂ ∈ RH×W×B denotes the upsampled LR-MS image at the
PAN scale, where H and W denote the height and width of
the PAN image, respectively. L̂x represents the xth band of
the upsampled LR-MS image. Vx denotes the injection gain
matrix. P ∈ RH×W×1 is the PAN image. L ∈ Rh×w×B denotes
the LR-MS image, where h andw are the height and width of the
LR-MS image, respectively. For pansharpening,H = h× 4 and
W = w × 4. B is the number of LR-MS bands. L↑ represents
the upsampled LR-MS image, with the same upsampling method
as L̂.

The second type of model involves first obtaining the dif-
ference information between the PAN image and the LR-MS
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Fig. 1. Two residual network architectures differ in their approach to merging
PAN and LR-MS images. (a) Network architecture based on concatenation.
(b) Network architecture based on difference.

image through differencing. This difference information is then
subjected to feature extraction and injected into the upsampled
LR-MS image. Because it focuses solely on the different in-
formation, it often achieves better results compared to directly
concatenating the PAN image and the LR-MS image. Deng
et al. [26] proposed a novel pansharpening fusion network
architecture (FusionNet), which effectively preserves the spatial
information and potential spectral information of the image
by directly subtracting the original upsampled LR-MS image
from the PAN image to extract details. Jin et al. [22] proposed
a convolutional module called LAGConv that adapts to local
content and dynamically generates convolutional kernels using
difference feature maps for modeling. The resulting model can
quickly and efficiently fit the training data. The architecture of
differencing-type model is roughly as follows:

Hx = L̂x +Gx · (P̂ − L↑) (2)

where Gx represents the nonlinear mapping of the model and P̂
denotes the duplication of PAN image in the band channel. As
shown in Fig. 1, the two aforementioned residual structures are
demonstrated. Gx and L↑ can be obtained through different DL
methods or traditional learning methods. Therefore, the choice
of calculation method is particularly important.

B. Long Range Dependency Methods

Vision transformer (ViT) [27] is the first model to introduce
transformer into images, which segments the image into patches
and embeds them into a sequence of vectors. While ensuring
the extraction of global information, it greatly reduces the time
complexity. At the same time, it allows images to undergo

attention mechanisms by splitting patches. With the success
of ViT in the field of vision, many efforts have been made to
apply ViT to high-resolution image processing. Meng et al. [28]
applied ViT to handle pansharpening tasks, where they con-
catenated the upsampled LR-MS image with the PAN image,
then extracted feature information through ViT to reconstruct
patches, and finally concatenated all patches together to obtain
the HR-MS image. Yin et al. [29], based on the transformer
structure, proposed a local and nonlocal feature interaction
network that continuously interacts with information during
the forward propagation process to improve performance. They
also utilized transformer to extract global feature information
and employed multiscale convolutional modules to enhance the
model’s perception of remote sensing objects of different sizes,
achieving superior performance. Li et al. [30] proposed a dual-
branch multiscale network for pansharpening. They utilized
transformer structures to model spatial and spectral information
separately, then concatenated their features and input them into
an image reconstruction module to generate HR-MS images. Fan
et al. [36] proposed a multiscale embedding and dual attention
transformers (MDPNet) that embeds the multiscale information
of the image into vectors, thereby making more efficient use
of the multiscale information. They introduced the additive
hybrid attention transformer fusion module and the channel self-
attention transformer detail generation module, which improved
the fusion ability of the model.

C. Super Resolution Methods

An image is worth graph of nodes (VisionGNN) [23] is the
first application of a graph convolution network in visual images.
It divides the image into patches and extracts features through
the embed operation, then converts them into feature vectors. It
then constructs a graph network based on the similarity between
vectors. Inspired by VisionGNN, cross-scale internal graph neu-
ral network [31] models the super-resolution problem by guiding
low-resolution pixels with high-resolution pixels, which allows
for better detail guidance and, consequently, achieves superior
super-resolution results. Spatially-adaptive feature modulation
for efficient image super-resolution [33] enhances the perfor-
mance of super-resolution models by employing various down-
sampling rates. The use of different sampling rates has two
advantages: On one hand, it enables the model to capture feature
information at different scales, and on the other hand, it allows
the model to obtain a larger receptive field without increasing
computational load.

III. PROPOSED METHODS

A. Overall Network Architecture

The overall architecture of the proposed DGGSC is depicted
in Fig. 2, which consists of three main layers. The layers, namely,
DRL, GCNN, and multiscale and multichannel learning (MSM),
begin by taking the difference between the PAN image and the
upsampled LR-MS image. Subsequently, they extract shallow
features using a feature encoder. The process is as follows:

f0 = Convs(P̂ − L̂) (3)
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Fig. 2. Overview of the proposed pansharpening framework DGGSC, which consists of several fundamental building blocks. Each block includes four core
designs: multiscale feature detection and capture layer (MSDC), CAL, GCNN, and DRL.

where P̂ denotes the duplication of PAN image in the band chan-
nel. Convs(·) denotes the shallow feature encoder. Afterward,
the model passes through three important modules DRL, GCNN,
and MSM. Among them, MSM downsamples the image to
obtain a wider receptive field and distinguishes different scales of
remote sensing ground objects through different downsampling
sizes. Subsequently, the model interacts with channel dimension
features through a lightweight channel aggregation module.
Then, the model obtains long-range scale information through
GCNN, which alleviates the problem of overcompression of
distant information to some extent. Finally, DRL is used to
compensate for the loss of feature information due to forward
propagation. It corrects feature information at each layer to
ensure the proper propagation of features. The forward process
of the model can be represented as follows:

f̂i = GCNN(MSM(MSM(fi−1))) + fi−1 (4)

fi = DRL(f̂i) + f̂i (5)

where fi represents the output of the ith layer of the model. After
deep feature extraction, it undergoes residual processing with
the initial features and image reconstruction. The reconstructed
image is then directly added to the upsampled LR-MS image.
The process is shown as follows:

Hm = Restruct(fn + f0) + L̂ (6)

where fn represents the output features of the last layer network,
which have the same shape as f0, and Restruct(·) represents the
reconstruction module, composed of several stacked convolu-
tions. Hm represents the HR-MS images.

Fig. 3. Comparison of feature propagation in (a) traditional convolution and
(b) GCNN. The more red the color, the greater the degree of information aggre-
gation, whereas the more blue the color, the smaller the degree of information
aggregation.

B. GCNN Module

In traditional CNN-based pansharpening networks, there are
two main issues. First, using conventional convolutional kernels
of size 3 can not achieve a sufficiently large receptive field.
Solutions to this problem include replacing traditional convolu-
tions with dilated convolutions, downsampling feature maps, or
increasing the size of convolutional kernels. Second, traditional
convolutions are prone to overcompressing surrounding pixels,
which limits the transmission performance of long-range feature
information.

As shown in Fig. 3, first, traditional convolution exhibits a
rapid decline in perceptual capability as pixels move away from
the convolution center. Second, feature information used for
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Fig. 4. Illustration of the GCNN module.

aggregation often tends to favor surrounding pixels, and this
restricts the transmission of long-distance information. To ad-
dress these two issues, we designed a GCNN module. Compared
with the traditional CNN, this module can effectively increase
the receptive field of the CNN, and the feature information can
break through the limitation centered on itself and aggregate
information to farther regions, alleviating the problem of exces-
sive information compression caused by the CNN to a certain
extent. As illustrated in Fig. 3, when GCNN and CNN perform
feature aggregation at (2, 2), it can be observed that GCNN
has a larger receptive field compared to CNN. Meanwhile, CNN
tends to aggregate features based on its immediate surroundings,
whereas GCNN can aggregate information not centered on
itself but from more distant areas, which is beneficial to the
transmission of long-range information.

The specific structure of GCNN is shown in Fig. 4. It can
be seen that GCNN first partitions the feature information into
windows, then features interact in space and channels to obtain
global biased information, and finally reaggregates the obtained
biased information with the original feature information.

GCNN first performs average pooling on the input feature
map to transform it to the window size (ws). This operation can
be described by the following:

Xpool = AvgPool(Vc) (7)

where Vc represents the input feature map, and AvgPool(·) is
the AdaptAvgPooling operation. The feature maps after pooling
will pass through the feature fusion module. First, the features
will undergo convolution with a large kernel size, during which
the convolution will aggregate global bias information. Then, the
output feature map will undergo convolution with a small kernel
size, which will mix feature information in the channel dimen-
sion of the feature map. The above process can be described by
the following:

Xf = CMixer(GC5×5(Xpool)) (8)

where GC5×5(·) represents group convolution with a kernel size
of 5, and CMixer(·) refers to a channel mixer, representing a

convolution operation with a kernel size of 1. Xf represents the
output feature map.

Finally, we expand Xf in the spatial dimension to the same
size as the original feature map, obtaining global bias informa-
tion. We concatenate the biased information with the original
information and aggregate it through convolution. The process
can be represented by the following:

X̂ = RAG(Concat(Vc,⇑H
ws

(Xf ))) + Vc (9)

where RAG(·) refers to a reaggregation block, representing a
convolution with a kernel size of 1, ws represents the window
size, ⇑H

ws
(·) denotes the feature map expanded by a factor of

H
ws , Concat(·) represents feature map concatenation along the
channel dimension and X̂ represents the output feature map.

For efficient modeling, we proposed a new forward prop-
agation module of the CNN. This module enables the model
to capture global information by dividing windows, which can
expand the receptive field of the model to a certain extent and
alleviate the problem of overcompression of information caused
by the aggregation of surrounding features. And the perception
degree of global biased information can be controlled by con-
trolling the size of ws. Let M be the size of ws, Wf be the width
and height of the input feature map of GCNN, and dim be the
channel dimension of the input feature map of GCNN. Initially,
the feature maps pass through a group convolution module with
a kernel size ofK1, and its time complexity is 2K2

1dimM2. Sub-
sequently, the output feature maps are processed by a channel
mixer, which has a time complexity of 2dim2M2. Finally, the
original feature maps are concatenated with the feature maps
output by the channel mixer and passed through a reaggregation
module to obtain the final output results, as its time complexity
is 2dim2W 2

f . So the time complexity of the GCNN module and
the traditional CNN with a convolution kernel size of 3 on the
feature map is as follows:

Ω(CNN) = 9dim2W 2
f (10)

Ω(GCNN) = 2

((
Wf

M

)2

+
K2

1

dim
+ 1

)
dim2M2 (11)
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Fig. 5. Structure of DRL.

where K1 represents the size of the large convolution kernel.

Typically, K2
1

dim � (
Wf

M )2, so the complexity of the GCNN mod-
ule is approximately as follows:

Ω(GCNN) ≈ 2dim2W 2
f . (12)

C. DRL Module

1) Overall DRL Module Architecture: The main architecture
of the module is shown in Fig. 5. We pass the feature vectors
from the intermediate layers of the model and the PAN image
through corresponding encoders, mapping them to a differential
feature space. The feature encoder and PAN image encoder
are designed as shared modules, and the parameters of these
two components being involved in feature extraction across
different layers. Difference operations are then employed to
extract different information. This different information is used
to derive attention weights through a focusing module. Finally,
the feature information is reaggregated based on these attention
weights.

2) Shared Encoder: The application of the graph convolution
network proposed by Zhou et al. [31] in super-resolution aims
to complete detailed texture features by guiding low-resolution
pixels with high-resolution pixels. By comparing downsampling
with the original image, the objects corresponding to the down-
sampling in the original image are the high-detail images.

The method proposed by Zhou et al. [31] has demonstrated
excellent results in super-resolution. Therefore, we are consider-
ing applying their approach, which guides low-resolution pixels
with high-resolution ones, to pansharpening tasks. In pansharp-
ening, we utilize the feature information of high-resolution im-
ages to compensate for the important features lost by the model
during forward propagation in order to improve the performance
of the model. In the pansharpening task, we have high-resolution
PAN images containing abundant detail and texture information.
Therefore, we encode the PAN images through a feature encoder
and similarly encode the intermediate layer features of the model
through another feature encoder, mapping them into a feature

differential space, so that we can compute their differences
to obtain differential information. For these feature encoders,
we designed them as a shared module. On the one hand, it
can reduce the parameters of the model. On the other hand,
it enables the encoders to capture information at different levels
and improve its generalization ability. Its forward process can
be expressed by the following:

Xp = Conv3×3(Act(Conv3×3(P̂ ))) (13)

Xe = Conv3×3(X) (14)

where Act(·) represents the GELU activation function, X rep-
resents the input feature map to the DRL, the outputs Xp andXe

have the same shape, and Conv3×3(·) represents a convolution
operation with a kernel size of 3.

3) Spatial Detail Attention: Han et al. [32] made the differ-
ences between features more obvious by applying the power
operation to the feature vectors. Inspired by this, we introduce
the power operation to enable the model to focus on the feature
regions with a severe loss of detailed textures each time and
reaggregate the features of these feature regions. This approach
enables the model to increase the perception degree of feature
differences and compensate for feature information more evenly.
The module first computes the difference between Xe and Xp

to obtain a feature map. It then amplifies the differences using a
power function, allowing the model to better focus on differential
information. Finally, an activation function is applied to obtain
the attention matrix. The PAN image features and the features in
the forward propagation process of the model are reaggregated
to obtain the corrected feature map. The forward process can be
described as follows:

Xdelta = Xe −Xp (15)

X̂delta =
Xq

delta

Norm(Xq
delta)

Norm(Xdelta) (16)

attn = Sig(X̂delta) (17)

X̄ = attn �Xp + (I − attn)�Xe (18)

where Norm(·)denotes theL1 norm of the features. X̄ represents
the output feature map. Sig(·) represents the sigmoid activation
function, � denotes elementwise multiplication, I is a matrix
of the same shape as attn with all elements equal to 1, and q
is a model parameter, set to 3 in this article. (·)q represents the
operation of raising a vector to the power of q.

D. MSM Module

Compared to traditional large-kernel convolutional attention
mechanisms, the method proposed by Sun et al. [33] is more
lightweight and possesses multiscale feature representation ca-
pabilities. We apply it to pansharpening tasks and further intro-
duce residual connections to enhance performance. The struc-
ture is depicted in Fig. 6. This module enables the model to
capture multiscale feature information without increasing the
number of parameters in the model. Specifically, the module
first evenly divides the feature map along the channel dimension,
then applies different downsampling rates to the divided feature
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Fig. 6. Structure of MSDC.

maps to capture different scales of receptive fields, which is
particularly beneficial for capturing objects of various sizes
in remote sensing imagery. Then, the features are extracted at
various scales through depthwise convolution (DWConv), and
the output feature maps are obtained through upsampling. Given
the input feature map Vm, the forward process of the module can
be defined as follows:

[x0, x1, x2, x3] = split(Vm) (19)

x̂0 = DWConv3×3(x0) (20)

x̂i−1 = ↑2i (DWConv3×3(↓2i (xi))), 2 ≤ i ≤ 4 (21)

where split(·) represents the operation of splitting along the
channel dimension, DWConv3×3(·) denotes a depthwise con-
volution operation with a kernel size of 3, ↑2i (·) indicates
upsampling the feature map by a factor of 2i using nearest
interpolation, and ↓2i (·) represents downsampling the feature
map by a factor of 2i.

Subsequently, the obtained multiscale feature maps are con-
catenated along the channel dimension, and information aggre-
gation is performed on the concatenated feature maps through
convolutional operations with a kernel size of 1. It can be
described as follows:

Ŷ = Conv1×1(Concat([x̂0, x̂1, x̂2, x̂3])) (22)

where Conv1×1(·) denotes convolutional operations with a ker-
nel size of 1, Concat(·) represents the concatenation of feature
maps along the channel dimension, and Ŷ represents the output
feature map.

Finally, the feature map Ŷ is passed through an activation
function to obtain a spatial attention matrix. This attention matrix
is then multiplied elementwise with the input feature map Vm.
The forward process can be represented by the following:

O = Φ(Ŷ )� Vm (23)

where Φ(·) represents the GELU activation function, which
converts the feature maps into a spatial attention matrix and
� denotes elementwise multiplication.

Only by performing spatial attention while ignoring the infor-
mation interaction between channels may limit the performance
of the model. To enable efficient interchannel information in-
teraction, we designed a CAL module. This module has fewer
parameters and requires less computation compared to regular
inverted convolution blocks, while efficiently facilitating feature
information interaction across channels.

The structure of CAL is illustrated in Fig. 2. The input
feature map first undergoes preliminary feature extraction via
PConv [24]. Because PConv only interacts with partial feature
channels, its performance surpasses that of depthwise separa-
ble convolution. Subsequently, the output feature map passes
through the channel aggregation block. At the core of the channel
aggregation block is an inverted convolutional block with a
kernel size of 1. The forward process of CAL, given the input
feature Vl, is as follows:

Xo = Conv1×1(Act(LN(Conv1×1(PConv(Vl))) (24)

where LN(·) represents layer normalization, and Act(·) rep-
resents the GELU activation function. Conv1×1(·) denotes the
convolutional operation with a kernel size of 1, and PConv(·)
represents the partial convolution.

E. Loss Function

As shown in Fig. 2, we use two types of losses, including
pixel reconstruction loss and frequency domain reconstruction
loss, which are computed as follows:

Ltotal = Limg + αLFFT (25)

where α represents a hyperparameter used to balance the fre-
quency domain loss and pixelwise loss. The fast Fourier trans-
form (FFT) loss maps the predicted image and the ground truth
(GT) image to the frequency domain and calculates the loss. We
choose the L1 loss in the frequency domain to reconstruct the
frequency domain difference. The formula is as follows:

Limg = ||Hm − GT||1 (26)

LFFT = ||FFT(Hm)− FFT(GT)||1 (27)

where GT represents the GT labels and FFT(·) represents the
Fourier transform of the image. Hm represents the HR-MS
images.

IV. EXPERIMENTAL RESULTS

A. Datasets

Our performance metrics on the DGGSC across multiple
datasets, including WorldView3 (WV3), GaoFen2 (GF2), and
QuickBird (QB), which contain remote sensing images with
varying band sizes, test the generalization ability of the model.
The spatial resolution of PAN images is four times higher than
that of multispectral (MS) images. Table I details the information
about the datasets. “SSI” in the table denotes the abbreviation
of “spatial sampling interval.”

The process of generating the training set typically consists of
two steps. First, T patches of size 256 × 256 × 1 and 64 × 64 ×
B are cropped from the original PAN and MS images obtained.
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TABLE I
DETAILS OF THE DATASETS INCLUDED IN OUR EXPERIMENTS

Then, utilizing the Wald protocol, the cropped image patches are
filtered with the modulation transfer function specific to each
satellite and subsequently downsampled using interpolation to
obtain low-resolution scales of both PAN and MS images. The
sizes of the low-resolution PAN and MS images are 64 × 64 × 1
and 16 × 16 ×B, respectively. The MS image patches before
downsampling are used as label data, with a size of 64 × 64 ×
B. The generation process for the test set is identical to the
training set. The half-resolution PAN and MS images are of
sizes 256 × 256 × 1 and 64 × 64 ×B, respectively, whereas the
full-resolution PAN and MS images are of sizes 512 × 512 × 1
and 256 × 256 ×B .

The QB dataset comprises LR-MS images with 4 spectral
bands, the GF2 dataset has the same number of spectral bands
in its LR-MS images as the QB dataset, and the WV3 dataset
contains LR-MS images with 8 spectral bands.

B. Compared Methods and Quantitative Metrics

PNN [19], DiCNN [25], FusionNet [26], MSDCNN [21],
LAGConv [22], ADKNet [34], BiMPan [35], and MDPNet [36]
represent the eight DL models selected by us for comparison
with the proposed method in order to validate the effectiveness
of the proposed model. In addition, we also compare the pro-
posed framework with three traditional algorithms: GSA [37],
Wavelet [38], and Brovey [39]. For fair comparison, all DL-
based models were retrained on a Windows system equipped
with an NVIDIA RTX A6000 GPU, and all hyperparameters
for DL are set to be the same.

We followed the fundamental research standards of pansharp-
ening and selected the spectral angle mapper (SAM) [40], erreur
relative globale adimensionnelle de synthèse (ERGAS), spatial
correlation coefficient (SCC) [41], the structural similarity index
measure (SSIM), and the peak signal-to-noise ratio (PSNR) as
indicators for evaluating the quality of low-resolution images.
For full-resolution assessment, we employed three no-reference
indicators, including the quality with no-reference (QNR) [42]
index, the spectral distortion Dλ index, and the spatial distortion
Ds index.

C. Training Details

We implemented our DGGSC model using Python 4.9 and
PyTorch 1.7 on the Windows operating system with an NVIDIA
RTX A6000 GPU. We set the initial learning rate to 0.001, which
is halved halfway through training. The model runs for 200 000
iterations with betas set to [0.9, 0.99] for the Adam optimizer.
We use a minibatch size of 16.

In the GCNN module, our ws is set to 8. The kernel size for
the large convolutional layer is set to 5, whereas for the small
convolutional layer, it is set to 1. The loss function includes both
L1 loss and FFT loss between the fused image and the reference
image. The balance factors for the FFT loss function and the L1

loss function are set to 0.05 and 1, respectively. The size of the
dimension is 32 in the QB dataset and 36 in the GF2 and WV3
datasets.

The number of modules N is set to 4, and the exponent of the
power q is set to 3.

D. Performance on the Reduced Resolution Dataset

In this section, we will compare the performance of the
traditional learning and DL models selected on the three datasets
we have chosen. Each dataset contains 20 MS images and
their corresponding PAN images, where the spatial size of PAN
images is four times that of MS images and the channel size of
MS images is band times that of PAN images. The band varies
according to different datasets, it is 4 for the QB dataset and
the GF2 dataset, and 8 for the WV3 dataset. The original PAN
images and MS images will be divided into smaller images for
training, and the original images will be used as GT images to
validate the performance metrics of the models.

1) Performance on the QB Dataset: We evaluate the perfor-
mance of all methods on the QB dataset. Table II gives the
quantitative evaluation results of various methods on the QB
dataset. In the table, the average value is used to summarize
the model performance, and the best results are marked in
bold. It can be seen from the observation that the DL method
shows excellent average indicators compared with the traditional
method. The performance of our model is better than that of
other DL models in all indicators, highlighting our superiority
in preserving spectral information as well as spatial information.
The superior performance metrics of DL compared to traditional
learning methods demonstrate the superiority of DL.

In order to visually compare the performance of different
models on the QB dataset, we sampled a pair of MS and PAN
images from the test set and fed them into both traditional
and DL models. As shown in Fig. 7, the first three images are
the fusion results from traditional learning, followed by nine
fusion results from DL models, with the last image being the
GT label. It can be observed from the images that the fusion
results from traditional learning exhibit noticeable color and
detail discrepancies compared to the reference image, whereas
the DL methods show less severe physical distortions. This
suggests that DL performs better on the QB dataset. In addition,
it can be observed that the method we proposed achieves better
spatial resolution and spectral information.

Furthermore, in order to make the fusion results of the model
more intuitive, we generated residual images between the fused
images and the GT images, as illustrated in Fig. 8. Ideally,
residual images should tend towards zero, with the richness of
residual image content corresponding to the degree of blurring
in the fused image. In DL methods, our residual images contain
less content compared to other methods, indicating that our
model preserves both texture and spectral information of the
fused images well.
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TABLE II
MODEL PERFORMANCE ON THE REDUCED RESOLUTION QB TEST SET

Fig. 7. Visual representation of the HR-MS image corresponding to the model on the QB dataset is generated using GT images as reference. (a) Brovey.
(b) Wavelet. (c) GSA. (d) PNN. (e) FusionNet. (f) MSDCNN. (g) ADKNet. (h) DiCNN. (i) LAGConv. (j) BiMPan. (k) MDPNet. (l) Ours. (m) GT.

TABLE III
MODEL PERFORMANCE ON THE REDUCED RESOLUTION GF2 TEST SET

2) Performance on the GF2 Dataset: This section presents
the performance of all selected methods and the DGGSC model
on the GF2 reduced resolution dataset. The GF2 dataset contains
20 PAN images and the corresponding 20 LR-MS images.

The evaluation results of the selected traditional learning
methods and DL models on the test set are shown in Table III,
and the best results are marked in bold. All DL-based methods
show better results than traditional learning. It is worth noting

that the quantitative results of the method DGGSC proposed in
this article on the GF2 reduced resolution test set are superior
to other models, and it shows performance beyond other models
in SAM, PSNR, ERGAS, SCC, and SSIM. This indicates the
superiority of the proposed model.

In addition, to provide a more intuitive visual validation of
the performance, Fig. 9 displays the enlarged details of the
HR-MS images within the red rectangles. It can be observed
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Fig. 8. Visual representation of the corresponding residual image of the model on the QB dataset is generated using GT images as reference. (a) Brovey.
(b) Wavelet. (c) GSA. (d) PNN. (e) FusionNet. (f) MSDCNN. (g) ADKNet. (h) DiCNN. (i) LAGConv. (j) BiMPan. (k) MDPNet. (l) Ours. (m) GT.

Fig. 9. Visual representation of the HR-MS image corresponding to the model on the GF2 dataset is generated using GT images as reference. (a) Brovey.
(b) Wavelet. (c) GSA. (d) PNN. (e) FusionNet. (f) MSDCNN. (g) ADKNet. (h) DiCNN. (i) LAGConv. (j) BiMPan. (k) MDPNet. (l) Ours. (m) GT.

that our model exhibits superior perceptual quality. Furthermore,
to better visualize the detailed differences between the fused
images and the label images, we present the residual images
between the fused and label images. As shown in Fig. 10, we
calculate the average differences across channels and display
the difference values through images. It is worth noting that
in the residual images, our method reconstructs clearer texture
details, thereby validating the effectiveness and superiority of
our approach.

3) Performance on the WV3 Dataset: In this section, we will
present the performance of all methods on the WV3 dataset, as
shown in Table IV. This sentence explains what the bold text
in Table IV represents. Similar to the performance on the QB
and GF2 datasets, all DL-based methods outperform traditional
learning methods in terms of quantitative results. In addition,
our model achieves superior performance on all five metrics
with reference.

For intuitive comparison, we visualized the fusion results of
traditional learning and DL. The fusion results of the selected

method are shown in Fig. 11. It can be observed through the mag-
nified images of some areas of the fused image that the model
we proposed can have excellent spatial texture detail information
and spectral information. We also visualized the residual images
between the fusion results of the model on the WV3 dataset and
the GT images, as shown in Fig. 12. In the residual images of the
fused image and the label image, it can be seen that the model
proposed in this article has residual images with less information
compared to other models. This also indicates that the method
we proposed has better performance and visual performance
compared to other DL methods and traditional learning methods
in this article.

E. Performance of the Model on the Full Resolution Dataset

We also evaluated the performance of the selected traditional
learning methods and DL methods on the full resolution datasets,
including QB, GF2, and WV3. In the model performance
evaluation tables of the three datasets, we bold the optimal
index data.
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Fig. 10. Visual representation of the corresponding residual image of the model on the GF2 dataset is generated using GT images as reference. (a) Brovey.
(b) Wavelet. (c) GSA. (d) PNN. (e) FusionNet. (f) MSDCNN. (g) ADKNet. (h) DiCNN. (i) LAGConv. (j) BiMPan. (k) MDPNet. (l) Ours. (m) GT.

TABLE IV
MODEL PERFORMANCE ON THE REDUCED RESOLUTION WV3 TEST SET

TABLE V
PERFORMANCE OF THE MODEL ON THE FULL RESOLUTION QB TEST SET

The three datasets each contain 20 pairs of LR-MS and PAN
images. The shape of LR-MS in the QB dataset is 128 × 128 ×
4, the shape of LR-MS in the GF2 dataset is 128 × 128 × 4, and
the shape of LR-MS in the WV3 dataset is 128 × 128 × 8. The
shape of PAN images in the three datasets is 512 × 512 × 1.

As shown in Table V, in the full-resolution testing on the QB
dataset, the Dλ performance index of Brovey is better than some
DL methods, whereas the Ds performance index of Wavelet is
superior to that of PNN. However, regarding the QNR evaluation
metric, DL methods are superior to traditional learning methods.
Despite the fact that traditional learning methods may excel in
certain metrics, DL approaches demonstrate greater scalability
and can adapt to diverse datasets, which suggests that DL has
an advantage in maintaining the fidelity of spectral and spatial
information. It is noteworthy that our model exhibits excellent
performance compared to other DL methods in both Dλ and
QNR evaluation metrics.

As shown in Table VI, in the full-resolution testing on the
GF2 dataset, the performance metrics of DL outperform those
of the three traditional methods. It is noteworthy that our model
achieves the best results compared to other methods in the Ds

and QNR metrics.
As shown in Table VII, in the full-resolution testing on the

WV3 dataset, the Ds index of the Wavelet method is superior to
PNN and DiCNN in DL. However, our proposed model achieves
the best results in all three no-reference metrics for the WV3
dataset, demonstrating the effectiveness of our proposed method.
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Fig. 11. Visual representation of the HR-MS image corresponding to the model on the WV3 dataset is generated using GT images as reference. (a) Brovey.
(b) Wavelet. (c) GSA. (d) PNN. (e) FusionNet. (f) MSDCNN. (g) ADKNet. (h) DiCNN. (i) LAGConv. (j) BiMPan. (k) MDPNet. (l) Ours. (m) GT.

Fig. 12. Visual representation of the corresponding residual image of the model on the WV3 dataset is generated using GT images as reference. (a) Brovey. (b)
Wavelet. (c) GSA. (d) PNN. (e) FusionNet. (f) MSDCNN. (g) ADKNet. (h) DiCNN. (i) LAGConv. (j) BiMPan. (k) MDPNet. (l) Ours. (m) GT.

TABLE VI
PERFORMANCE OF THE MODEL ON THE FULL RESOLUTION GF2 TEST SET

In addition, we also conducted visualizations on the full-
resolution datasets. As shown in Fig. 13, we visualized the
full-resolution images on the QB dataset. It can be observed

TABLE VII
PERFORMANCE OF THE MODEL ON THE FULL RESOLUTION WV3 TEST SET

that, compared to other DL and traditional learning methods,
our proposed method is capable of capturing finer textural
details and more abundant spectral information. This reflects



LI et al.: PANSHARPENING VIA DETAIL GUIDED AND GLOBAL SCALE CONVOLUTION 14699

Fig. 13. Visual performance of the method on the QB dataset is assessed. (a) Brovey. (b) Wavelet. (c) GSA. (d) PNN. (e) FusionNet. (f) MSDCNN. (g) ADKNet.
(h) DiCNN. (i) LAGConv. (j) BiMPan. (k) MDPNet. (l) Ours. (m) MS.

Fig. 14. Visual performance of the method on the GF2 dataset is assessed. (a) Brovey. (b) Wavelet. (c) GSA. (d) PNN. (e) FusionNet. (f) MSDCNN. (g) ADKNet.
(h) DiCNN. (i) LAGConv. (j) BiMPan. (k) MDPNet. (l) Ours. (m) MS.

the efficiency of our model. As shown in Fig. 14, it can be seen
that the fusion results of our model can display better spectral
and spatial information on the GF2 dataset at full resolution,
which demonstrates the superiority of our model. As shown in
Fig. 15, our model demonstrates superior performance on the
WV3 dataset compared to other traditional learning methods,
capturing better spectral and detailed information. Compared
with DL, our fusion results do not exhibit spectral distortion,
which illustrates the superiority of our model.

V. DISCUSSION

In this section, in order to prove the effectiveness of the
module we proposed and to obtain the optimal results of the
module, we conducted a series of ablation experiments, includ-
ing verifying the effectiveness of the four main modules in the
DGGSC model, exploring the influence of the parameter N and
the loss function on the performance of the model, and for all
ablation experiments, the best results are marked in bold.

Our base module includes the DRL module, the GCNN mod-
ule, the MSDC module, and the CAL module. In addition, in

order to evaluate the role of the module more objectively, we
used the reduced-resolution QB test set to test the effectiveness
of the module. The experiments show that the module and loss
function proposed by us play an important role in improving the
performance of the model.

A. Analysis of the Model Efficiency

As shown in Fig. 16, the relationship among the PSNR index,
the number of parameters, and floating point operations (FLOPs)
of the model is presented. Circle sizes indicate the size of FLOPs.
It can be seen that our model has achieved a good balance
between the parameters, the FLOPs, and the PSNR index. Under
the condition of improving the performance of the model, out
model can significantly reduce the trainable parameters of the
model. As shown in Table VIII, we compared the average train-
ing time and average testing time of DL models. Testing time
under one second is underlined in the table. It can be observed
that the training time of our model is shorter than that of BiMPan
and ADKNet. Regarding the testing time, the testing time of our
model is under 1 s and is superior to the testing time of ADKNet,
LAGConv, and BiMPan.
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Fig. 15. Visual performance of the method on the WV3 dataset is assessed. (a) Brovey. (b) Wavelet. (c) GSA. (d) PNN. (e) FusionNet. (f) MSDCNN. (g) ADKNet.
(h) DiCNN. (i) LAGConv. (j) BiMPan. (k) MDPNet. (l) Ours. (m) MS.

Fig. 16. Parameter versus PSNR versus FLOPs.

TABLE VIII
TRAINING TIME AND TESTING TIME OF DIFFERENT METHODS ON THE

REDUCED RESOLUTION QB TEST SET

B. Analysis of Deep Feature Mixing Module

As shown in Table XIII, we explored the parameter N in
the model. Experiments indicate that when the number of deep
feature mixing modules is set to 4, the performance of the model
reaches its optimum.

C. Effectiveness of GCNN Module

As shown in Table IX, GCNN plays a significant role in the
model. When GCNN is added, the performance of the model has
improved significantly. We also investigated the influence of the
value of ws in the GCNN module on the model’s performance.
As indicated in Table XI, when ws is set to 8, the model
performance reaches its optimum. When the GCNN module is
replaced by the CNN module, the performance declines, which
indicates the efficiency of our GCNN model.

D. Effectiveness of DRL Module

As shown in Table IX, the effectiveness of the DRL module
is demonstrated. We further explored the parameter q in DRL.
As shown in Table XIV, when q is set to 3, the performances
of PSNR, ERGAS, and SSIM of the model reach the optimum.
When q is set to 4, the SAM performance of the model reaches its
optimum, whereas the SCC performance has a small difference
from that when q is set to 3. Therefore, in this article, we choose
to set q to 3.

E. Effectiveness of CAL Module

We explored the validity of the CAL module. As shown in
Table IX, compared with the model with the CAL module, the
performance of the model without the CAL module decreased
significantly, which indicates the validity of the CAL module.

We also explored the influence of LN in the channel attention
learning module on performance and the selection of activation
functions. We compared the performance metrics of using LN
and not using LN on the reduced-resolution test set images,
as shown in Table XV. Compared with not using LN, the
performance was improved to a certain extent when using LN.

In addition, we compared the influence of the traditional
ReLU activation function and the GELU activation function
adopted in this article on the model performance, as shown in
Table XV. The performance of the GELU activation function
is superior to that of the ReLU performance metric, and the
influence of the activation function on performance is greater
than that of LN.
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TABLE IX
IMPACT OF MODULE COMBINATION ON PERFORMANCE FOR THE REDUCED RESOLUTION QB TEST SET

TABLE X
PERFORMANCE OF THE LOSS FUNCTION SETUP ON THE REDUCED RESOLUTION QB TEST SET

TABLE XI
PERFORMANCE OF THE WS PARAMETER IN GCNN ON THE REDUCED

RESOLUTION QB TEST SET

TABLE XII
PERFORMANCE OF THE α PARAMETER IN FFT LOSS FUNCTION ON THE

REDUCED RESOLUTION QB TEST SET

TABLE XIII
PERFORMANCE OF THE N PARAMETER IN DGGSC ON THE REDUCED

RESOLUTION QB TEST SET

F. Effectiveness of MSDC Module

We conducted an evaluation of the effectiveness of the MSDC
module, as illustrated in Table IX. The results indicate that the
performance metrics, including SAM, PSNR, ERGAS, SCC,
and SSIM, exhibit a decline when the model operates without
the MSDC module. This underscores the efficacy of the MSDC
module.

G. Effectiveness of Our Model Loss Function

We explored the changes in the model performance caused by
different combinations of loss functions, as shown in Table X.

TABLE XIV
PERFORMANCE OF THE q PARAMETER IN DRL ON THE REDUCED RESOLUTION

QB TEST SET

TABLE XV
PERFORMANCE EVALUATION OF CAL ON THE REDUCED RESOLUTION QB

TEST SET

The performance of the model using FFT loss is significantly
better than that of the model without using FFT loss. Through
comparison, we finally selected theL1 loss function as our image
reconstruction loss function.

We further explored the influence of the coefficient of FFT loss
on the model performance, as shown in Table XII. We selected
different coefficients to evaluate the model. When α takes 0.05,
the performance of the model reaches its optimum. Therefore,
in this article, we set the parameter α to 0.05.

VI. CONCLUSION

In this article, we propose an efficient remote sensing PAN
sharpening network named DGGSC. The model uses residual
structure, the GCNN module, the DRL module, and the MSM
module to increase the expressive ability of the model and
improve its performance. The model utilizes downsampling to
achieve multiscale information perception without increasing
the time and parameter quantities of the model. Through our
analysis, DGGSC is capable of generating visually clearer and
more realistic HR-MS images, including better texture details.



14702 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

The DGGSC model can generate excellent HR-MS images
on multiple satellite image datasets with different spectral res-
olutions and spatial resolutions. However, it still has some
limitations. For instance, the ability of the model to consider
context perception needs to be further improved. In the future,
we will further enhance the performance indicators of the model
to make it more convenient and efficient.

REFERENCES

[1] C. Bai, X. Bai, and K. Wu, “A review: Remote sensing image object
detection algorithm based on deep learning,” Electronics, vol. 12, no. 24,
Dec. 2023, Art. no. 4902.

[2] S. N. Shivappriya, M. J. P. Priyadarsini, A. Stateczny, C. Puttamadappa,
and B. D. Parameshachari, “Cascade object detection and remote sensing
object detection method based on trainable activation function,” Remote
Sens., vol. 13, no. 2, Jan. 2021, Art. no. 200.

[3] Y. Hu, J. Chen, D. Pan, and Z. Hao, “Edge-guided image object detec-
tion in multiscale segmentation for high-resolution remotely sensed im-
agery,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4702–4711,
Aug. 2016.

[4] S. Ren and Q. Liu, “Small target augmentation for urban remote sens-
ing image real-time segmentation,” IEEE Trans. Intell. Transport. Syst.,
vol. 25, no. 2, pp. 2076–2088, Feb. 2024.

[5] A. Ma, J. Wang, Y. Zhong, and Z. Zheng, “FactSeg: Foreground
activation-driven small object semantic segmentation in large-scale remote
sensing imagery,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5606216.

[6] J. K. Gilbertson, J. Kemp, and A. V. Niekerk, “Effect of pan-sharpening
multi-temporal Landsat 8 imagery for crop type differentiation using dif-
ferent classification techniques,” Comput. Electron. Agriculture, vol. 134,
pp. 151–159, Mar. 2017.

[7] H. Hallabia and H. Hamam, “An enhanced pansharpening approach based
on second-order polynomial regression,” in Proc. Int. Wireless Commun.
Mobile Comput., Harbin City, China, 2021, pp. 1489–1493.

[8] X. Feng, J. Hu, W. Wu, and S. Fan, “Dynamic large-small kernel convo-
lutional neural network for pansharpening,” IEEE Geosci. Remote Sens.
Lett., vol. 20, 2023, Art. no. 5002305.

[9] S.-S. Xiao, C. Jin, T.-J. Zhang, R. Ran, and L.-J. Deng, “Progressive band-
separated convolutional neural network for multispectral pansharpening,”
in Proc. IEEE Int. Geosci. Remote Sens. Symp., Brussels, Belgium, 2021,
pp. 4464–4467.

[10] M. Choi, “A new intensity-hue-saturation fusion approach to image fusion
with a tradeoff parameter,” IEEE Trans. Geosci. Remote Sens., vol. 44,
no. 6, pp. 1672–1682, Jun. 2006.

[11] V. P. Shah, N. H. Younan, and R. L. King, “An efficient pan-sharpening
method via a combined adaptive PCA approach and contourlets,” IEEE
Trans. Geosci. Remote Sens., vol. 46, no. 5, pp. 1323–1335, May 2008.

[12] A. Garzelli, F. Nencini, and L. Capobianco, “Optimal MMSE pan sharp-
ening of very high resolution multispectral images,” IEEE Trans. Geosci.
Remote Sens., vol. 46, no. 1, pp. 228–236, Jan. 2008.

[13] X. He, C. Zhou, J. Zhang, and X. Yuan, “Using wavelet transforms to fuse
nighttime light data and POI Big Data to extract urban built-up areas,”
Remote Sens., vol. 12, no. 23, Nov. 2020, Art. no. 3887.

[14] M. M. Khan, J. Chanussot, L. Condat, and A. Montanvert, “Indusion: Fu-
sion of multispectral and panchromatic images using the induction scaling
technique,” IEEE Geosci, Remote Sens. Lett., vol. 5, no. 1, pp. 98–102,
Jan. 2008.

[15] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, “MTF-
tailored multiscale fusion of high-resolution MS and pan imagery,” Pho-
togrammetric Eng. Remote Sens., vol. 72, no. 5, pp. 591–596, May 2006.

[16] M. Wang, G. Xie, Z. Zhang, Y. Wang, S. Xiang, and Y. Pi, “Smoothing
filter-based panchromatic spectral decomposition for multispectral and
hyperspectral image pansharpening,” IEEE J. Sel. Top. Appl. Earth Observ.
Remote Sens., vol. 15, pp. 3612–3625, 2022.

[17] D. Fasbender, J. Radoux, and P. Bogaert, “Bayesian data fusion for adapt-
able image pansharpening,” IEEE Trans. Geosci. Remote Sens., vol. 46,
no. 6, pp. 1847–1857, Jun. 2008.

[18] M. R. Vicinanza, R. Restaino, G. Vivone, M. D. Mura, and J. Chanussot,
“A pansharpening method based on the sparse representation of injected
details,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 1, pp. 180–184,
Jan. 2015.

[19] G. Masi, D. Cozzolino, L. Verdoliva, and G. Scarpa, “Pansharpening by
convolutional neural networks,” Remote Sens., vol. 8, no. 7, Jul. 2016,
Art. no. 594.

[20] J. Yang, X. Fu, Y. Hu, Y. Huang, X. Ding, and J. Paisley, “PanNet: A
deep network architecture for pan-sharpening,” in Proc. IEEE Int. Conf.
Comput. Vis., Venice, Italy: IEEE, 2017, pp. 1753–1761.

[21] Q. Yuan, Y. Wei, X. Meng, H. Shen, and L. Zhang, “A multiscale and
multidepth convolutional neural network for remote sensing imagery pan-
sharpening,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 11,
no. 3, pp. 978–989, Mar. 2018.

[22] Z.-R. Jin, T.-J. Zhang, T.-X. Jiang, G. Vivone, and L.-J. Deng, “LAGConv:
Local-context adaptive convolution kernels with global harmonic bias for
pansharpening,” in Proc. AAAI Conf. Artif. Intell., 2022, pp. 1113–1121.

[23] K. Han, Y. Wang, J. Guo, Y. Tang, and E. Wu, “Vision GNN: An image
is worth graph of nodes,” in Proc. Adv. Neural Inf. Process. Syst., 2022,
pp. 8291–8303.

[24] J. Chen et al., “Run, don’t walk: Chasing higher FLOPS for faster neural
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2023,
pp. 12 021–12 031.

[25] L. He et al., “Pansharpening via detail injection based convolutional neural
networks,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., vol. 12,
no. 4, pp. 1188–1204, Apr. 2019.

[26] L.-J. Deng, G. Vivone, C. Jin, and J. Chanussot, “Detail injection-based
deep convolutional neural networks for pansharpening,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 8, pp. 6995–7010, Aug. 2021.

[27] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” in Proc. Int. Conf. Learn. Representations,
2020, pp. 1–12.

[28] X. Meng, N. Wang, F. Shao, and S. Li, “Vision transformer for pansharpen-
ing,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5409011.

[29] J. Yin, J. Qu, L. Sun, W. Huang, and Q. Chen, “A local and nonlocal
feature interaction network for pansharpening,” Remote Sens., vol. 14,
no. 15, Aug. 2022, Art. no. 3743.

[30] Z. Li, J. Li, L. Ren, and Z. Chen, “Transformer-based dual-branch multi-
scale fusion network for pan-sharpening remote sensing images,” IEEE J.
Sel. Top. Appl. Earth Observ. Remote Sens., vol. 17, pp. 614–632, 2024.

[31] S. Zhou, J. Zhang, W. Zuo, and C. C. Loy, “Cross-scale internal graph
neural network for image super-resolution,” in Proc. Adv. Neural Inf.
Process. Syst., 2020, pp. 3499–3509.

[32] D. Han, X. Pan, Y. Han, S. Song, and G. Huang, “FLatten Transformer:
Vision transformer using focused linear attention,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis., 2023, pp. 5961–5971.

[33] L. Sun, J. Dong, J. Tang, and J. Pan, “Spatially-adaptive feature modula-
tion for efficient image super-resolution,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis.2023, pp. 13 190–13 199.

[34] S. Peng, L.-J. Deng, J.-F. Hu, and Y. Zhuo, “Source-adaptive discriminative
kernels based network for remote sensing pansharpening,” in Proc. 31st
Int. Joint Conf. Artif. Intell., Vienna, Austria, 2022, pp. 1283–1289.

[35] J. Hou, Q. Cao, R. Ran, C. Liu, J. Li, and L. Deng, “Bidomain modeling
paradigm for pansharpening,” in Proc. 31st ACM Int. Conf. Multimedia,
Ottawa ON Canada: ACM, 2023, pp. 347–357.

[36] W. Fan, F. Liu, and J. Li, “Pansharpening via multiscale embedding and
dual attention transformers,” IEEE J. Sel. Top. Appl. Earth Observ. Remote
Sens., vol. 17, pp. 2705–2717, 2024, doi: 10.1109/JSTARS.2023.3344215.

[37] B. Aiazzi, S. Baronti, and M. Selva, “Improving component substitution
pansharpening through multivariate regression of MS +Pan data,” IEEE
Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3230–3239, Oct. 2007.

[38] R. L. King and J. Wang, “A wavelet based algorithm for pan sharpening
landsat 7 imagery, in IGARSS 2001. scanning the present and resolving
the future,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., Sydney, NSW,
Australia: IEEE, 2001, pp. 849–851.

[39] A. R. Gillespie, A. B. Kahle, and R. E. Walker, “Color enhancement of
highly correlated images. II. Channel ratio and “chromaticity” transfor-
mation techniques,” Remote Sens. Environ., vol. 22, no. 3, pp. 343–365,
Aug. 1987.

[40] R. H. Yuhas, A. F. Goetz, and J. W. Boardman, “Discrimination among
semi-arid landscape endmembers using the spectral angle mapper (SAM)
algorithm,” in Proc. 3rd Annu. JPL Airborne Geosci. Workshop, 1992,
pp. 147–149.

[41] X. Liu, Q. Liu, and Y. Wang, “Remote sensing image fusion
based on two-stream fusion network,” Inf. Fusion, vol. 55, pp. 1–15,
Mar. 2020.

[42] A. Arienzo, G. Vivone, A. Garzelli, L. Alparone, and J. Chanussot, “Full-
resolution quality assessment of pansharpening: Theoretical and hands-on
approaches,” IEEE Geosci. Remote Sens. Mag., vol. 10, no. 3, pp. 168–201,
Sep. 2022.

https://dx.doi.org/10.1109/JSTARS.2023.3344215


LI et al.: PANSHARPENING VIA DETAIL GUIDED AND GLOBAL SCALE CONVOLUTION 14703

Weisheng Li (Member, IEEE) received the B.S.
degree in industrial automation and the M.S. degree in
mechanical manufacturing and automation from the
School of Electronics and Mechanical Engineering,
Xidian University, Xi’an, China, in 1997 and 2000,
respectively, and the Ph.D. degree in computer
science and technology from the School of Computer
Science and Technology, Xidian University, in 2004.

He is currently a Professor with the Chongqing
University of Posts and Telecommunications,
Chongqing, China. His current research interests

include intelligent information processing and pattern recognition.

Xudong Zhi was born in Hebei, China, in 2001. He
received the bachelor’s degree in computer science
and technology in 2023 from the Chongqing Univer-
sity of Science and Technology of China, Chongqing
China, where he is currently working toward the
master’s degree in computer science and technology
with the Key Laboratory of Computer Science and
Technology.

His research interests include deep learning and
remote sensing image processing.

Yidong Peng was born in Chongqing, China, in 1988.
He received the M.S. and Ph.D. degrees in computer
science and technology from the Institute of Com-
puter Science and Technology, Chongqing University
of Posts and Telecommunications, Chongqing, China,
in 2017 and 2021, respectively.

He is currently a Lecturer with the Chongqing
University of Posts and Telecommunications. His
research interests include urban thermal infrared re-
mote sensing, remote sensing image processing, and
ecological environment monitoring and evaluation.

Yijian Hu was born in Ningbo, China, in 2000.
He received the bachelor’s degree in 2022 from the
Chongqing University of Posts and Telecommuni-
cations of China, Chongqing, China, where he is
currently working toward the masters degree with the
Key Laboratory of Computer Science and Technol-
ogy.

His research interests include deep learning and
remote sensing image processing.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


