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The UAV Benchmark: Compact Detection
of Vehicles in Urban Scenarios

Haitao Lv"”, Xianwei Zheng

Abstract—Vehicle detection in unmanned aerial vehicle (UAV)
images is a fundamental task in photogrammetry and remote
sensing. While great success has been achieved, this task remains
challenging due to two aspects: 1) the limitation of existing an-
notation methods in compactly enclosing targets with large per-
spective distortions in oblique UAV images; 2) the lack of vehicle
detection datasets under oblique perspectives. To this end, we
propose an oblique UAV benchmark for the precise expression and
localization of distorted vehicles in urban scenarios. The bench-
mark consists of 1) a new parallelogramlike bounding box (PBB)
annotation for compactly representing vehicles in oblique UAV
images; and 2) a large-scale UAV dataset (namely PARA) for vehicle
detection with PBB representation. Our PBB representation frees
the angle flexibility to allow a compact depiction of vehicles under
various perspective distortion, thus overcoming the inherent limits
of rectangular representation [like horizontal bounding box (HBB)]
used in traditional annotation methods. PARA comprises 1025
high-resolution images and 117 122 manually annotated object
bounding boxes obtained from different UAV platforms. The an-
notated images are collected from scenarios with complex urban
backgrounds and different shooting angles to reflect real-world
conditions. Moreover, we compared detection algorithms based
on the mainstream HBB and PBB representations on the PARA
dataset and established a baseline for UAV oblique image-based
vehicle detection. Experimental results validate the effectiveness of
PBB representation and highlight the challenges posed by PARA.

Index Terms—Benchmark testing, object detection, remote
sensing, unmanned aerial vehicle (UAV) image.

I. INTRODUCTION

HE use of unmanned aerial vehicles (UAVs) to acquire
high-resolution images has become an indispensable sup-
plement to satellite remote sensing. In recent years, growing
interest has turned to the detection of objects in UAV imagery,
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due to some attractive properties of UAVs, e.g., high flexibility,
various views, and the ability to acquire both the top and side
information of objects. Detecting vehicles from UAV images
facilitates a variety of modern urban applications, ranging from
crowd detection [1], [2], surveillance [3], [4], traffic monitor-
ing [5], [6], search, and rescue [7], [8], etc. However, vehicles in
UAV images are generally captured in an oblique view, which
often suffer from drastic perspective deformation [9]. Hence, the
detection of UAV vehicles faces not only challenges of arbitrary
orientation that are common in ground or satellite images, but
also the issue of notable shape and appearance distortion of
objects.

Over the past decades, the rapid development of deep learning
and its success in computer vision have attracted increased
attention to precisely locating and representing vehicles in aerial
images [10], [11], [12], [13], [14], [15], [16]. In the early stages,
many deep detectors adopt horizontal bounding box (HBB)
for vehicle detection in natural imagery due to its simplicity
and low cost. These detectors can generally yield satisfactory
results in scenes with sparse objects and a relatively simple
background. However, when applying these detectors to remote
sensing scenes where the object instances are densely crowded
and arbitrary-oriented, especially in urban areas with high oc-
clusion, their performances are often dramatically degraded.
Inspired by oriented text detection benchmarks [17], [18], the
oriented bounding box (OBB) was then introduced to address the
challenge of detecting crowded objects in aerial images. OBB
employs an additional parameter © to the HBB representation
to describe the orientation of remotely sensed objects in aerial
images.

Nevertheless, unlike the nearly vertical shooting angles of
orthographic aerial images, the oblique views of UAV images
inevitably bring large geometric distortions to the captured ob-
jects. As aresult, rectangle-based annotation methods like HBB
and OBB are incapable of precisely and compactly enclosing
the vehicles in UAV images and often introduce extraneous
background noise into learned regional features. A comparison
between different annotation methods is shown in Fig. 1(a) and
(b). It is clear that the rectangle-based annotation methods fail
to correctly delineate the shape of vehicles and include much
redundant information into the bounding boxes in oblique UAV
image. Although some researchers [19] have employed mask
segmentation to achieve more precise vehicle representations in
low-altitude UAV images, this annotation significantly increases
costs in terms of target annotations and network parameters.
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Fig. 1.

Comparison between different vehicle annotation methods. (a), (b),
and (c) represent HBB, RBB, and our PBB annotation of the same vehicle in
the oblique UAV image, respectively.

Except for the inaccurate representation of vehicles, the lack
of available datasets for training vehicle detectors for oblique
UAV images is another obstacle in this research field. Although
several vehicle detection datasets have been developed on aerial
images [20], [21], [22], [23], [24], [25], [26], they still have
difficulty meeting the requirements of practical applications.
In the early period, vehicle datasets [20], [21] had a limited
number of instances and low spatial resolution, which restricted
their applicability to the detection algorithms. With the fast
development of sensor technology, vehicle datasets such as
DLR-3K [22], HighD [23], and CARPK [26] began to focus
on single or simple natural scenes with high-resolution images.
The contained images were collected by low-altitude UAVs on
highways or parking lots. However, most of their annotated
images are captured in ideal conditions (clear simple back-
grounds and without crowded instances), which are inadequate
to reflect the complex real-world scenes. To remedy this prob-
lem, several large-scale vehicle datasets, such as COWC [24],
UCAS-AOD [25], and HRRSD [27], were proposed, which
involve more complex backgrounds and a larger number of
targets. Nevertheless, these datasets often observe objects from
a nearly vertical view, making it difficult to reflect the charac-
teristics of objects in the oblique view images. In contrast to
the single perspective of natural and aerial images, the views
of UAVs could be varied when the shooting pose changes. As
a result, the objects in oblique UAV images frequently suffer
from large perspective distortion, posing a significant challenge
to the detection algorithms. Due to the lack of annotated UAV
images, many methods [28], [29], [30] rely on transfer learning
with large-scale natural image datasets (such as ImageNet [31],
COCO [32], and Microsoft VOC [33]) for vehicle detection in
UAV imagery. Unfortunately, the bias between the UAV datasets
and natural datasets makes it hard to learn useful features for
UAV objects from natural samples.

Based on the above analysis, we propose a new parallelo-
gramlike representation, namely, parallelogram bounding box
(PBB), to compactly enclose vehicles in UAV images. As shown
inFig. 1(c), our PBB can fit well with the shape and orientation of
vehicles in UAV images. As a result, the image region contained
by our PBB can better reflect the appearance and size of vehicles
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under the oblique views compared with conventional annotation
methods. This will bring benefits to the learning of more target-
related features for vehicle detection in UAV images, as the
interference of backgrounds is greatly reduced. We also observe
that rectangular vehicles struggle to keep axis-aligned under
the oblique views and the parallelogramlike representation can
effectively encode the centrosymmetric shape of objects in UAV
imagery.

To facilitate the precise detection of vehicles from oblique
UAV images with PBB, we further propose a corresponding
UAV dataset called PARA for training deep detectors. We col-
lected 1025 UAV images from complex urban scenarios captured
by different sensors and platforms. The images in PARA contain
vehicles of different appearances, scales, and orientations, with
sizes ranging from 1280 x 1280 pixels to 4000 x 6000 pixels.
All images in PARA are manually annotated by experts in
image interpretation with a total of 117 122 PBBs and HBBs. In
addition, PARA has some distinctive properties: 1) containing
massive vehicle instances under oblique perspectives, which
effectively supplements the lack of samples under the multiview
observations; and 2) using a novel annotation method that yields
a compact vehicle representation that accurately reflects the
size and shape of vehicles. We evaluate several mainstream
detection algorithms on PARA to illustrate the effectiveness
of PBB and build a baseline for vehicle detection in oblique
UAV images. The contributions of this work mainly lie in three
aspects.

1) We proposed a new PBB representation for compact and
precise vehicle detection from oblique UAV images. PBB
can better fit the shape and orientation of vehicle objects
under large perspective deformation than existing HBB
and RBB representation.

2) We built an UAV dataset (PARA) to facilitate the detection
of vehicles with PBB representation, which contains a
large amount of images reflecting the oblique nature of
UAV data in real-world conditions. In addition, we also
divided vehicles into two categories—dynamic vehicles
and static vehicles as a complement to the existing vehicle
datasets.

3) We evaluated several mainstream object detection meth-
ods on PARA and proposed a baseline detector, which
can provide references for subsequent research on vehicle
detection.

II. RELATED WORK
A. Vehicle Detection Method

Vehicle detection is a fundamental subtask in object detection,
which aims at locating and classifying vehicles in various types
of scene images. With the rapid development of modern detec-
tors, vehicle detection has made significant progress in recent
years. To date, the most widely used detectors are deep learning-
based ones, which can be divided into two-stage detectors and
one-stage detectors. The two-stage detectors first generate can-
didate regions and then extract the regional features to regress
the final bounding box for the target object. These detectors are
typically built upon CNN-based models, like RCNN [34], Fast
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RCNN [35], and Faster RCNN [36]. To enhance the ability of the
network for detecting small targets, FPN [37] aggregates mul-
tiscale semantic information using a feature pyramid network
to enhance the robustness of the detectors. Cascade RCNN [38]
utilizes a multistage network with different IoU thresholds to
achieve more precise detection.

Unlike the two-stage detectors, the one-stage detectors treat
object detection as a regression problem and use a single-stage
network to directly predict the class and position of the tar-
get object. The representative one-stage detectors are YOLO
series [39], [40], [41], [42], and SSD [43]. Other detectors,
like DSSD [44] and FSSD [45], explore how to better fuse
multiscale features to improve the detection accuracy of small
targets. To solve the problem of extreme imbalance between
foreground and background bounding boxes in object detection,
RetinaNet [46] introduces focal loss to force the network to pay
more attention to hard samples.

Recent advancements in remote sensing have made aerial
images with wide coverage and a large number of ground
objects widely available. Many studies are devoted to detecting
objects with arbitrary orientations in aerial images [47], [48],
[49], [50], [S11, [52], [53], [54], [55]. In the early stages, many
conventional detection methods were developed and modified
to predict rotated objects in aerial images. For instance, Rotated
Faster RCNN [47] and R2CNN [48] adjust the original Faster
RCNN [36] to predict the rotated bounding box (RBB) of the
aerial objects. However, limited by the original RPN network,
which can only generate horizontal candidate regions, most
detectors cannot achieve satisfactory performance in rotated
object detection. To solve this problem, several works have
been presented to modify the original RPN network [49], [50].
In this line of research, RRPN [18] generates prior rotated
boxes of various sizes and aspect ratios onto the feature maps
and then feeds prior boxes into the rotated RPN network to
generate high-quality rotated candidate regions. ROI trans-
former [51] devises an ROI transformer module to transform
horizontal ROIs into rotated ROIs, thus avoiding producing a
large number of anchors and alleviating misalignment prob-
lems. Oriented RCNN [53] uses an oriented RPN network to
directly generate rotation ROIs, which eliminates the accuracy
loss incurred by transforming horizontal ROIs into oriented
ROIs.

B. Aerial UAV Datasets

Over the past decades, several UAV datasets have been pro-
posed and employed in various tasks such as object count-
ing, detection, and tracking. Robicquet et al. [56] proposed
the STANFORD CAMPUS, which collects image and video
data from eight scenes at the Stanford campus. The dataset
includes six common categories, such as pedestrian, car, and
so on. Zhu et al. [57] introduced the VISDRONE dataset, a
high-resolution UAV dataset that comprises more than 200
frames of video and 10 209 UAV images. This dataset provides
rich auxiliary data such as bounding boxes, categories, and
occlusion ratios. Bozcan et al. [58] proposed the first outdoor
multimodal UAV dataset for object detection, i.e., AU-AIR,

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

which contains target location and attribute information as well
as UAV flight statistic data. Du et al.[59] proposed a large-scale
UAV image dataset named UAVDT for target detection and
tracking. The dataset includes more than 80000 key frames
selected from a 10-hour video, consisting of roughly 2700
vehicles annotated by approximately 840000 bounding boxes
for detection and tracking. Lyu et al. [60] proposed UAVid, a
high-resolution UAV dataset for semantic segmentation. UAVid
is composed of 300 UAV images taken from 30 video sequences
captured in urban areas, with annotations classified by eight
categories.

To promote the development of small object detection, Ak-
shatha et al. [61] proposed a large-scale UAV pedestrian de-
tection dataset, namely, Manipal-UAV. This dataset includes 33
videos captured by UAVs at the flight height range of 10-50 m.
They selected 13 462 images and annotated 153 112 pedestrian
targets. Matthias et al. [62] proposed UAV 123, a low-altitude
UAV dataset for target tracking. This dataset aims to identify dif-
ferent types of objects and serve applications such as target track-
ing and trajectory prediction. Wang et al. [63] proposed UAVBD,
alow-altitude UAV dataset aimed at detecting abandoned plastic
bottles in the wild. This dataset comprises 25 407 UAV images
with different backgrounds and 34 791 rotating bounding boxes
for bottles. Du et al. [64] proposed UA-DETRAC, a large-scale
UAV image dataset for multiobject tracking. They manually
annotated 8250 bounding boxes of vehicles in Beijing and
Tianjin and provided auxiliary information such as location,
illumination, and shooting angles.

C. Vehicle Detection Datasets

In the last decade, there has been an increased attention
focused on real-world reflection within datasets, with vehicles
being a common object studied in research. In the early stage,
datasets such as TAS [20] and OIRDS [21] facilitated the ad-
vancement of automated vehicle detection, by employing vehi-
cles as detection categories in satellite remote sensing images.
However, the low image resolution of these datasets brings
difficulty to accurately reflecting real-world scenarios. With the
development of sensor technology, vehicle detection datasets
with high-resolution images such as UCAS-AQOD [25], VEDAI
(2015), and DLR-3K [22] were proposed. Nevertheless, their
limited sample quantities hampered their practical application.
Similarly, COWC [24] provides a large number of detection
targets, 32 716 in total, but its low image resolution and center
point-based annotation method impeded the applications of
detection algorithms.

The advent of deep learning has resulted in a higher demand
for large-scale datasets. Consequently, CPRPK [26] built a
large-scale aerial dataset for vehicle detection and counting.
It was collected from a parking lot by a drone, with a total
of 89777 vehicle targets. The limitation of dataset is that the
scenes in CARPK are too similar to reflect the complexity of
the real world. The HighD [23] dataset used drones to capture
orthographic images above German highways, ranging from 100
to several hundred meters in elevation. However, its utility is
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TABLE I
COMPARISON BETWEEN PARA AND OTHER VEHICLE DATASETS

Dataset Annotation method ~ Vehicle Categories ~ Vehicles Photograph ~ Images Image Width(px)  Year

TAS [20] HBB 1 1310 orthographic 30 792 2008
UCAS-AOD [25] HBB 1 2819 orthographic 310 1280 2015
VEDAI [65] RBB 6 6655 orthographic 1210 1024 2015
DLR-3K [22] RBB 2 14 235 orthographic 20 5616 2015
COWC [24] DOT 1 32716 orthographic 53 2000-19 000 2016
CPRPK [26] HBB 1 89 777 orthographic 1448 1280 2017
DOTA [47] RBB 2 43262 orthographic 2806 800-13 000 2018
DIOR [66] HBB 1 40000  orthographic 23 463 800 2019
MHOR [12] HBB 2 37 806 orthographic 10 631 5000-8000 2020
EAGLE [67] RBB 2 215986  orthographic 8280 936 2021
DroneVehicle [68] RBB 5 953 087 oblique 56 878 840 2022
PARA (ours) PBB 2 88 396 oblique 1,025 1000- 6000 2023

BB, short for the bounding box. DOT stands for using the center point as The o bject representation. Photograph denotes the photographing method for most images in the datasets.

restricted by its simple background and its inability to apply to
complex scenes.

Recently, many datasets have been dedicated to reflecting
complex scenes of the real world, which contain more complex
background information and instances. For example, DOTA [47]
is a large-scale dataset for object detection in aerial images,
mainly containing 2806 aerial images captured from different
sensors and platforms. DOTA provides the ability to evalu-
ate object detection and rotated object detection in aerial im-
ages. Vehicles are considered as a major detection category
in this dataset, with a total of 43 462 objects. MOHR [12]
collected 10 631 UAV images from suburban areas, including
12 602 trucks and 25204 cars annotated for detection evalua-
tion. VAID [69] collected 6000 aerial images under different
lighting conditions in Taiwan. It classifies vehicles into seven
categories, like sedan, minibus, truck, pickup, bus, cement truck,
and trailer. Currently, the largest dataset for vehicle detection
in aerial images is EAGLE [67], which involves 8820 aircraft
aerial images shot under various weather, lighting, and hu-
midity conditions. EAGLE contains a total of 215 986 detec-
tion targets, including 208 963 small vehicles and 7023 large
vehicles.

Although the above datasets cover many real-world scenarios,
few datasets pay attention to the influence of shooting angles on
the shape and appearance of vehicles. They often use a single ver-
tical view, ignoring the influences caused by the various oblique
views. In contrast, the proposed PARA contains a large number
of oblique view images and uses a novel object annotation,
PBB, to compactly enclose the vehicles in the oblique UAV
imagery.

III. PARA DATASET

In this section, we will introduce the proposed PARA dataset,
including the source of images, the selection of categories,
and the specially designed annotation method. We also make
a comprehensive comparison between PARA and other related
benchmark datasets in vehicle detection, which is presented in
Table I.

A. Image Collection

PARA dataset aims to reflect the complex urban scenarios
with the UAV images taken from various different views, and
thus enhance the generalization ability of current detection
methods. To this end, we collected 1025 UAV images from a
variety of diverse urban scenes, including urban roads, park-
ing lots, crossings, building, and highways. For clarity, some
original images in PARA are shown in Fig. 2. All the images
are captured by different camera-equipped drones, such as DJI
Air 3, under different illumination, resolution, and background
to increase the diversity of PARA. Moreover, to avoid a single
vertical downward viewing angle, we ensure that the drones
collect images with different flight heights and observation
angles. The varying flight and views allow our dataset to cover
a wide range of real-world scenes vehicles differing in several
aspects.

B. Category Selection

In PARA dataset, we divide vehicles into two categories,
i.e., static vehicle and dynamic vehicle, to enable the flexibility
of our dataset for severing different applications. This is also
a supplement to the existing datasets for vehicle detection.
Existing vehicle datasets often choose several common cate-
gories (e.g., large vehicles, small vehicles, etc.) based on the
size of vehicles. Such categories can meet the needs of basic
applications such as vehicle counting, object detection and so
on. However, it is struggling to serve specific applications. For
example, traffic monitoring and management are highly complex
tasks due to the drastic increase in the number of vehicles,
which need to figure out whether vehicles are moving. The
limited categories of existing vehicle datasets make them hard
to solve the traffic-related problems, which are common in
modern urban applications. Therefore, we divide the annotated
vehicles in the PARA dataset into static vehicles and dynamic
vehicles. They are labeled according to whether the kind of
vehicles is moving and this is judged by experts in UAV image
interpretation. Moreover, to ensure the diversity of categories in
the PARA dataset, we also include pedestrians as a category in
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Fig. 2.
and the fourth row shows the parking lots.

static vehicle

’destrian

(@)

Fig. 3.

our dataset, which plays an important role in exploring the real
world.

In Fig. 3(a), we show the quantity distribution of objects
in PARA, with a total of 58561 annotated instances. The in-
stances in PARA include 23118 static vehicles, 21647 dy-
namic vehicles, and 13796 pedestrians, and each instance has
two bounding boxes, HBB and PBB. The number of each
class of objects is shown in Fig. 3(b). It can be seen that
static vehicles and dynamic vehicles constitute the majority of

dynamic vehicle

Examples of different urban scenarios in PARA. The first row is the residential areas; the second row is the main roads; the third row is the crossroads;

23118
21647
20000 -
15000 - 13796
10000 -
5000 -
dynamic vehicle  static vehicle pedestrian

(b)

Distribution of different object categories in PARA. (a) Proportion of each category in PARA. (b) Quantity of each category in PARA.

the samples in the dataset and their distribution is relatively
balanced.

C. Data Processing

Data processing is important for building a highly available
dataset. Before annotation, we first manually discard a part of
PARA images with poor quality, such as those blurred or broken
images. Then, to ensure that the images cover vehicles of various
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scales and aspect ratios, UAV images captured at different flight
heights are uniformly selected. At the same time, the orientation
information is also considered. The selected images in PARA
are kept to contain different orientations as much as possible.

Moreover, we have developed a new annotation tool based on
the labelme to outline the parallelogramlike bounding boxes for
convenience. When annotating, we just need to manually find
three points on the outline of a single object. Then, our tool can
automatically generate a complete bounding box and compute
the orientation angle of the annotated box. Therefore, we not
only provide the coordinates of the original vertices, but also
the orientation information of all PARA objects. The complete
annotation of a single object contains the coordinates of three
adjacent corners as well as the orientation degree, which ranges
between 0° and 360° indicating the angle of the object head with
respect to the trigonometric circle.

D. Annotation Method

In computer vision, the annotation method determines the
representation of the instances and the parameters that the de-
tectors need to learn. The compact annotated bounding boxes
can contribute to separating the densely crowded objects, pro-
viding accurate semantic information to detectors. The HBB is
widely used in different vision tasks, and can be denoted by
(e, Ye, w, h), where (., y.) and (w, h) are the center location
and the size of a bounding box, respectively. Although objects in
natural images can be well represented by HBB, the majority of
instances with arbitrary orientations in aerial images cannot be
compactly outlined by this method. In order to solve this prob-
lem, the RBB was proposed [48] for precisely locating rotated
objects in aerial images. RBB additionally adds a parameter to
denote the orientation of the bounding box, which can effectively
separate the packed objects and reduce the background noise of
the annotation in the orthographic aerial images.

While RBB can address the problem of detecting crowded
objects in orthographic aerial images, this method struggles
to enclose rotated objects with large geometric distortions in
oblique UAV images. Objects in oblique UAV images often
suffer from large perspective deformation compared with ob-
jects in natural images and orthographic aerial images. The
rectangular vehicles are usually unable to remain axis-aligned
under the oblique views. As a result, HBB and RBB are prone
to failing to represent the accurate shape of vehicles due to the
limitation of the right angle. Considering the complex back-
grounds in urban scenarios and geometry distortion of vehicles,
we develop a more flexible annotation method called PBB
to accurately represent the vehicles in oblique UAV images.
PBB is a simple and effective object representation, denoted
by {(xs,v:)]i =1,2,3}, where (x;,y;) represents the vertex
of PBB. The fourth vertex of the PBB satisfies the following
constraints: x4 = x3 + (2 — 71); Y4 = y3 + (y2 — y1). When
annotating, we keep the long side and short side of PBBs align
with the length and width of vehicles, respectively. With no
restriction on the right angle, PBB can effectively encode the
shape of objects with distortions caused by linear perspective
in UAV imagery. To better illustrate the effectiveness of PBB,
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Fig. 4. Comparison of HBB, RBB, and PBB. (a)-(c) Differently annotated
vehicles in crowded scenes. PBB can more compactly enclose the vehicles than
HBB and RBB, which effectively reduces the noise from the background and
the overlap between bounding boxes.

we show the different annotation methods applied for crowded
vehicles in oblique UAV images in Fig. 4. Both of HBB and
RBB introduce heavier background noise into the bounding box
compared with PBB. In contrast, PBB can effectively reduce the
background noise and the overlap of between crowded bounding
boxes. In addition, to meet the needs of different research, we
also provide manually annotated HBB of objects in PARA.

IV. PROPERTIES OF PARA

This section illustrates the main characteristics of PARA,
including large scale high-resolution images, various views, dif-
ferently scaled instances, and so on. Fig. 5 displays the statistical
information of PARA in detail.

A. Large Scale

PARA consists of 1025 UAV images and 117 122 manually
annotated bounding boxes, covering several common vehicle
categories. The majority of original images in PARA have sizes
of 3956 x 5280 pixels, 4000 x 6000 pixels and 3648 x 5472
pixels, whereas in the natural datasets the sizes of images rarely
exceed 1000 x 1000 pixels (e.g., COCO [32] and Microsoft
VOC [33]). In Fig. 5(a), we display the different resolutions of
images in PARA. The high-resolution PARA images ensure a
real representation of natural scenarios.

B. Various Orientations of Instances

The orientation is an important attribute of instances in object
detection from UAV images. The orientation of instances not
only represents the relative relationship between objects in the
real world, but also has a significant impact on the feature
extraction with rotation invariance. PARA provides abundant
orientation information of vehicles for detectors. As shown in
Fig. 5(b), the orientation angles of PARA vehicles fully distribute
between 0° and 360°.

C. Multiscale Instances

The different UAV altitudes result in the different size of an
instance. We adjusted the flight height of UAVs between 50
and 350 m during the collection process due to the actual sizes
of vehicles in the real world do not differ significantly. The
varying flight heights ensure that PARA can capture different
sizes of vehicles in natural scenes, which is helpful to train a
robust detector. Fig. 5(c) illustrates the notable size differences
of objects in PARA.
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Fig. 5.

Image information and object statistics for instances in PARA. AR denotes the aspect ratio. Other images refer to those in the dataset with sizes ranging

from 1000 to 3000 pixels. (a) Statistics of image resolution. (b) Distribution of vehicle orientation. (c) Distribution of vehicle length. (d) Density distribution of
vehicles in each image. (e) Distribution of AR for HBBs. (f) Distribution of AR for RBBs.

D. Various Density Distribution of Instances

PARA is designed specifically for vehicle detection in urban
areas. We include several typical natural scenes in modern cities,
such as highways, parking lots, intersections and residential
areas. Different urban scenes have different background in-
formation and the presented vehicles exhibit varying density
distributions in different scenarios. As shown in Fig. 5(d), a
single image in PARA may contain only a few vehicles or exceed
200 number of vehicles, making PARA highly challenging.

E. Various Aspect Ratios of Instances

The aspect ratio (AR) is an important attribute of the dataset,
which provides essential information about the shape and size
of instances. In anchor-based detection algorithms, AR serves
as an auxiliary factor that affects model design and algorithm
effectiveness. For example, YOLOV3 [42] employs the k-means
algorithm [70] to cluster the initial anchor sizes and ratios. We
calculate two kinds of AR for all objects in PARA to provide a
reference for subsequent research. Fig. 5(e) and (f) illustrates the
aspect ratio of manually annotated RBBs and PBBs in PARA.

V. EXPERIMENTS

In this section, we evaluate the mainstream detectors on PARA
by detecting objects with HBB and PBB, respectively. In the
following, we will introduce the experimental setup, baselines
of different detection tasks, experimental results, and analysis
in detail.

A. Experimental Setup

In our experiment, we randomly split the sample in PARA
into three parts: a training set of 511 images, a validation set
of 168 images, and a testing set of 346 images, respectively.
As the original PARA images are too large to be fed into the
existing detectors for training, we crop them into patches of
1024 x 1024 pixels, with 50% overlapping between neighboring
patches. Finally, we get 32 903, 11 433, and 21 809 patches
for training, validation, and testing, respectively. To make a
fair comparison between the baseline detectors, all models
are implemented with the open-source MMDetection [71] and
trained with a single GeForce RTX 3090Ti GPU. We select
and evaluate Faster RCNN [36], DAB-DETR [37], Cascade
RCNN [38], RTMDet [72], YOLOV3 [42], SSD [43], Effi-
cientNet [73], RetinaNet [46], Deformable DETR [74], and
FCOS [75] with ResNet50, Efficientnet B3, VGG16, CSPNeXt,
DarkNet53 backbones as the baseline detectors. Specifically,
we modify the original Faster RCNN [36] and RetinaNet [46]
to detect vehicles with PBBs denoted by. {(z;, x;),i = 1,2, 3}.
All the model settings are kept the same as the default setups in
MMDetection [71].

B. Evaluation Metric

For the evaluation metric, we adopt mAP, the mainstream pro-
tocol in the field of object detection, to evaluate the performance
of the selected baseline detectors. The mAP stands for the mean
average precision (AP), which is calculated by the area under
the Precision-Recall (PR) curve. PR curve can be depicted with
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TABLE II
BENCHMARK OF THE STATE-OF-THE-ART ON THE HBB UNDER MAP50 AND MAP75 METRICS

AP[%](10U=0.5)

AP[%](10U=0.75)

Model Backbone

Mean DV SV P Mean DV SV P
Cascade RCNN [38] ResNet50 79.79 88.39 86.02 64.97 63.96 76.15 7458 41.14
FCOS [75] ResNet50 79.06 8592 8420 67.07 68.66 84.73 78.99 42.25
SSD [43] VGG16 79.55 87.32 8532 66.00 65.11 82.35 74.04 38.94
RetinaNet [46] ResNet50 77.32 89.39 86.05 56.53 62.61 86.37 72.82  28.65
Deformable DETR [74] ResNet50 79.77 88.79 86.31 64.20 67.12 87.12 80.03 34.21
RTMDet [72] CSPNeXt 79.41 88.35 85.61 64.27 65.62 83.38 74.67 38.80
YOLOvV3 [42] DarkNet53 79.44 87.68 8497 65.67 64.57 76.09 74.02 43.62
DAB-DETR [76] ResNet50 79.08 87.86 85.14 64.25 57.27 5236 79.31 40.12
EfficientNet [73] EfficientretB3 50.27 63.04 55.15 32.63 38.86 56.38 43.83 16.37
Faster RCNN [36] ResNet50 78.25 87.59 85.83 61.34 64.00 81.56 73,51 3692

mAP stands for the mean average precision, higher is better.

different scores of detection precision and detection recall. The
calculation of AP can be depicted as follows:

Precision = _TP (D
- TP +FP
Recall = l )
TP + FN
1
AP — / P(R)d(R) 3)
0

where TP (true positive) refers to the number of correctly
predicted bounding boxes, i.e., with an IoU score higher than
the IoU threshold. FP (false positive) and FN (false negative)
are the number of bounding boxes that are predicted incorrectly
and not detected, respectively. The IoU threshold is often set to
0.5 and 0.75, and the corresponding mAP is denoted as mAP50
and mAP75. In addition to the commonly used mAPS50 proposed
in PASCAL VOC [33], we also choose mAP75 as the evaluation
metric to judge whether the bounding boxes compactly enclose
the targets.

C. HBB Baseline

Most of datasets for rotated object detection in aerial imagery
(such as DOTA [47] and EAGLE [67]) generate HBB ground
truths of instances by calculating the HBBs of RBBs. We find
that the HBBs of PBBs are larger than the actual instances in
oblique UAV images due to geometric distortions. Therefore,
we obtain the accurate HBBs of vehicles in PARA by manual
annotation.

We train the baseline models with their default hyperparame-
ters and strategies to ensure a fair comparison. Table II displays
the results of HBB prediction. Cascade RCNN [38] outperforms
all the other detectors with an mAP of 79.79% for its effective
training strategy based on a multistage network. The other de-
tectors show impressive performance in our dataset with mAP50
over 77%, except for the EfficientNet [73]. We suspect that this
can be attributed to the the default backbone Efficientnet-B3
in MMDetection [71], which is sensitive to the size of the input
images. It is worth mentioning that the other one-stage detectors,

suchas YOLOV3 [42] and SSD [43], spend more time on training
in comparison with the two-stage algorithms. This may be the
reason why they can achieve comparable performance with
the two-stage detectors. Compared with the metric of mAP50,
the mAP scores of all the detectors decrease by over 10% under
the stricter metric of mAP75. Benefiting from the anchor-free
strategy, FCOS [75] achieves the best performance with a mAP
score of 68.66%. In the table, EfficientNet [73] presents poor
performance compared with the other detectors. We find that
the decrease in mAP under the metric of mAP75 is mainly
caused by the difficulty in detecting pedestrians, whose sizes are
too small to be accurately located. Moreover, all the detectors
achieve better performance in detecting dynamic vehicles with
clear backgrounds (like roads) than static vehicles with complex
backgrounds.

D. PBB Baseline

Most of mainstream detectors are designed for the objects
represented by HBB or RBB. It is not feasible to directly apply
them as a benchmark for the PBB-based detection task. Thus,
we choose and modify Faster RCNN [36] and RetinaNet [46] as
the baseline for PBB detection due to their efficiency.

We modified the region proposal network (RPN) and the head
of the convolution neural network (CNN) in the original Faster
RCNN. Region proposals generated by the modified RPN are
utilized to match the HBB of the PBB ground truths, which can
be denoted by (74, 7y, w, 7n); Then, each region proposal is
fed into CNN to attach the single PBB ground truth represented
by (9zes Gyes Guws Gn, 9t g1)- In detail, (guc, Gy, Gw, gn) denotes
the external bounding box of the PBB and (g;, g;) represents the
relative offsets of the top vertex and the left vertex in the PBB to
the left-top vertex of the external bounding box. Finally, the 6-D
target vector produced by the head of the modified CNN can be
written as P = {pyc, Dye, Pw, Ph, Pt, D1} Where

Pxc = (gJ,c - gxc)/Twapyc = (gyc - Tyc)/rh (4)
Pw = IOg(gw/rw)vph = IOg(gh/rh) (5)
Pt = 9t/TwsPL = Gi/Th- (6)
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TABLE III
BENCHMARK OF THE STATE-OF-THE-ART ON THE PBB UNDER MAP50 AND MAP75 METRICS

AP[%](IoU=0.5)

AP[%](IoU=0.75)

Model Backbone

Mean DV SV P Mean DV SV P
Cascade RCNN [38] ResNet50 79.10 86.84 8549 64.97 37.04 3547 3453  41.12
FCOS [75] ResNet50 78.64 84.98 83.87 67.07 38.52 35.68 35.68 44.19
SSD [43] VGGI16 78.67 85.52 8447 66.03 37.21 36.41 36.37 38.87
RetinaNet [46] ResNet50 76.58 88.50 84.71 56.53 34.01 38.66 3477 28.59
Deformable DETR [74] ResNet50 78.97 87.25 85.87 63.98 36.61 37.56 36.85 3542
RTMDet [72] CSPNeXt 79.04 87.12 8533 64.68 37.10 36.90 35.63 38.77
YOLOV3 [42] DarkNet53 78.64 86.12 84.13  65.67 37.84 36.36 33.63 43.53
DAB-DETR [76] ResNet50 78.62 86.63 84.77 64.45 36.88 3548 34.81 40.35
EfficientNet [73] EfficientretB3 49.23 61.01 54.06 32.63 21.66 25.02 23.68 16.28
Faster RCNN [36] ResNet50 77.46 86.12 84.92 61.34 35.79 34.80 35.68 36.87
Modified Faster RCNN ResNet50 80.10 84.95 8340 71.93 54.80 68.41 57.51 38.48
Modified RetinaNet ResNet50 81.61 89.38 85.53 69.92 63.10 78.82 63.92 46.56

The values in bold are the best.

Fig. 6. Comparison of the IoU scores between HBB and PBB predicted boxes
with PBB ground truths. The results show that the IoU of predicted HBB boxes
is relatively low, while the predicted PBB achieves much better performance.
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(a)

Fig. 7. Quantitative comparison between the HBB and PBB predicted boxes.
(a) IoU distributions of the HBB and PBB predictions evaluated by PBB ground
truths. (b) Boxplot of the ToU distribution of PBB and HBB boxes.

Similarly, we modify the original RetinaNet to regress the off-
sets of parallelograms to their corresponding external bounding
boxes. To make a comprehensive evaluation of our modified
PBB-based baselines, we also train the other mainstream de-
tectors based on HBB annotations and evaluate the predicted
results with the PBB ground truths for convenience in the
PBB task.

Table III displays the results of PBB-based vehicle detection.
The two PBB baselines outperform the other original state-of-
the-art detectors trained with HBB. The improvement is par-
ticularly notable for the mAP75 metric, showing an increase of
approximately 16% in mAP score. The results of the PBB-based
detection show significant differences between PBB and HBB
representation for vehicles with large geometric distortion. We
also observe that the improvement in mAP score is mainly
attributed to the categories of static vehicle and dynamic vehicle,
with increases of around 30% and 21% in mAP, respectively.
In comparison, the detection accuracy of pedestrians does not
demonstrate a substantial increase due to their small size in UAV
images. Overall, our findings indicate that for objects with large
deformation in oblique UAV images, the PBB presentation is
superior to HBB in precise and compact detection of vehicles.

VI. DISCUSSION AND ANALYSIS

In this section, we will present some interesting discussions
and analysis of our experimental results. When comparing the
HBB detection results in Table II with the PBB detection results
in Table III, we observe that the detectors trained with HBB
ground truths achieve similar performance in both HBB and PBB
detection tasks under the metric of mAP50. To explain the reason
behind this phenomenon, we visualize the predicted results of
different tasks in Fig. 6(a) and (b). The IoU scores beside the
predicted boxes in Fig. 6 can be utilized to evaluate the accuracy
of predicted results, with higher values indicating better overlap
between the predicted and ground truth bounding boxes. We find
that the predicted PBBs in Fig. 6(a) compactly fitting ground
truths, while the predicted HBBs enclose massive backgrounds.
However, the predicted HBBs are also regarded as TP samples
under the metric of mAPS50 with a poor IoU score of 0.5 or 0.6.
The results indicate that the mAP50 metric has some limitations
and is unable to accurately reflect the matching degree of the
predicted and ground truth boxes in oblique UAV images. We
should adopt a more stringent evaluation metric like mAP75
for object detection in UAV images, where objects often suffer
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Fig. 8.
and PBB boxes in different urban scenarios.

from large distortion. Moreover, this finding also reveals that
the same detectors can achieve a completely different accuracy
under the mAP75 metric, with many low-quality HBB boxes
being filtered out significantly. In contrast, PBB predicted boxes
achieve good performance in matching with ground truths, with
IoU scores converging in the range of 0.85-0.95. It can not only
fit the targets closely, but also significantly reduce overlapping
with each other.

To quantitatively evaluate the matching degree of HBB and
PBB predicted boxes with PBB ground truths, we collect over
9000 predicted boxes from different tasks on the validation set
and visualize their distribution of IoU scores with ground truths
in Fig. 7. We consider a predicted box with an IoU score above
0.8 as a positive sample. In Fig. 7(a), we observe that nearly half
of HBB-predicted boxes have a high IoU score over 0.8. The IoU
scores of the remaining boxes are distributed in the range of 0.4—
0.8. In comparison, the majority of PBB predicted boxes have
IoU scores that converge in the range of 0.8—1.0. The proportion
of low-level predicted boxes is smaller in comparison to the
HBB predicted boxes. In Fig. 7(b), we utilize the method of box
plot to depict the distribution of IoU scores between PBB/HBB
predicted boxes and the ground truths. The IoU score distribution
of PBB is clustered, with a minimum around the threshold of 0.5.
In comparison, the IoU distribution of HBB is scattered, showing
a poor performance in matching with ground truths. Therefore,
PBB is more capable of accurately representing rotated vehicles
in oblique UAV images.

In Fig. 8, we select different urban scenes and compare the
results between the detection results with PBB and HBB. We
observe that HBB detectors classify several flower beds and
trees as vehicles. This is because too much background noise
contained in the bounding box disturbs the network learning. For
densely arranged vehicles, the localization of objects with PBB
is obviously more accurate than with HBB. HBB detectors tend
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Visualization results of testing on PARA using well-trained original and modified Faster RCNN. (a) and (b), respectively, illustrate the predicted HBB

to suppress some packed detected boxes by some postprocess-
ing operations like NMS. PBB can well address this problem
by compactly enclosing crowded vehicles, resulting in better
performance in crowded vehicle detection. Moreover, the loose
representation of HBB causes predicted boxes to overlap with
each other, while PBB can correctly reflect the actual orientation
and size of vehicles in oblique UAV images. In terms of different
categories, we find that the detection accuracy of static vehicles
is slightly lower than that of dynamic ones. This is because
static vehicles are often occluded by surrounding objects. It is
relatively easy for detectors to detect dynamic vehicles with clear
backgrounds.

VII. CONCLUSION

We build a large-scale dataset for vehicle detection in UAV
images, namely PARA, which features a novel representation
of vehicle object under oblique UAV views. Compared with
the traditional annotation methods, the proposed PBB can
compactly enclose the targets and provide accurate semantic
information to detectors. In addition to the PBB represen-
tation, we collect a large number of high-resolution images
captured in complex urban environments and manually anno-
tate many rotated vehicles with different bounding boxes. We
also evaluate the performance of several mainstream object
detectors on PARA to establish a benchmark for precise ve-
hicle detection in urban scenarios. Experimental results demon-
strate that it remains challenging for detectors to accurately
detect vehicles with significant deformations in complex urban
scenarios.

High resolution oblique UAV images are now easily accessi-
ble with cheap drones, which provide rich information for many
modern urban practical applications such as traffic monitoring,
vehicle management, and urban planning. However, objects in
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oblique UAV images often suffer from large perspective defor-
mation, bringing a huge challenge for detection and analysis.
We believe that the findings with the PARA dataset for compact
vehicle detection can not only bring benefits addressing urban
issues but also attract more attention to object detection in
oblique UAV images.
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