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Abstract—The sewer/water leakage has become a world-
wide concern. Conventional field measurement method is cost-
consuming and time-inefficient, and deep learning (DL)-based
method is not readily to be interpreted. Under this condition,
we propose an interpretable principal component analysis (PCA)
and support vector machine (SVM)-based leak detection algorithm
(PSLDA) for identifying the sewer/water leakage. The PSLDA takes
synthetic aperture radar (SAR)-derived moisture content and SAR
interferometry closure phase as inputs, conducts feature extraction
and dimensionality reduction with PCA, and implements binary
classification with SVM, finally identifying leaks or nonleaks. The
main advantage of PSLDA lies in that it, respectively, adopts the
mathematically derived PCA and SVM instead of the convolutional
and pooling layer and the loss-function layer in the DL network,
ensuring the validity and interpretability simultaneously. With
1222 in situ leak points and 1206 nonleak points in Beijing and
Tianjin, China, the PSLDA is trained. The well-trained PSLDA
is subsequently applied to detect leak/nonleaks in real-world sce-
narios, and achieves a leak-detection accuracy of 91.86% in the
fifth ring road of Beijing, a nonleak-detection accuracy of 88.10%
in the Huizhou City, Guangdong Province. The proposed PSLDA
demonstrates to be efficacious and credible, potentially offering
explicit guidance for pipeline maintenance.

Index Terms—Leak/nonleak detection, principal component
analysis (PCA) and support vector machine (SVM) (PCA-SVM)-
based leak detection algorithm (PSLDA), principal component
analysis (PCA), synthetic aperture radar (SAR) interferometry
(InSAR), support vector machine (SVM), SAR.

I. INTRODUCTION

THE underground pipeline is widely used in water
supply, sewage, and heating, etc. In China, the total

length of water supply pipelines has been increasing
with the urbanization to nearly 1 102 975.660 km
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(https://www.ceicdata.com.cn/zh-hans/china/length-of-water-
pipeline/cn-length-of-water-pipeline-city) and drainage
pipelines to 913 507.590 km (https://www.ceicdata.com.cn/zh-
hans/china/length-of-drain-pipeline) until 2022. However, the
pipelines have a high risk of leakages, which may be attributed
to management negligence, improper operations, material
aging, and mechanical forces, etc. [1]. In recent years, water
pipeline leakages have become a worldwide concern since it
is closely related to three main problems, i.e., water scarcity,
human health, and secondary disasters. It is reported that
around 27% of the global population has been suffering from
water scarcity since the middle of 2010, and the proportion is
predicted to be over 42% until 2050 [2], [3]. Around 50% of
the world’s population inhabits areas suffer from water scarcity
at least one month a year [3], [4]. Continuous leakage will
lead to the loss of clean water, thus exacerbating the water
scarcity situation. It also contradicts to the global advocacy
of green sustainable development. In addition, in the presence
of leak, the pipe-water, which is originally safe, tends to be
contaminated during transportation, posing threatens to human
lives. Furthermore, the sewer and/or water pipeline leakage can
induce secondary environmental hazards, such as groundwater
pollution, infrastructure damage, soil erosion, and ground
subsidence, resulting in tremendous financial losses [1], [5].
For example, the leakage has been one of driving factors of
man-made sinkholes. From 2006 to 2010, the Florida Office of
Insurance Regulation reported 24 671 cases of sinkholes that
caused financial damage of around 1.4 billion USA dollars [6].
To minimize the damages, it is imperative to initiate leak
detection, which can provide timely decision-making assistance
for the repair and maintenance of underground pipelines [1],
[5].

Traditionally, the leakage acoustic-based method is frequently
used for leak detection [3], [7], [8]. The method relies on in
situ devices (e.g., geophones, hydrophones, pressure sensors,
piezoelectric transducers, and accelerometers) and has defects
as listed in the following.

1) The devices are not only cost-consuming but also inconve-
nient to deploy. The water pipeline is buried underground
and is above the groundwater level [9]. The depth of
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shallow groundwater roughly varies from 0 to ∼5 m,
making it hard to install devices.

2) The detection accuracy is dependent on pipeline materials,
i.e., metal or nonmetal. Tariq et al. [3] developed separate
models for metal and nonmetal pipes and revealed that the
detection accuracy of metal pipeline is obviously higher
than that of nonmetal pipeline.

3) The method is inefficient and impractical for long-range
detection, whereas the pipelines are basically constructed
with considerable lengths.

Under the circumstances, it is of necessity and urgency to
develop other effective and efficient leak detection method.

Straightforwardly, the post-leakage moisture should be higher
than the preleakage moisture. Thus, the soil moisture content
would facilitate identifying leakage if it is properly derived.
The synthetic aperture radar (SAR) transmits microwaves and
receives backscatter signals of ground targets with large-spatial
extent [10], [11]. The microwaves can penetrate asphalt and
concrete of urban surfaces and probe into the underground con-
dition [12], [13]. The longer the wavelength, the deeper the pene-
tration depth. TheL-band satellite (radar wavelength λ= 24 cm)
proves to be able to penetrate the Earth’s surface with a depth
of approximately 10 feet [12]. In the presence of water leakage,
the dielectric permittivity of underground soil varies [14]. Such
variation further influences the radar backscattering signal, thus
making SAR capable of deriving moisture content. Currently,
SAR-based moisture content derivation algorithm is mature and
prevalent [15], [16]. For example, Guo et al. integrated the
H/A/α polarmetric decomposition with support vector regres-
sion (SVR) to derive the surface moisture content, and achieved
a high accuracy of 1.50% per volume (vol%) [16]. In a word,
the SAR-derived moisture content provides an opportunity for
detecting large-scale leakage without distinguishing the pipe
materials.

In reality, SAR-derived moisture content alone is insufficient
for locating leakage because there distribute targets naturally
characterized by high moisture content, such as artificial pond,
shallow vegetation, and farmland. Hence, extra information re-
flecting the variation of moisture content is needed. The closure
phase of SAR interferometry (InSAR) demonstrates to be an
indicator of moisture content variation without being distracted
by surface deformation and atmospheric disturbance [17]. As
will be detailedly described later, it can be reasoned from a
mathematical perspective that pixel having closure phase de-
viated from an integer multiple of 2π is featured with apparent
moisture content variation. In brief, the moisture content derived
from SAR backscattering coefficient and the moisture variation
reflected by SAR phase should be complementary to each other,
and their conjunction could, thus, provide more information for
accurate leakage detection.

However, how to utilize the moisture content feature and
closure phase feature for detecting leak is still ambiguous. For
instance, to what extent the moisture content increase or to what
extent the closure phase varies, a pixel should be identified
as a leakage? In this case, a neural network (NN) [1], [18]
algorithm may help since it can detect a binary change, i.e., leak
or nonleak, if adequately trained. The SAR observations could

offer the needed inputs for training and implementing the NN
algorithm to detect the pipeline leak. As a matter of fact, pipeline
leak-detection methods based on deep learning (DL) emerge one
after another [19], [20], [21], [22]. For example, considering
that the closed circuit television (CCTV) inspection is expertise-
intensive and time-consuming, Li et al. [19] proposed a method
based on the deep convolutional neural network (CNN) to detect
and classify defects from CCTV inspections. A detection accu-
racy of 83.2% was obtained. Sinha and Fieguth [20] proposed
a new neuro-fuzzy classifier that combines NNs and fuzzy con-
cepts for the classification of objects in segmented underground
pipe image, with classification accuracies around 90% on real
concrete pipe images. Kang et al. [21] presented a leakage
monitoring architecture by using the ensemble one-dimensional
(1-D)-CNN-support vector machine (SVM) and a graph-based
optimal localization algorithm. During CNN network operation,
the few actual leak samples could give rise to the imbalanced
dataset problem. To address this issue, Hu et al. [22] proposed
a minor class-based status detection method using enhanced
generative adversarial networks. In a word, the DL-based leak
detection method is more efficient than the conventional method,
and is of relatively high accuracy.

Unfortunately, the CNN or DL network basically constitutes
the convolutional layer, pooling layer, and loss-function layer.
The convolutional layer is used for feature extraction. The
pooling layer aims to reduce the feature dimension extracted
by convolutional layer. The loss-function realizes classification.
The convolution and pooling, and loss-function optimization
processes in the network are complicated and with the closed
box fashion. The weights of these layers are obtained through
iterative training with samples, making it unexplainable. Cur-
rently, the researchers are increasingly devoted to exploring
the possibility of unraveling complicated processes with ex-
plainable procedure and expecting that the closed box would
be ultimately opened. Under this condition, the leak-detection
method which not only shares high efficiency and accuracy
with DL-based method, but also has interpretability, deserves
further exploration. It is accepted that the principal component
analysis (PCA) [23], [24] can obtain the proper information or
extract features and realize dimensionality reduction, making it
possible to replace the convolutional layer and pooling layer
of DL network. Endowed with an optimization component,
the mathematically interpretable SVM [25], [26], [27] could
potentially replace the loss-function optimization layer in the
DL model to implement binary classification. Based on the
discussions above, the definition of the research problem in this
article can be given as follows.

Problem definition: Based on soil moisture content and InSAR
closure phase, we aim at developing an interpretable PCA-
SVM-based leak detection algorithm (PSLDA) for identifying
sewer/water pipeline leaks/nonleaks.

The proposed algorithm is innovative in two aspects. First,
PSLDA can detect leaks/no-leaks with high accuracy and large
spatial extent in comparison with conventional method. Second,
the algorithm adopts PCA to conduct feature extraction and di-
mensionality reduction, applies SVM to conduct classification,
ensuring its interpretability.
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The rest of this article is organized as follows. In Section II,
the basic principle of PSLDA is introduced, and the framework
is designed. Following the framework, linear SVM training
of PSLDA is implemented in Section III. In Section IV, the
performance of PSLDA is scrutinized through real leak detection
and nonleak detection scenarios. It is worth mentioning that the
performance of PSLDA is not compared with DL-based methods
because this work aims for interpretability but the DL network is
unexplainable. In Section V, the performance of nonlinear SVM
is discussed and compared with linear SVM. Finally, Section VI
concludes this article.

II. PRINCIPLE AND DESIGN OF PSLDNET

Under the circumstances of interpretable binary classification
by using SAR-derived data, the PSLDA is designed to constitute
four modules, i.e., the input data module, the interpretable
feature-extraction module, the interpretable classification mod-
ule, and the output module. Since the wanted output is unam-
biguous, i.e., leak or nonleak distribution map, the other three
modules are elaborately introduced as follows.

A. Input Module

The input module aims to prepare input data for the subse-
quent module. The input data include SAR-derived moisture
content and closure phase.

The moisture content could be obtained using the algorithm
proposed in [16]. The algorithm integrates the H/A/α decom-
position and the SVR model to retrieve the moisture content.
Wherein, the H/A/α decomposition is used to weaken vegetation
disturbance and SVR is used to address the ill-posed moisture
retrieval problem, finally making the integrated algorithm char-
acterized by vegetation-independence, agreeable transferability,
and high accuracy of 1.5 vol%. The algorithm has gained suc-
cessful applications [12], [16], [28]. Given N SAR single look
complex (SLC) images relative to the same area and acquired at
the ordered times (t1, t2,..., tN ), N moisture content images are
obtained.

Provided that N≥3, it is feasible to compute the closure phase.
For simplicity, we consider N = 3 to depict the basic principle
of closure phase, and the principle is also applicable to the case
N > 3. With three SAR images, one can obtain three differential
interferograms, that is,ϕi,j (i< j and i, j= 1, 2, 3) between SAR
acquisitions at ti and tj , respectively. The term “differential”
means that the flat-Earth phase and the topographic phase have
been successfully removed. Then, the closure phase is defined
as [17]

Φ(s) = φ12(s) + φ23(s)− φ13(s) (1)

whereΦ(s) denotes the closure phase.φij (s) (i< j and i, j= 1, 2,
3) is the unwrapped phases of ϕij (s). The relationship between
φij (s) and ϕij (s) can be expressed as

φij(s) = ϕij(s) + 2kij(s)π (ki,j ∈ integer). (2)

Assume that that di,j (i < j and i, j = 1, 2, 3) represents the
ground surface displacement along the LOS direction. Notably,
d12 + d23 = d13. Because the deformation-related absolute

phase is only dependent on surface displacement and radar
wavelength, i.e., 4πd/λ, the deformation-related closure phase is
naturally zero. Similarly, the atmospheric delay phase is induced
by different atmospheric condition at acquisitions t1, t2, and t3.
The atmospheric delay phase between acquisitions t1 and t2 plus
that between t2 and t3 is equal to the atmospheric delay phase
between t1 and t3, making the atmosphere-related closure phase
intrinsically zero. In summary, the closure phase is inherently
distracted from the Earth’s surface deformation and atmospheric
disturbance [29].

De Zan et al. [17] and Zwieback et al. [30] observed that
changes in soil moisture and in the water content of vegetation
could lead to the closure phase excess and deficit, or called phase
inconsistencies. From the perspective of mathematics, we have{

Φ(s) �= 2k(s)π, If moisture changes

Φ(s) = 2k(s)π, If no moisture changes
(k ∈ integer). (3)

However, the reliability of (1) relies on the unwrapped results.
Improper or erroneous phase unwrapping (PU) results would
impair the effectiveness of Φ. The situation deteriorates in urban
areas where the underground pipelines are mainly distributed.
The reason lies in that the edges of buildings are generally char-
acterized by abrupt interferometric fringe changes, disobeying
the phase continuity assumption [31], [32]. The phase continuity
assumption is the foundation of widely used single-baseline PU
algorithms. Then, whether is it possible to improve the closure
phase defined in (1) without performing PU procedure? The
answer is yes. Specifically, if we integrate (2) into (1), we will
have

Φ(s) = (ϕ12(s) + 2k12(s)π) + (ϕ23(s) + 2k23(s)π)

− (ϕ13(s) + 2k13(s)π). (4)

Further integrate (4) into (3), and conduct a simple transposition
of terms, we will have{

Φ′(s) �= 2k′(s)π, If moisture changes

Φ′(s) = 2k′(s)π, If no moisture changes
(k′ ∈ integer)

where Φ′(s) = ϕ12(s) + ϕ23(s)− ϕ13(s)

k′(s) = k(s)− (k12(s) + k23(s)− k13(s)). (5)

If we let Φ′(s) subtract 2k′(s)π, and still name the result as
Φ′(s) (for convenience), we will have{

Φ′(s) �= 0, If moisture changes
Φ′(s) = 0, If no moisture changes

(6)

where Φ′ is the improved closure phase and Φ′ ∈ (−π, π].
Equation (6) indicates that one can compute the closure phase
by using differential interferograms directly, and the pixels with
water leakage should be characterized by nonzeros values. In
addition, the absolute closure phase |Φ′| is often adopted since
its magnitude directly reflects the variation degree of moisture
contents.

In summary, given the SAR data, 2-D moisture content and
2-D closure phase images (or matrices) can be obtained in terms
of the principles above. We stretch each 2-D image (matrix) into
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Fig. 1. Structure of the input data including InputData and Labels (in the case
of model training). In the case of prediction, only the InputData is required.

a 1-D vector by column, and stack all vectors into a new matrix
column-by-column. The new matrix is named as InputData
and its structure is illustrated in Fig. 1. If there are P pixels
in each image and Q different images, the InputData matrix
should have P rows and Q columns. Each row represents an
independent point, and each column corresponds to one property
Xi (i =1, 2,..., Q) (i.e., moisture content or closure phase).
The InputData has Q properties, which is high-dimensional.
It is worth noting that the organization format of InputData is
identical for irregular grid points as long as all properties for a
certain pixel are aligned. In the case of model training, the labels
are simultaneously required in the input module. As shown in
Fig. 1, the leak point is labeled as 1 while nonleak point is labeled
as 0. So far, the input data are well prepared and matrix InputData
is provided for the subsequent feature extraction module.

B. Feature Extraction Module: PCA

As depicted above, the InputData originally has Q prop-
erties. There may exist correlated or redundant information
among these properties, but the patterns are initially ambiguous,
making feature extraction and feature dimensionality reduction
inevitable. It is well-known that the convolutional and pooling
layers are powerful in mining the pertinent feature information
from inputs and reducing feature dimensionality. However, such
module in DL is not readily to be interpreted.

Contrastively, PCA is a mature tool for analyzing and identi-
fying the feature patterns of high-dimensional data to highlight
their similarities and difference. Meanwhile, PCA has advan-
tages in reducing data dimensions without much loss of key
information. To be specific, PCA computes the eigenvalues and
eigenvectors of the covariance matrix related to inputs, generat-
ing principal components (PCs) or features. The process is called
feature extraction. The eigenvalue indicates the significance of
PCs. PCs with high eigenvalues contain dominating features
and are reserved, while other components are excluded, accom-
plishing feature dimensionality reduction. More mathematical
introduction can be found in [23] and [24].

In brief, instead of the convolutional and pooling layers, the
interpretable PCA is used as the feature extraction module of

PSLDA. Given the InputData, the specific implementing steps
of PCA is as follows.

1) Preprocess InputData: The columns in InputData corre-
spond to different physical properties, i.e., moisture content or
absolute closure phase. To eliminates the influence of different
measurement units, it is essential to normalize and centralize
the columns, respectively, and finally generate a P × Q matrix
whose values are between [−1, 1] with mean value of zero.

2) Calculate Covariance Matrix of Preprocessed InputData:
To figure out whether the columns of InputData are correlated,
the covariance matrix needs to be calculated. The covariance
matrix consists of covariance, where positive (negative) value
implies that two columns are positively (negatively) correlated
while zero-value implies the columns are independent of each
other. Considering the dimensionality of InputData, the covari-
ance matrix should be Q × Q. The matrix element at the ith
row and jth column is the covariance of the ith column and jth
column of preprocessed InputData. The element at the ith row
and jth column is equivalent to that at the jth row and ith column,
i.e., the matrix is symmetrical along the main diagonal.

3) Calculate the Eigenvalues and Eigenvectors of the Covari-
ance Matrix: By taking the eigenvalues and eigenvectors of the
covariance matrix, we are able to extract features of InputData.
Since the covariance matrix is Q×Q and is real symmetric, there
should be Q nonnegative eigenvalues and Q pair-wise orthogonal
eigenvectors. One eigenvalue corresponds to one eigenvector. If
sorted from the highest to the lowest, the eigenvalues can be
obtained as λ1 ≥ λ2 ≥ λ3 · · · ≥ λQ (λi is the ith eigenvalue, i
= 1, 2,. . ., Q). The corresponding eigenvectors are PCs, i.e.,
extracted features, with significance ranging from high to low.
The directions of eigenvectors represent directions of PCs. Since
the eigenvectors are perpendicular to each other, the extracted
features can now be distinguishable along the directions of PCs.

4) Generate Dimensionality-Reduced InputData: In refer-
ence to the contributions of PCs, insignificant components
are excluded. If the first K eigenvectors contain most of the
information (e.g., > 90%), the K eigenvectors are reserved
while other (Q–K) eigenvectors are excluded. We arrange the
K eigenvectors column-by-column into a matrix, then right-
multiply the InputData by this matrix, and could finally gen-
erate a feature-dimensionality reduced InputData. The Input-
Data is now K-dimensional, where only dominating features
remain.

C. Classification Module: SVM

The dimensionality-reduced InputData (i.e., main features)
together with labels are fed into this classification module. In
the DL network, features extracted after the convoluting and
pooling are fed into the loss-function layer, where a leak or
nonleak decision is made with the optimization. Intrinsically,
the loss-function optimization is similar to a classification algo-
rithm, which optimizes properly-selected input features. Then, a
machine-learning algorithm consisting of an optimization com-
ponent can be a valid candidate for interpreting the loss-function
optimization and generating the wanted output (i.e., leak or
nonleak) location by location. The SVM is a suitable choice.
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Fig. 2. Illustration of SVM hyperplane and the margins of two classes in 2-D
plane.

SVM first applies the kernel function to map the nonlinear data
to a higher dimensional feature space where linear separation
may be possible, and then separates the two classes with a
hyperplane defined as

wTx+ b = 0 (7)

where w is a P-dimensional vector (determined by the row
number of InputData) and b is a bias term. w and b are unknowns
and needs to be determined by training data xi,j (i = 1, 2, 3,. . .,
P, j= 1, 2, 3,. . ., K). If the hyperplane is determined properly, the
margin distance between two classes should be maximal such
that data of each class can only be in the left (y = −1) or in
the right (y = 1) sides of the hyperplane. Fig. 2 illustrates the
hyperplane and the margins of two classes in 2-D plane. The
margins are defined as

wTx+ b =

{
≤ −1 for yi = −1

≥ 1 for yi = 1.
(8)

Therefore, the key of separability lies in determining the
optimal hyperplane [25]. However, the hyperplane theoretically
can be anywhere between wTx+ b = −1 and wTx+ b = 1.
To find the optimal one, SVM in turns seeks to maximize the
margin distance d between two classes. The distance d could be
measured with [25]

d(w, b;x) =

∣∣(wTx+ b− 1)− (wTx+ b+ 1)
∣∣

‖w‖ =
2

‖w‖ .
(9)

In (9), maximizing the margin distance is equivalent to min-
imizing the length of vector w, which can be also expressed
as wTw/2 [27]. Ultimately, the general convex problem to
determine the optimal hyperplane can be addressed as

min
w,b

1

2
wTw

s.t. yi(w
Tx+ b) ≥ 1. (10)

Equation (10) is a quadratic programming problem whose
convex objective function can always be minimized efficiently
under the given constraints [33]. In other words, SVM can
always be trained to the achieve the global minimum solution in
polynomial time, i.e., time-efficiency. After the optimal hyper-
plane has been determined, it is feasible to predict the leak or
nonleak category for unseen data by determining which side of
line the given point lies in.

So far, the entire framework of the PSLDA has been ex-
plicitly introduced. Following the framework, the PSLDA is
subsequently trained and applied to detect the sewer/water leak
or nonleak.

III. TRAINING OF PSLDA

A. Training Area

In China, the average leakage ratio is relatively high for the
majority of large and medium-sized cities, which resulted in
an expected total loss of 5 × 106 m3 water per year [34]. As
the capital of China, Beijing is one of the eight largest cities
of the world. During the period of 2011–2022, the permanent
population of Beijing grew to about 21.84 million (https:
//data.stats.gov.cn/easyquery.htm?cn=E0105&zb=A02&reg=
110000&sj=2023). The growing population pose severe pres-
sure on demands for water supply and drainage. By the year of
2022, the total length of supply water pipeline was 19 553.00 km
(https://www.ceicdata.com.cn/zh-hans/china/length-of-water-
pipeline/cn-length-of-water-pipeline-city-beijing), and the
sewer pipeline length extended to 20 137.13 km (https://www.
ceicdata.com.cn/zh-hans/china/length-of-drain-pipeline) in
Beijing. In addition, the pipeline distribution in Beijing is very
complex with an interlaced ring-shaped pattern [34]. How
to take effective and efficient measures to detect, and thus,
maintain the leak locations has posed a big challenge for local
government. The testing and application of the PSLDA could
provide new insights into addressing this problem.

To enhance the robustness and transferability of PSLDA, we
also selected the water/sewer leakage in the main urban area of
Tianjin as our research area. Until 2022, the length of supply
water pipeline has continuously increased to 22 574.16 km
(https://www.ceicdata.com.cn/zh-hans/china/length-of-water-
pipeline/cn-length-of-water-pipeline-city-tianjin), and the
sewage pipeline reached 23 909.54 km (https://www.ceicdata.
com.cn/zh-hans/china/length-of-drain-pipeline). Thus, the
water pipeline distribution system of Tianjin also provides an
opportunity to obtain in situ leak information. In summary,
Beijing and Tianjin, China, were chosen as the training areas.

B. Training Dataset

1) In Situ Leak Data: Over the two training areas, the in
situ leak locations were detected via the listening stick in the
year of 2021. In the eastern part of Beijing, 668 leak locations
were collected. Their spatial distribution is superimposed on the
GoogleEarth image and shown in Fig. 3(a). Similarly, 556 leak
locations were compiled in the main urban area of Tianjin. Their
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Fig. 3. Spatial distribution of in situ leak points (red) superimposed on the
GoogleEarth image. These points are measured in (a) Beijing and (b) Tianjin,
China.

spatial distribution is superimposed on the GoogleEarth image
and shown in Fig. 3(b). In total, there exist 1224 in situ leak data,
which are potentially applicable for data training.

2) SAR Data: Because the pipelines are buried underground,
a long wavelength (e.g., an L-band or a wavelength of about
24 cm) SAR system is preferred due to its deep penetration
ability. Thus, L-band data should have priority over a short
wavelength SAR system. Since pipeline leaking is typically
not instantaneous, the multitemporal SAR observations should
be considered if possible. From the perspective of closure
phase, multitemporal SAR data are also required. However,
long-wavelength radar data (e.g., the SAOCOM and ALOS-
2/PALSAR-2) are generally charged, making it costly to obtain
multitemporal SAR data. Fortunately, the C-band Sentinel-1

TABLE I
SAR DATASET USED FOR PSLDA TRAINING

data are freely downloadable, and could provide sufficient SAR
data.

Over the training area, both L-band SAOCOM data and C-
band Sentinel-1 data in 2021 are used (see Table I). In Beijing,
One SAOCOM SLC image on 7 November 2021, and three
Sentinel-1 SLC images separately on October 26, November 7,
and November 19 of 2021 were downloaded. In Tianjin, one
SAOCOM SLC image on 23 September 2021, three Sentinel-
1 SLC images on September 8, September 20, and October 2
of 2021 were acquired. Since the polarimetric information is
used for moisture content retrieval, all SAOCOM data are in
quad-polarization mode (HH+HV+VH+VV) and all Sentinel-1
data are in dual-polarization (VV+VH). The copolarized mode
(VV) of Sentinel-1 was adopted in interferometry for calculating
the closure phase. It is also worth noting that the precise orbit
determination (POD) precise orbit ephemerides (POE) for each
Sentinel-1 acquisition was downloaded to correct orbital errors.
Moreover, the National Aeronautics and Space Administration
(NASA) digital elevation model (DEM) with a spatial resolution
of 30×30 m was utilized to remove topographic phases in the
interferometric analysis.

3) Input Data Preparation: Corresponding to each SAR
SLC image, the moisture content image was derived with a
resolution of 30×30 m. That is, four moisture content images
on 7 November 2021 from SAOCOM, on 26 October 2021,
7 November 2021, and 19 November 2021 from Sentinel-1
were obtained for Beijing. Four moisture content images on
23 September 2021 from SAOCOM, on 8 September 2021,
20 September 2021, and 2 October 2021 from Sentinel-1 were
obtained for Tianjin.

In addition, three C-band Sentinel-1 images were interfer-
ometrically processed. The procedures include coregistration,
interferogram generation, topographic phase removal, phase
filtering, and geocoding, finally generating filtered differential
interferograms in the geographic coordinate system. For conve-
nience, the result is referred to as differential interferogram. The
differential interferogram has a spatial resolution of 30×30 m.
On the basis of three differential interferograms, the absolute
closure phase ranging between [0, π] was calculated, resulting
in an absolute closure phase image.

Up to now, each known leak location in Fig. 3(a) and (b)
corresponds to five images, i.e., four moisture content images
and one closure phase image. Generally speaking, the four
moisture content values and one closure phase value of each leak
location could be collected pixel-by-pixel. However, the water
is permeable. Thus, the water leakage influences not an isolated
point but a continuous surface horizontally and vertically. As
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a result, pixels around leak location may exhibit quasi-leak
characteristics, i.e., high moisture content and closure phase
deviated from zero. Under this condition, it is much more mean-
ingful to determine an accredited spatial range that water/sewer
leakage may potentially exist than an isolated location. Within
the range, the pixel with the highest moisture content value or
most deviated closure phase from zero is of high possibility to be
a leak location. Thus, given a leak location in Fig. 3(a) and (b), we
determine its moisture content values and closure phase value as
follows. First of all, a 3×3 window was placed around the given
leak location. The window size is generally chosen as an odd
number. As will be depicted later, a circular range with a radius
of 120 m is used during in situ verification. Thus, a window
size of 3 was adopted here such that the detection range is just
within the verification range. Within the window, the maximum
moisture content value or the closure phase value deviated from
zero most was assigned to the current leak point (at the window
center). The operation was repeated 5 times until four corre-
sponding moisture content values and one closure phase value
were all determined. In addition, pixels with moisture contents
and absolute closure phase obviously lower than the mean level
of the entire image were randomly selected as nonleak points
for training. In reference to the number of in situ leak samples,
668 nonleak locations were randomly selected in Beijing area
and 556 nonleak locations for Tianjin area. Consequently, there
are a total of 1224 leak candidates and 1224 nonleak candidates
for PSLDA training.

Subsequently, all leak and nonleak points can be arranged
row by row, while their four moisture contents and one clo-
sure phase arranged column by column. For example, the first
row corresponds to leak point 1, the second row to leak point
2,. . ., until the 1224th row to leak point 1224. The 1225th row
corresponds to nonleak point 1, and so on, until the 2448th
row to nonleak point 1224. The first column corresponds to the
moisture1 of SAR acquisition 1, the second column to moisture2
of SAR acquisition 2, the third column to moisture3 of SAR
acquisition 3, the fourth column to moisture4 of SAR acquisition
4, and the fifth column to the absolute closure phase. It is worth
mentioning that the arrangement order among rows or among
columns exerts no influence as long as all five values for a
certain point are aligned. To avoid the disturbance of unreliable
training points, each column was standardized such that the
mean value is zero, and the standard deviation is 1. Based on
the standardized results, points with value beyond [−3, 3] were
considered as outliers and eliminated in the light of 3σ principle
(σ is the standard deviation). Consequently, a total of 1222 leak
points and 1206 nonleak points remained. Now, the input data
InputData including moisture contents and closure phase, and
labels are prepared and organized as Fig. 4.

C. Training Implementation

Upon inputting the training data InputData into the PCA
module of PSLDA, five PCs were obtained. The five eigenvalues
were sorted from the highest to the lowest (i.e., λ1 > λ2 > λ3 >
λ4 > λ5) and illustrated in Fig. 5. It is apparent that the first
two eigenvalues (λ1 and λ2) exceed 1. PCs with eigenvalues

Fig. 4. Final arrangement of input data InputData for PSLDA training. The
arrangement order among rows or among columns exerts no influence.

Fig. 5. Eigenvalues of each PC. The eigenvalues have been sorted in descend-
ing order.

surpassing 1 are typically considered significant as they account
for a substantial portion of the data variance. These crucial PCs
can be utilized for generating data visualizations, constructing
predictive models, and conducting various data analysis tasks.
Quantitatively, the contribution of each variance to the total
variance were calculated in terms of the following equation:

ratiok =
λk∑5
i=1 λi

(11)

where λk is the eigenvalue of the kth PC.
∑5

i=1 λi is the sum of
all eigenvalues.

The results are presented in Table II. Notably, the first two
PCs explain more than 90% of the variations in the dataset. In
other words, PC1 and PC2 already contain main features or most
useful information. Therefore, the first two PCs are retained
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TABLE II
PROPORTION OF EXPLAINED VARIANCE FOR EACH PC

Fig. 6. Scatterplot of the nonleak and leak points in the training dataset. The
SVM hyperplane line (PC2 = −1.4151×PC1−0.4672) is black.

while others are excluded. Such operation reduces the subse-
quent computational costs, enhances the model interpretability
and facilitates the visualization of high-dimensional data.

Following the PCA dimensionality reduction of the training
dataset, the resulting two PCs were inputted into the SVM
module of PSLDA, allowing for the generation of classification
models for leak and nonleak points. Fig. 6 presents scatter plots
depicting the distribution of leak and nonleak points. Notably,
two types of points are distinguishable. Leak points (red) primar-
ily occupy the right and upper positions, while nonleak points
(blue) are situated in the left and lower positions. The SVM
hyperplane is represented by the black line in the figure.

To evaluate the detection accuracy, we consider the misclas-
sification rate (MR), or

MR =
FA + MD

2
(12)

where FA is the false alarm probability. It is the ratio of the
number of nonleak locations identified as leak positions divided
by the total leak locations. MD denotes the missed detection
probability or the ratio of water leakage locations delineated
as nonleak positions divided by the total nonleak locations.
The smaller the MR, the better the detection. Statistically, there
are 38 false alarm locations, and 154 missed detection loca-
tions. Considering that there are 1222 leak training points and
1206 nonleak training points, the FA is calculated to be 3.11%

TABLE III
SAR DATASETS USED FOR SEWER/WATER LEAK DETECTION IN BEIJING

(38/1222) and MR 12.78 % (154/1206). As a result, the MR of
PSLDA is 7.94%, signifying that the proposed PSLDA is adept
at distinguishing between water supply pipe leak and nonleak
points with a relatively low error rate.

IV. PERFORMANCE AND ANALYSIS

The validity and practical applicability of the PSLDA are
evaluated through leak detection case and nonleak detection case
in real-world scenarios. The validation procedure incorporates
a blend of satellite image-based leak detection method (i.e., the
PSLDA) and acoustic detection method.

A. Leak Detection in the Fifth Ring Road of Beijing

We designated the region within the fifth ring road of Beijing
as the detection area. The original SAR SLC data consist of one
quad-polarized SAOCOM image on 3 May 2023, and three dual-
polarized Sentinel-1 images on 7 April 2023, 19 April 2023, and
1 May 2023, respectively (see Table III). Using these SAR data,
five features—comprising four soil moisture content and one
absolute closure phase—were computed and entered into the
PSLDA for predicting the location of leak points. These features
align with the same type used in the training process.

Through PSLDA, potential leak points were obtained, where
those situated within the proximity of the water supply pipe
range were selected as points of interest (POIs). As reported
by the Beijing Water Supply Group Company, Ltd., a radius of
(125±25) m is universally applicable in domestic cities under
the premise of both number and efficiency of dark leak detec-
tion [35]. Therefore, a circular area with a radius of 120 m was
drawn around each POI, and the circular area was designated as
the region of interest (ROI). In the fifth ring of Beijing, 150 ROIs
were initially selected. However, during the field investigation,
some areas within the ROIs were found to be inaccessible (e.g.,
military regions and schools). After excluding these inaccessible
areas, 86 ROIs remain. They are overlapped on the GoogleEarth
image and depicted as red circles in Fig. 7. The ROIs are
dispersed overall, but clustered locally. The phenomena should
be reasonable because it is of low possibility that the water
pipelines burst evenly around the city. Contrastively, it is very
likely that the spatially proximate water pipelines are featured
with analogous installation timelines, installation materials, and
installation environments, etc., thus experiencing malfunctions
at nearly the same time.

It is accepted that the detected leak would be valid once there
indeed exist water leak locations within the ROI. Therefore,
professional leak detectors were subsequently dispatched to each
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Fig. 7. Leak detection areas in the water pipeline system within the fifth ring
road of Beijing. The red circles signify the designated detection area.

ROI area to execute acoustic leak detection. The listening sticks
were utilized to discern any unusual sounds indicative of water
leaks on the water supply pipes, aiding in the determination
of whether the pipes were indeed leaking. For example, Fig. 8
illustrates four scenarios of water pipe leaks detected by the leak
detectors, where standing water is observed. Such phenomenon
coincides perfectly with the experimental thoughts in this ar-
ticle (i.e., moisture content and closure phase), thus indirectly
confirming the feasibility of PSLDA. The field investigations
over 86 ROIs were ultimately accomplished by 17 June 2023.
The results were compiled and overlapped on the GoogleEarth
image in Fig. 9, where actual leak locations are marked as
red pins. Qualitatively, almost all ROIs contain leak location.
Quantitatively, only 7 ROIs remain where no leak points exist.
This signifies a remarkable accuracy rate of 91.86% for the
PSLDA in discerning water supply pipe leaks across Beijing.
The successful identification of leak points within the majority
of the designated ROIs underscores the algorithm’s robustness
and practical utility in real-world scenarios.

B. Nonleak Detection in Huizhou, Guangdong Province

The training data of PSLDA include leak points and nonleak
points. In other words, the algorithm learns the leak feature and
nonleak feature simultaneously. Hence, the PSLDA should be
able to detect nonleak locations. Under the circumstances, the
Huizhou city in Guangdong Province, China, is showcased. The
original SAR SLC data consist of one quad-polarized SAOCOM
image on 9 August 2023, and three dual-polarized Sentinel-1 im-
ages 10 July 2023, 22 July 2023, and 3 August 2023, respectively

Fig. 8. Real scenarios of the leaking water supply pipes at (a) site 1, (b) site
2, (c) site 3, and (d) site 4 in Beijing.

TABLE IV
SAR DATASETS USED FOR NONLEAK DETECTION IN THE HUIZHOU CITY

(see Table IV). Using these data, five features—comprising four
soil moisture content and one closure phase—were computed
and entered into the PSLDA for predicting the location of
nonleak points.

With the proposed algorithm, nonleak points were detected.
Those points situated within the proximity of the water supply
pipe range were selected as POIs. Around POIs, a total of
42 nonleak ROIs are outlined and depicted as red circles in
Fig. 10. Similarly, professional leak detectors were dispatched
to each ROI area to implement acoustic leak detection and check
whether the pipelines within the ROIs are indeed not leaking.
Consequently, only 5 ROIs contained leaks, and no leaks were
found in remaining 37 ROIs. That is to say, the proposed PSLDA
achieves an accuracy of 88.10% in detecting nonleak locations.

In summary, the PSLDA proves to be effective and robust
in detecting either leaks or nonleaks in real-world scenarios,
exhibiting potentials in monitoring sewer/water leakage and
providing instruction for timely maintenance.
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Fig. 9. Distribution of identified leak points in the water pipeline within the
fifth ring road of Beijing. The red circles represent the designated detection
areas, while the red pins indicate the detected leak points.

Fig. 10. Nonleak ROIs (red circle) in the water pipeline system within Huizhou
city, Guangdong Province, China.

V. DISCUSSION

Theoretically, the learning ability of nonlinear function is
stronger than that of linear function. Therefore, the performance
of nonlinear kernel-based SVM is explored in detecting the
leaks/nonleaks. The Gaussian kernel was adopted here. With
identical training area and training dataset in Section III, a total

Fig. 11. Scatterplot of the nonleak and leak points in the training dataset with
Gaussian kernel used in the SVM. The SVM hyperplane line is black.

of 2428 leak and nonleak samples were first processed with the
feature extraction module of PSLDA. Subsequently, the reserved
PCs were fed into the Gaussian kernel-based SVM, generating
a classification model in Fig. 11. Notably, two types of points
are distinguishable. Leak points (red) primarily occupy the right
and upper positions, while nonleak points (blue) are situated in
the left and lower positions. The nonlinear SVM hyperplane is
represented by the black line. Compared with the linear SVM
model in Fig. 6, more leak points (red) in Fig. 11 are correctly
categorized. Quantitatively, there are 13 false alarm locations,
and 56 missed detection locations. Considering that there are
1222 leak training points and 1206 nonleak training points,
the FA is calculated to be 1.06% (13/1222) and MR 4.64%
(56/1206). As a result, the MR of PSLDA is 2.85%, which is
smaller than that of linear SVM. Therefore, it is implied that
PSLDA incorporating nonlinear kernel-based SVM is capable
of detecting water/sewer leakage more accurately. As indicated
in Sections IV-A and IV-B, the accuracy verification of PSLDA
through actual cases is complicated. One needs to first detect
potential leak/nonleak points, based on which the listening sticks
will be utilized to affirm the actual leaks/nonleaks. Therefore,
it is low of possibility that the detection accuracy of PSLDA
incorporating nonlinear kernel-based SVM could be validated
through real-world scenarios. Under this condition, the well-
trained SVM model in Fig. 11 was not furtherly applied to predict
leaks in Beijing or nonleaks in Huizhou City, China.

VI. CONCLUSION

In order to detect sewer/water leakage effectively and ef-
ficiently, we presented an interpretable PSLDA. The network
takes the moisture contents and InSAR closure phase as inputs,
then conduct feature extraction and dimensionality reduction
with the mathematically derived PCA instead of the convo-
lutional and pooling layer in DL, finally implement binary
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classification with the mathematically interpretable SVM in-
stead of the loss-function layer in DL, identifying the leaks
or nonleaks. The PSLDA was trained over 1222 in situ leak
points and 1206 nonleak points. The well-trained model was
applied to detect the leak/nonleak locations for two real-world
scenarios, and achieved an accuracy of as high as 91.86%. The
experimental results verify that the PSLDA is an effective and
robust sewer/water leak detection algorithm.
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