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A New Method to Simulate the Microwave Effective
Snow Grain Size in the Northern Hemisphere
Without Using Snow Depth Priors

Jianwei Yang ", Lingmei Jiang

Abstract—The snow water equivalent (SWE) of a snowpack rep-
resents the amount of water it contains. SWE retrieval with passive
microwave remote sensing techniques is notably affected by snow
metamorphism. The effective snow grain size (effGS) described
in the GlobSnow methodology can be retrieved over areas where
prior snow depth data are available. However, this dependency on
the availability of prior knowledge results in increased retrieval
uncertainty in areas where such information is unavailable. In
this work, we proposed a new method to predict the effGS using
a random forest (RF) model. The results indicated that the geo-
graphical location, orographic effects, and seasonal characteristics
are important for retrieving the effGS, and they are important
components of the kriging interpolation of the daily effGS in the
GlobSnow methodology, resulting in spatial and temporal autocor-
relation phenomena. We assessed the performances of snow depth
priors from either station measurements or gridded products in
predicting effGS and found that the RF model is promising for ef-
fGS prediction even without snow depth priors. The application of
spatially independent verification and 10-fold cross-validation (10-
CV) techniques revealed that the effGS estimates generally agreed
with GlobSnow reference data over Eurasia, with overall unbiased
root mean square error (unRMSE) values of 0.15.0.18 mm, but
high errors were observed over North America due to terrain
variability and heterogeneous forest cover, with overall unRMSE
values ranging from 0.22.0.31 mm. Compared to the GlobSnow
methodology, the proposed method does not rely on ground-based
prior information, and improved computational efficiency can be
achieved.

Index Terms—Effective grain size, Global Snow Monitoring
for Climate Research (GlobSnow), machine learning, snow depth
priors, snow emission model.

I. INTRODUCTION

HE snow water equivalent (SWE) quantitatively describes
the amount of water contained in a snowpack. A compre-
hensive understanding of both the temporal and spatial patterns
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of the SWE is crucial for numerous studies and applications,
including the global water cycle, human needs, ecosystem ser-
vices, hydropower operation, and natural hazard management
(11, [21, 3], [4], [5].

Microwave signals, typically ranging from 10.65 to 89 GHz,
are sensitive to snow depth due to the volume scattering of
snowpacks; thus, microwave instruments are suitable for pro-
viding SWE information [6], [7], [8], [9]. Spaceborne passive
microwave remote sensing has provided a long-time series of
brightness temperature (Tb) observations from 1978 to the
present, and these data are suitable for climatological investi-
gations. The most widely used SWE products rely primarily
on empirical or semiempirical retrieval methods and typically
involve a hypothetical linear relationship between snow depth
and the Tb difference [7], [10], [11], [12], [13], [14], [15].
However, these methods face critical challenges associated with
spatiotemporal variations in snow metamorphism, which results
in high uncertainty in SWE estimates [16], [17], [18], [19], [20].

Physical-based lookup tables or assimilation methods typi-
cally involve the application of large amounts of in situ prior
data (e.g., snow depth, grain size, and snow density) to drive
the snow forward model and minimize the difference between
the modeling values and satellite observations [8], [21], [22],
[23], [24], [25], [26], [27], [28]. Therefore, these algorithms
can reduce the errors caused by snow microstructure variations
and provide more reliable SWE estimates than can empirical
or semiempirical methods. However, the lack of spatially dis-
tributed and temporally continuous grain size priors restricts
their application at the global scale.

The SWE retrieval approach of Global Snow Monitoring for
Climate Research (GlobSnow) entails the utilization of the effec-
tive snow grain size (effGS) to constrain the snow microwave
emission model for improving SWE estimates [8], [22]. The
effGS, a variable that effectively characterizes the seasonal evo-
lution of grain size, can be optimized through the snow forward
model by minimizing the difference between satellite obser-
vations and snow emission model simulations. First, a snow
forward model, namely, the Helsinki University of Technology
(HUT) model, can be used to optimize the effGS by minimizing
the difference between the modeling output and the observed
Tb at the weather station scale and then extending the effGS
over the entire area of interest by kriging interpolation. Finally,
SWE estimates can be obtained through Bayesian nonlinear
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assimilation by leveraging the effGS outputs and snow depth
priors obtained via kriging interpolation [22].

Although GlobSnow provides more reliable global SWE esti-
mates than other remote sensing products in the Northern Hemi-
sphere [29], [30], [31], snowpack monitoring remains challeng-
ing due to its low computational efficiency and high complexity
of implementation, e.g., spatial interpolation, error calculation,
and iterative assimilation. Moreover, synoptic weather station
measurements are applied in the form of a prior field to optimize
effGS in the HUT model. The representativeness of weather
stations for satellite pixels is unknown or problematic because
of the large disparity in resolution between point measurements
and coarse satellite pixels (the so-called scale effect) [32]. In
addition, the dependence on snow depth priors partially delays
the real-time or near-real-time monitoring of the SWE.

The purpose of this work was to establish a new method for
predicting the effGS without using ground-based snow depth
observations. Numerous studies have indicated that machine
learning-based algorithms, e.g., random forest (RF), convo-
lutional neural networks (CNN), and support vector machine
(SVM), exhibit high potential for snow depth retrieval [26], [33],
[34], [35], [36], [37], [38], [39]. However, their potential for
simulating grain size has not been fully explored.

Our main objectives were to (1) explore, for the first time,
the possibility of predicting the effGS using the RF model,
(2) demonstrate whether snow depth priors contribute to improv-
ing effGS retrieval, and (3) verify RF model estimates and com-
pare them to GlobSnow effGS data in the Northern Hemisphere.

The rest of this article is organized as follows. In Section II,
the data and methodology are provided. The obtained results
are illustrated in Section III. In Section IV, algorithm-related
sources of uncertainty are examined. Finally, in Section V, con-
clusions are outlined, and further applications of the proposed
method are described.

II. DATA AND METHODOLOGY
A. Ground-Based Snow Depth Measurements

To test the role of snow depth priors in retrieving effective
grain size, ground-based snow depth measurements were used
in this study. The Global Historical Climatology Network-daily
(GHCN-Daily) snow depth dataset was obtained from http:
/Iwww.ncdc.noaa.gov/oa/climate/ghcn-daily/ [Fig. 1(a), black
points]. Due to the limited spatial coverage of the GHCN-Daily
dataset across China, many Chinese station measurements ac-
quired from the China Meteorological Data Service Center (http:
//data.cma.cn/en) were supplemented herein [Fig. 1(a), gray
points]. Daily snow depth measurements from these stations
over the 2012-2018 period were used. In this study, only snow
depth values obtained under dry conditions (an air temperature
below zero) were selected as training samples.

To demonstrate the feasibility of retrieving the effGS using the
RF model, numerous spatially independent sites were selected.
Fig. 1(b) shows the spatial distribution of the validation stations
(red points) in the Northern Hemisphere. The site locations in
Eurasia were determined by snow course data available at http:
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Fig. 1. Distribution of the stations used for (a) RF model training and
(b) verification. The GlobSnow effective grain size is shown in the background
of (a). The forest fraction is shown in the background of (b).

//meteo.ru/english/data/. The automatic observation station lo-
cations in North America were acquired from the Canadian his-
torical SWE dataset (https://doi.org/10.18164/cf337b6b-9a87-
4ffd-a8e5-41e6498b1474). The selected site locations exhibit
no spatial overlap with the training stations shown in Fig. 1(a).
Thus, the GlobSnow effGS records at these locations can be
used as a spatially independent validation dataset for verifying
the RF model.

Moreover, the well-known k-fold cross-validation (k-CV)
technique was employed to comprehensively evaluate the per-
formance of the trained RF models in predicting effGS. The
methodology and results are described in Sections II-C and
III-D, respectively.
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B. Gridded Products

The aim of our effGS study was to estimate the SWE at a
coarse spatial resolution (~25 km). Therefore, gridded satellite
observations were selected. The gridded products used in this
study included remotely sensed brightness temperature obser-
vations, the GlobSnow-v3.0 effGS product, and the reanalysis
ERAS5-Land dataset. The Advanced Microwave Scanning Ra-
diometer 2 (AMSR?2) Level 3 brightness temperature product is
available at http://gportal.jaxa.jp/gpr/since 2012. In this study,
the AMSR2 sensor was selected because 10.65 GHz frequency
data are available, which facilitates the assessment of the effects
of low frequencies in effGS retrieval.

In this study, the GlobSnow-v3.0 effGS product downloaded
from www.globsnow.info was regarded as the baseline reference
dataset [40]. The methodology is introduced in Section II-C.
To demonstrate the role of snow depth in predicting the effGS,
the ground-based snow depth was selected. Given the represen-
tativeness and accessibility of ground-based snow depth data,
we explored the possibility of replacing station-based measure-
ments with gridded products to generate an effGS dataset via
the RF approach. Gridded products provide spatially distributed
snow depth data, which may be better than interpolated fields
from weather station measurements. In this study, the hourly
ERAS5-land product of the European Centre for Medium-Range
Weather Forecasts (https://cds.climate.copernicus.eu/) was cho-
sen because it has been demonstrated that this product outper-
forms other reanalysis or remote sensing products [30], [41].
The ERAS5-land product (0.1° x 0.1°) at 8:00 a.m. was applied
because this time point approximately coincides with the station
measurement time. To maintain the same spatial resolution,
all the gridded products were resampled to the AMSR2 grid.
Fig. 2 shows the spatial distributions of the GlobSnow-v3.0 and
ERAS5-land snow depth data in the Northern Hemisphere. Here,
the ERAS-land product was selected due to its sensitivity to deep
snow relative to the GlobSnow-v3.0 product. Please refer to the
details provided in Section III-A.

C. Methodology

The effGS can be optimized utilizing the snow forward model
by minimizing the difference between satellite observations
and snow emission model simulations at vertically polarized
frequencies of 18.7 and 36.5 GHz [17]. The fitting expression is
as follows:

mingg {[Tbis.7v uur (SDini, dO)
—Tbse.5v, nut (SDins, d0)]

— [This.7v, sateltite — TH36.5v, satellite] }> (1)

where Tbig 7v,auT and Tbsgsv,puT denote the simulated
brightness temperatures of the HUT model at vertically
polarized frequencies of 18.7 and 36.5 GHz, respectively;
Tbig.7v satellite and Tbsg 5v satellite denote satellite-observed
brightness temperatures; and SD;,; denotes the ground-based
snow depth, as the background field.

In this study, the RF model was chosen as the machine learn-
ing algorithm to explore the nonlinear relationships between
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Fig. 2. Spatial distributions of (a) GlobSnow-v3.0 and (d) ERAS5-land snow
depth data in January 2014 (example).

multiple independent variables and the effGS due to the favor-
able performance of this approach in SWE estimation [26], [34],
[35]. The values of two key parameters of the RF model, namely,
the number of decision trees (ntree) in the ensemble and the
number of predictor variables (mfry) randomly selected at each
node, were set to 500 and 4, respectively.

A flowchart of the effGS prediction process through the RF
model is shown in Fig. 3. In summary, the first step is to
select relevant predictor variables to train the RF model (for
details, please refer to Section III-A). Here, to evaluate the
role of snow depth in predicting the effGS, both station-based
measurements (from the stations shown in Fig. 1) and the spa-
tially continuous reanalysis ERAS5-land product were used in
RF training (Fig. 3). Here, the ERA5-land product was adopted
as a candidate because its overall performance is comparable to
that of the GlobSnow-v3.0 product. Moreover, ERA5-derived
estimates can reflect deep snowpack conditions. The RF model
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Fig. 3.  Flowchart for predicting the effective grain size with the RF model.

was trained to generate effGS time-series datasets from 2012
to 2018. Finally, the RF model estimates were verified against
spatially independent GlobSnow effGS reference data [refer to
the stations shown in Fig. 1(b)].

Additionally, various well-known k-CV methods, e.g.,
sample-, time-, and space-independent k-CV techniques [42],
[26], were employed to comprehensively assess the ability of
the RF model to predict the effGS. First, we randomly divided
the sample data into 10 (k = 10) equal subsamples. Then, 9 ran-
domly selected subsamples were used to train the RF model, and
the remaining subsample was adopted for assessing the trained
RF model. To analyze all samples and avoid overfitting, this
procedure was repeated 10 times. Temporal and spatial 10-CV
methods were used to assess the performance of the well-trained
RF algorithm at temporal and spatial scales. The implementation
is similar to that of the sample-based 10-CV method mentioned
earlier. The dates (time) and weather stations (space) were ran-
domly divided into 10 equal groups. Generally, the sample-based
10-CV method can capture the training performance, while the
temporal and spatial 10-CV methods can represent the temporal
and spatial transferability levels, respectively, of the RF models.

To demonstrate whether snow depth priors are helpful for re-
trieving the effGS, two contrasting algorithms were investigated:

RFyitnsp = [ (longitude, DOY, elevation, latitude,

Tbio.65v, Tbig.7v, Thse.5v, Tbsgy, SD)
(2)

[ i i g i ——

RFyithoutsp = f (longitude, DOY, elevation, latitude,
Tbio.65v, Tbig.7v, Tbsg.sv, Thsoy)  (3)

where SD is the snow depth measured at a weather station or
from the gridded ERAS-land product; DOY denotes the day
of the year, which ranges from 1 to 365 or 366; and RF;nsp
and RFithoutsp denote two well-trained RF models. Regarding
the RFitnsp algorithm, snow depth priors are involved, while
no snow depth is used in the RFithoutsp algorithm. Notably,
Tb1g.65v. Tbis.7v, Tbss.5v, and Tbggy are observed at verti-
cally polarized frequencies of 10.65, 18.7, 36.5, and 89 GHz,
respectively. Here, vertical polarization was considered because
its penetration into the forest canopy is greater than that of
horizontal polarization [22], [43].

III. RESULTS
A. Selection of the Predictor Variables for the RF Model

To determine the optimal predictor variables for the RF model,
the correlation matrix of all possible variables and their impor-
tance rankings was obtained, as shown in Fig. 4. The correlation
matrix denotes the correlation coefficients among all predictor
variables. The importance rankings reflect the relative contribu-
tions of the input variables and can be obtained by averaging the
difference in the out-of-bag estimation error before and after the
permutation of overall decision trees in the RF model. According
to the rankings, the nine most important predictors, including
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Fig. 4. (a) Correlation matrix of the selected variables and (b) their importance rankings in predicting the effGS according to the dataset for the 2012-2018
period.

longitude, DOY, elevation, latitude, snow depth, vertically po-
larized brightness temperature from 10.65 to 89 GHz, etc., were
selected for RF model training [Fig. 4(b)]. Longitude, DOY,
elevation, and latitude are auxiliary geographical location or ter-
rain parameters and are referred to as static variables. Tb1g g5v,
Tbis.7v, Tbse.5v, and Tbggy are dynamic variables with data
provided by the AMSR2 sensor. Here, only vertical polarization
was selected due to its high penetration into the forest canopy
relative to horizontal polarization [42]. Moreover, the effGS
was optimized with the snow forward model by minimizing
the difference between satellite observations and snow emission
model simulations under vertical polarization [22]. Fig. 4(a)
shows that the satellite-observed brightness temperatures are
correlated with the elevation (0.42 to 0.56), longitude (—0.32
to —0.48), and latitude (—0.30 to —0.47), and the dependence
of the effGS on the brightness temperature is low. Moreover,
brightness temperatures are influenced not only by snow char-
acteristics but also by mixed land cover types, atmospheric
conditions, forest cover, and terrain conditions [9]. Therefore,
the signals at these four frequencies (10.65-89 GHz) exhibited a
weak relationship with the effGS [Fig. 4(b)]. The forest fraction
was significantly correlated with elevation, with a correlation
coefficient of 0.62 [Fig. 4(a)], which reduced the importance
of forest cover for the effGS. The results in Fig. 4(a) indicate
that there was a high correlation (—0.59) between latitude and
elevation. Longitude exhibited greater importance than latitude
in this study [Fig. 4(b)]. This could occur because the longitude
ranges from —180 to 180°E in snow-covered areas, while the
latitude only ranges from 30°N to 75°N. Moreover, the effGS
significantly varied with longitude relative to latitude over the

Northern Hemisphere. The correlation matrix explains the im-
portance of ranking in predicting the effGS. The low rankings
of some variables do not indicate that they are not important
for effGS prediction. Notably, another predictor variable likely
plays an alternative role due to the autocorrelation among the
various variables. Scatter plots between the predictor variables
and effGS are provided in Section III-B.

Fig. 5 shows the validation and comparison of the GlobSnow-
v3.0 and ERAS5-land products in the Northern Hemisphere.
Overall, the two products displayed similar performance levels,
with unbiased root mean square error (unRMSE) values of 18.26
and 18.18 cm, respectively. However, the ERAS5-land product
was more sensitive to greater depths than the GlobSnow-v3.0
product, especially for snowpacks thicker than 60 cm. Therefore,
in this study, we selected the ERAS5-land dataset as a candidate
for evaluating the role of spatially continuous snow depth in
predicting the effGS via the RF model. Notably, the bias of the
ERAS5-Land product was greater than that of the GlobSnow-v3.0
product (0.16 versus 8.60 cm). The errors in effGS prediction
caused by snow depth priors were examined. The details are
provided in Section I'V-C.

B. Relationships Between the GlobSnow Effective Grain Size
and Predictor Variables

Scatter plots between the predictor variables and effGS are
shown in Fig. 6. The figure shows a nonlinear trend between the
effGS and station-based snow depth, first decreasing for snow
depths from 0 to 60 cm, then slightly increasing from 60 to
120 cm, and finally stabilizing from 120 to 200 cm [Fig. 6(a)].
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Fig. 5. Validation of (a) GlobSnow-v3.0 and (b) ERAS5-land snow depth
products in the Northern Hemisphere over the 2012-2018 period.

Fig. 6(b) shows the logarithmic relationship between the ele-
vation and effGS. The effGS is insensitive to elevations above
1000 m, which indicates that elevation primarily contributes to
predicting the effGS in low-elevation areas. Fig. 6(c) and (d)
show the relationships between effGS and Tb;g 7 and Tbgg as
examples (those for Tby( g5 and Tbasg 5 are not shown). The re-
sponse of the microwave signal to the effGS is low; for example,
a slight upward trend occurs at 18.7 GHz with increasing effGS,
while at 89 GHz, a decreasing trend occurs before 1.4 mm,
followed by an increasing trend. Although the 89 GHz signal
is more sensitive to the effGS than the 18.7 GHz signal is, it
exhibits greater uncertainties [refer to the error bar in Fig. 6(d)].
This occurs because signals with high frequencies are sensitive
to surface snow and influenced by atmospheric conditions and
forest cover [12].

Fig. 6(e) shows the seasonal evolution of the effGS, which
increases from September to February of the following year and
decreases thereafter. This occurs because single-layer snow is
considered in the HUT model to optimize the effGS. The av-
erage effGS decreases with increasing snow accumulation. The
relationship between effGS and longitude is shown in Fig. 6(f).
The changes in effGS with longitude are relatively complex,
displaying subsection characteristics. For example, the effGS
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increases with increasing longitude across Eurasia (0-120°E).
In western North America (120-180°W), the relationship is
positive, while it is negative in the eastern part (0—120°W).
Elevation and longitude are positively correlated with the spatial
distribution of snow cover, and the DOY reflects the temporal
evolution of the effGS. Thus, these three parameters are the most
important predictor variables [Fig. 4(b)].

C. Effective Grain Size Predicted With the RF Model

To demonstrate the role of snow depth priors in predicting the
effGS with the RF model, a snow forward model, namely, the
HUT model, was first used to generate a theoretical database,
where the input snow depth ranged from 0 to 200 cm, with steps
of 2 cm, and the grain size ranged from 0.1 to 2.8 mm, with
steps of 0.05 mm. Then, a comparative experiment based on the
theoretical database was conducted to assess the role of snow
depth in predicting the effGS. Fig. 7 shows a comparison of
the two trained RF models. Fig. 7(a) shows the performance of
the trained RF model for snow depth, while snow depth is not
included in Fig. 7(b). The results demonstrate that snow depth
priors can partially enhance RF model performance, but this
effect is not notable; for example, the overall uynRMSE decreases
from 0.09 to 0.04 mm [Fig. 7(a) versus (b)].

We further employed station-based and ERAS5-land datasets
(867234 samples) to determine the role of snow depth priors in
predicting the effGS (Figs. 8 and 9). Two-thirds of all samples
were randomly selected to train the RF model, and the remaining
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Fig. 7. Density scatterplots of the grain size (artificially defined for the HUT
model) and estimates of the RF model trained with (a) HUT-simulated brightness
temperature only and (b) HUT-simulated brightness temperature and the defined
snow depth. The HUT simulations involve vertical polarization brightness
temperatures ranging from 10.65 to 89 GHz.

samples were used to evaluate its performance. Fig. 8(a) and
(b) show scatter plots of the effGS estimates obtained with
two trained RF models (Section II-C) with and without the
ERAS5-derived snow depth values, respectively. Fig. 9(a) and (b)
show scatter plots of the effGS estimates obtained with the two
trained RF models with and without station-based snow depth
values, respectively. Overall, neither the ERAS-land product
nor the station snow depth priors enhanced the performance
of the RF model for predicting the effGS; for example, the
unRMSE values were 0.13 versus 0.14 mm [Fig. 8(a) and
(b)] and 0.12 versus 0.13 mm [Fig. 9(a) and (b)], respectively.
Moreover, the effGS estimates involving either station-derived
or ERAS5-derived priors were qualitatively similar [Figs. 8(a)
versus 9(a)].

Fig. 10 shows the performance of the trained RF models
over various depth ranges. RFyiinsp and RFyithoutsp e€xhib-
ited similar trends at depths less than 140 cm [Fig. 10(a)]. At
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Fig.8. Comparison of the two well-trained RF models (a) with and (b) without
ERAS-land snow depth priors.

depths greater than 140 cm, RF;,sp performed better than
RFyithoutsp; for example, the maximum unRMSE values were
0.25 and 0.28 mm, respectively. Fig. 10(b) shows that the overall
biases were low. Fig. 11 shows the performance of the RF
models at the monthly scale. The overall accuracies of RFyithsD
and RFyithoutsp Were similar, but their monthly performance
levels differed slightly. The effGS estimates in winter (January,
February, March, and December) were closest to the reference
values, with unRMSE (coefficient) values of 0.15-0.20 mm
(0.85-0.92) and 0.16-0.21 mm (0.85-0.92) for the RFyitLsD
and RFyithoutsp models, respectively. This was partially due to
stable snow metamorphism during these four months. Fig. 11
shows that RFithoutsp also possibly outperformed RFithsp;
for example, in December, the unRMSE values were 0.19 and
0.17, respectively, and the correlation coefficients were 0.85 and
0.88, respectively. The influence of effGS errors on snow depth
estimation is described in Section IV-D.

Fig. 12 shows the daily mean time-series effGS values in
Eurasia and North America. The black solid dots denote the
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Fig.9. Comparison of the two well-trained RF models (a) with and (b) without
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GlobSnow-v3.0 effGS reference data. The cyan and purple solid
dots denote the RF,;i,.sp and RFiihoutsp €ffGS estimates, re-
spectively. Overall, the daily average estimates of both RFithsp
and RFyithoutsp conformed with the GlobSnow reference data,
indicating that the effGS estimates are weakly dependent on
snow depth overall, similar to the results in Figs. 8-11.

D. Validation and Comparison of the Predicted Effective
Grain Sizes

To demonstrate the predictive power of the RFytnsp and
RFyithoutsp models [refer to (2) and (3), respectively], spatially
independent datasets from 2012 and 2018 were selected for this
study [refer to the stations in Fig. 1(b)]. According to the results
in Section III-C, the RF;tnsp models trained with station-based
and ERAS5-land snow depth priors exhibited similar performance
levels; thus, only snow depth priors from weather stations were
used for RFyinsp as a case study herein. Fig. 13 shows the
validation results over Eurasia. The RF,;insp and RF yithoutsD
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Fig. 10.  Performance of the trained RF models at various snow depths.

models exhibited similar performance levels, for example, with
unRMSE (correlation) values of 0.15 (0.93) and 0.16 mm (0.92),
respectively. The histogram of errors also shows that 90% of the
residual errors between the reference and estimated values were
within the [—0.2, 0.2] range [Fig. 13(b)].

Fig. 14 shows the validation results of the RF models in North
America. The RFithsp and RFyithoutsp models exhibited sim-
ilar performance levels in terms of unRMSE and correlation
values. This further demonstrated that snow depth priors do not
notably enhance the predictive power of the RF model. The
histogram of residual error shows that 90% of the biases of the
reference data and estimates remained within the [—0.3, 0.3]
range. Owing to the complex terrain in North America (e.g.,
the Canadian Rocky Mountains, coastal mountains, San Juan
Mountains, and the Appalachian Mountains), the uncertainties
in the effGS estimates are greater than those in Eurasia; for
example, the unRMSE (correlation) values are 0.15 (0.93) and
0.22 mm (0.81) (Figs. 13 versus 14). A detailed discussion is
given in Section IV-A.

Here, we applied the 10-CV method to evaluate the perfor-
mance of the trained RF models. Due to the similar performance
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levels of the RFwithSD and RFwithoutSD models, only the
results of RFwithSD are shown as an example. Fig. 15 shows the
sample-, temporal-, and spatial-based 10-CV validation results
over Eurasia. The overall unRMSE values were 0.10, 0.15, and
0.18 mm for the sample-, temporal- and spatial-based 10-CV
methods, respectively. The RFwithSD models performed better
temporally than spatially, with unRMSE values of 0.15 and
0.18 mm, respectively. Overall, the effGS estimates agreed with
the reference data much better at the sample-, temporal-, and
spatial-based scales, which is consistent with the results shown
in Fig. 13. Thus, the temporal and spatial transferability levels
of the RF model over Eurasia are high.

However, the performance levels of the RFwithSD models
over North America at the sample-, temporal-, and spatial-based
scales differed (Fig. 16). The overall unRMSE (bias) values
were 0.15 (0.00) mm, 0.28 (—0.13) mm, and 0.31 (—0.14) mm
for the sample-, temporal-, and spatial-based 10-CV methods,
respectively. The unRMSE (bias) values increased from 0.15
(0.00) mm for the sample-based method to 0.31 (—0.14) mm
for the spatial-based method, suggesting that in terms of the
temporal and spatial transferability levels, the robustness of the
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Fig. 12.  Time series of the predicted and GlobSnow effGS values from 2017

to 2018 in (a) Eurasia (0—~150°E), (b) eastern North America (0-120°W), and
(c) western North America (120-180°W).

RF model over North America is lower than that over Eurasia.
A discussion is provided in Section I'V-C.

Due to the similar spatial patterns of the RFinsp and
RFyithoutsp effGS estimates, Fig. 17 only shows the spatial
distributions of the RF;;1,sp estimates during the snowy winter
season and a comparison with the GlobSnow effGS reference
data in the Northern Hemisphere. The spatial patterns of the RF
model estimates (first row) and GlobSnow product (second row)
are relatively similar during the snowy winter season, indicating
that the RF model is reliable for predicting the effGS. The third
row in Fig. 17 shows the differences between the RF model
estimates and the GlobSnow effGS reference data. The differ-
ences in most areas are small, ranging from approximately —0.2
to 0.2 mm. In western Europe, where snow cover was almost
undetectable (Fig. 2), the residuals are relatively high—even
above —0.6 mm—which is partially related to the sparseness
of station observations and complex terrain conditions. The
influence of effGS errors on snow depth estimation is examined
in Section IV-D.

IV. DISCUSSION

A. Role of the Predictor Variables in Simulating the Effective
Grain Size

In the GlobSnow methodology, the effGS is defined as an
effective value that can be iteratively optimized by mimicking
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Fig. 13.
(c), respectively.

HUT modeling results and satellite observations. Typically, the
microwave brightness temperature is affected not only by the
SWE but also by multiple snow properties and states, such
as snow stratigraphy, microstructure, and humidity [17], [18],
[44], [45]. Moreover, forest cover generally complicates effGS
retrieval, as attenuation due to the forest canopy quickly domi-
nates the emission signal [46], [47]. Moreover, the homogeneous
snowpack (single-layer) HUT model ignores complex layered
structures and their interactions, resulting in high uncertainties
in forward modeling [48], [49]. Therefore, effGS differs from
the actual geometrical particle size. In addition, the autocorrela-
tion among various variables reduces the role of the brightness
temperature in predicting the effGS (Fig. 4).

Owing in part to these factors, the sensitivity of the brightness
temperature to the effGS is low [Fig. 6(c) and (d)]. A signal with
a high frequency, e.g., 89 GHz, is generally considered sensitive
to surface snow particles [49], [50]. Fig. 6(d) indicates that the
brightness temperature at 89 GHz decreased with increasing
effGS within the 0.2—-1.2 mm range. This occurs because the
attenuation effect increasingly dominates with increasing vol-
ume scattering [9], [10], [18], [48], [49]. However, the bright-
ness temperature at 89 GHz increased with the abundance of
coarse-grained snow (typical size of 1.2-2.4 mm) because the
penetration depth at 89 GHz is low and surface scattering of
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snowpacks dominates signal emission [12], [31], [33], [50]. The
signals at 10.65 GHz exhibited less extinction than those at high
frequencies (e.g., 36.5 GHz), penetrating almost the entire dry
snowpack [48], [51]. Therefore, the signal could be considered
more sensitive to the underlying soil properties, exhibiting a
small response to the effGS [Fig. 6(d)]. At 18.7 GHz, the signals
are affected by the soil and snow simultaneously, based on
specific physical snowpack variables [48], [51].

For natural snow, the stratigraphic grain size typically in-
creases from the top to the bottom layers, e.g., depth hoars in
the bottom layers and rounded or faceted grains in the upper
layers [10], [16]. However, the effGS represents a vertically av-
eraged value because the snowpack is treated as a homogeneous
single-layer medium in GlobSnow. Thus, the effGS exhibited
a decreasing trend under shallow to moderate snow (0—60 cm)
conditions [Fig. 6(a)]. However, under deep snow (60—120 cm)
conditions, the effGS exhibited an increasing trend. This largely
occurs because deep snow usually occurs during the middle to
late snow season based on snowfall and accumulation patterns,
and snow metamorphism significantly varies during this period,
resulting in an upward trend in the effGS [26], [45], [48]. For
snow depths greater than 120 cm, the effGS exhibited no change
[Fig. 6(a)], mainly due to the signal saturation effects at 18.7 and
36.5 GHz under extremely deep snowpack conditions [48].
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147.53°W. (d) 64.25°N, 60.95°E.

In GlobSnow, daily station-based effGS values were interpo-
lated to a global spatial coverage by ordinary kriging interpo-
lation; thus, the effGS exhibited notable spatial and temporal
correlations with geographic elements and seasonal features,
such as elevation, latitude, longitude, and DOY (Fig. 6). This is
another reason that geographic elements and seasonal features
are the most important predictor variables (Fig. 4), while snow
depth priors do not notably improve effGS estimation (Figs. 8
and 9).

B. Transferability of the RF Models at Temporal
and Spatial Scales

One possible question of data-derived machine learning tech-
niques is their transferability on temporal and spatial scales
[52], [593], [54]. The 10-CV results depicted in Figs. 15 and
16 demonstrate that the spatial predictions of the RF models
exhibited greater uncertainties than did the temporal predictions.
In contrast to the many stationary elements in the Earth system,
e.g., soil types and soil properties, the snowpack is rapidly
changing. Generally, the snow depth increases at the beginning
of winter and then decreases in spring due to melting [22]; the
grain size exhibits seasonal evolution [42] and a layered structure
[48], [55]. Moreover, different spatial patterns of snow cover,
such as generally deep snow in high-latitude and high-elevation
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Sensitivity of the effective grain size to snow depth priors in the four selected satellite pixels. (a) 62.39°N, 60.90°E. (b) 54.02°N, 122.78°W. (c) 63.31°N,

areas, occur in various regions. Thus, rapid changes in snow
characteristics limit the transferability of RF models to other
areas.

In this study, the RF models performed better over Eurasia
than over North America, for example, with unRMSE values of
0.18 and 0.31 mm, respectively, based on spatial analysis. One
reason is that the terrain conditions over North America are com-
plex, e.g., the Canadian Rocky Mountains, Coastal Mountains,
San Juan Mountains, and the Appalachian Mountains. Fig. 6(b)
shows that the elevation primarily contributed to predicting the
effGS in low-elevation areas (below 1000 m). Moreover, the
snow grain size generally varies significantly in mountainous
areas due to the complex atmospheric circulation patterns there
[56]. Additionally, the landscape in snow-covered areas of North
America mainly comprises forest [see Fig. 1(b)], which dom-
inates microwave radiation and complicates the relationship
between the effGS and brightness temperature [22], [42].

The sample-based 10-CV method achieved the best perfor-
mance among the three methods investigated (Figs. 15 and
16). This was likely because the spatially continuous effGS
in GlobSnow was interpolated by ordinary kriging using daily
station-based effGS values [22], causing the effGS to exhibit
notable spatial and temporal correlations with elevation, latitude,
longitude and DOY (Fig. 4). In this study, we applied temporal-
and spatial-based 10-CV techniques to remove the effects of
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Fig. 19.

spatial and temporal autocorrelations, providing a systematic
and objective assessment of RF models for predicting the effGS.

C. Uncertainties in the Effective Grain Size Associated
With Snow Depth

Neither gridded product nor station observations can provide
true snow depth values; thus, the uncertainty in snow depth priors
will propagate into the estimated effGS. Here, four satellite
pixels located in North America and Eurasia were selected as ex-
amples. The RF model (R Fyinsp), as described in Section II-C,
was employed to simulate effGS values under the condition
of adding biases ranging from +5 to £20 to the snow depth
priors. Here, the highest bias was set to 20 cm according to the
validation results in Fig. 5. Fig. 18 shows the sensitivity of the
effGS to snow depth. The blue dashed line denotes the time
series of snow depth recorded at stations. The asterisk () and
plus (+) symbols denote the simulated effGS values after adding
positive biases (5, 10, and 20 cm) and negative biases (—5, —10,
and —20 cm), respectively, to the snow depth priors. The gray
diamond (<) denotes the effGS values simulated without adding
any bias (0 cm) to the snow depth priors. The results indicate that

14683

120
" +0.2mm
" -0.2mm
100 + +0.4mm
+ -0.4mm X +
*  +0.8mm
— ¥ -0.8mm ok *
£ 80)|——omm * '
S X
£ ' .
2 60
(=]
z
e ¥
& 40 3 X* X
x + o
v Sogl X
20, .
*
0 *
01/2018 02/2018  03/2018 04/2018  05/2018 06/2018
Date [month/year]
(b)
120

%
S

SnowDepth [cm]
2

F'S
=3

20

03/2018 04/2018
Date [month/year]

(d)

0
01/2018  02/2018 05/2018  06/2018

Sensitivity of the snow depth optimized by the HUT model to biases from the effective grain size in the four selected satellite pixels. (a) 62.39°N,
60.90°E. (b) 54.02°N, 122.78°W. (c) 63.31°N, 147.53°W. (d) 64.25°N, 60.95°E.

the uncertainties in the effGS under shallow to moderate snow
conditions (0—40 cm) are greater than those under deep snow
conditions [Fig. 18(a) and (b) versus (c) and (d)]. Moreover, the
underestimation of snow depth priors, namely, negative biases
(e.g., —10 and —20 cm), generally results in high uncertain-
ties in the effGS estimates, especially under shallow snowpack
conditions. This occurs because the effGS exhibits a decreasing
trend within the snow depth range of [0, 60] cm [Fig. 6(a)]. Thus,
underestimation of the snow depth could cause an increase in
the effGS [Fig. 18(a) and (b)]. For deep snowpacks (80 cm or
deeper), the biases of the snow depth priors minimally influence
the effGS estimates [Fig. 18(d)]. This occurs because the effGS
for single-layer snow under deep snow conditions generally
remains stable. Another reason is the signal saturation effects at
18.7 and 36.5 GHz under extremely deep snowpack conditions,
which result in saturated satellite-observed brightness tempera-
tures. Overall, the sensitivity of the effGS to snow depth priors
is low for deep snow but relatively high for shallow snow. In
particular, underestimation of either the ERAS5-land product or
station-based observations could cause high uncertainties in the
effGS estimates; for example, the estimated effGS ranged from
0.8 to 1.2 mm at a bias of —20 cm [Fig. 18(a)]. Therefore, we
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suggest that snow depth should be included in the RF model
to predict effGS if sufficiently accurate prior information is
available.

D. Uncertainties in the Assimilated Snow Depth Associated
With the Effective Grain Size

According to the validation results in Section III, the ef-
fGS estimates of the RF model exhibited overestimation under
low effGS conditions and underestimation under high effGS
conditions, which could result in uncertainties in the snow
depth estimates optimized by the HUT model [22], [26], [45].
Here, we applied the HUT model to optimize snow depth
estimates by using a Bayesian assimilation method for four
selected satellite pixels (Fig. 19). The overall unRMSE ranged
from 0.15-0.31 mm (Figs. 13—-16), and the maximum unRMSE
reached 0.80 mm (Figs. 15 and 16); thus, the biases added to
the effGS ranged from —0.8 to 0.8 mm, with a step of 0.2 mm.
The blue solid line denotes the optimized snow depth without
adding bias (0 cm) to the effGS. The different light-colored
markers (* , +, and ) denote the optimized snow depth when
negative biases (—0.2 to —0.8 mm) are added to the effGS, and
the black markers (M, 4, and %) denote the results when positive
biases are added (0.2-0.8 mm). Overall, a positive effGS bias
is more likely to cause uncertainties in the assimilated snow
depth than a negative effGS bias, especially under deep snow
conditions [Fig. 19(c) and (d)]. Notably, overestimation of the
effGS typically results in a decreasing snow depth, whereas
underestimation of the effGS results in an increasing snow depth,
which is consistent with the results in Fig. 18. Fig. 19 also shows
that the greater the biases are, the greater the uncertainties in
the assimilated snow depth; for example, the differences in the
assimilated snow depth could reach 30 cm after adding a 0.8 mm
bias [Fig. 19(d)]. Moreover, we found that the assimilated snow
depth under deep snow conditions is susceptible to effGS errors
[Fig. 19(a) and (b) versus (c) and (d)]. Thus, reliable effGS priors
are crucial for estimating snow depth with data assimilation
methods [22].

V. CONCLUSION

The inclusion of prior snow information in the GlobSnow
methodology undeniably reduces the uncertainties arising from
snow metamorphism. However, the reliance on ground-based
measurements is a severe limitation in areas where such infor-
mation is unavailable. Furthermore, the GlobSnow methodology
is computationally expensive when applied at the satellite scale.
In this study, a new method was proposed to predict the effGS
using a machine learning approach in which snow depth priors
are not used. Our results highlighted the ability of the applied
RF model to map the effGS from geolocation, terrain, seasonal
characteristics, and spaceborne observations. The key conclu-
sions are as follows.

1) Geographic location (latitude and longitude), terrain (ele-

vation) and seasonal (DOY) characteristics primarily ex-
plain the variance in and patterns of the effGS.
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2) Snow depth priors from ground-based measurements or
gridded products are not necessary for predicting the
effGS.

3) The application of spatially independent verification and
the 10-CV method revealed that the effGS estimates fa-
vorably agreed with the GlobSnow reference data over
Eurasia, with unRMSE values of 0.15-0.18 mm, but in-
dicated a relatively high error over North America due to
the terrain variability and heterogeneous forest cover, with
overall unRMSE values of 0.22-0.31 mm.

4) The predicted effGS is susceptible to uncertainties in snow
depth priors under shallow snow conditions. Errors in
the predicted effGS could result in uncertainties in the
assimilated snow depth under deep snow conditions. Thus,
we suggest that snow depth priors should not be included
in the RF model because sufficiently accurate data are
lacking.

We are now attempting to produce an effGS time-series
dataset by using the RF model and to optimize SWE retrieval
via Bayesian nonlinear assimilation by leveraging RF- and
GlobSnow-based effGS values. In future work, we will also
compare SWE retrieval results and provide a comprehensive
assessment of the SWE dataset in the Northern Hemisphere.
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