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Identifying Anomalous Regions of Vegetation
Change From 2000 to 2020, China: Driving Forces,

Probability, and Colocation Patterns
Xinyue Zhang , Li Peng , Jing Tan, Huijuan Zhang, and Huan Yu

Abstract—Differentiating between the effects of climate change
and human activities on vegetation change is important in the
context of vegetation restoration and management. In this study,
we used the Theil–Sen slope and Mann–Kendall test to analyze the
spatiotemporal changes in vegetation cover in China from 2000
to 2020, defining a series of anomalous regions. The probability
of vegetation greening and browning under different climates and
population pressures was evaluated using copula functions, and
their spatial aggregation was studied through the colocation quo-
tient. Geodetector was then used to analyze the influencing factors
of vegetation change in these anomalous regions. Our findings have
shown that the vegetation recovery rate in northern China has
surpassed that of southern China. Precipitation and temperature
across the entire region showed a positive feedback relationship
with normalized difference vegetation index, indicating substan-
tial spatial heterogeneity. Anomalous regions of vegetation change
were predominantly concentrated in eastern China. The statistical
probability of the copula function reflects that the synchronization
probability of vegetation response to the external environment is
higher. The sensitivity of temperature to vegetation is higher than
that of precipitation and higher than that of population density.
However, in the Tibetan Plateau and western arid zone, the feed-
back of population density has exceeded that of precipitation due to
improvements in land management from population concentration.
The findings have also shown that the vegetation dynamics are
primarily influenced by soil water content, with the slope aspect
having a minimal influence. Nonlinear interactions were observed
among most of the influencing factors, with the interaction between
soil water content and altitude being the strongest.

Index Terms—Anomalous region, climate change, colocation
patterns, human activity, normalized difference vegetation index
(NDVI).

I. INTRODUCTION

A S A key component of terrestrial ecosystems, vegetation
plays a pivotal role in connecting various spheres, such as
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the atmosphere, hydrosphere, and soil. It is a means of soil and
water conservation while also regulating carbon balance within
ecosystems [1], [2], [3]. Vegetation is a key indicator of climate
change, with heightened sensitivity at high latitudes and altitudes
[4]. The normalized difference vegetation index (NDVI) is an
indicator that describes the growth status of vegetation, and
biomass [5], [6]. It is broadly applied in the study of vegetation
dynamics at various spatial scales [7], [8]. NDVI has been used
to identify the responses of vegetation to climate change and
assess changes in ecological environment quality [9], [10]. Due
to the vast expanse of China and the complexity of its climate dy-
namics and human activities, current macroresearch on China’s
vegetation cover mainly focuses on the classification of areas
of vegetation cover increase and degradation and the correlation
with climate [11], [12], [13]. However, to date, there has been
relatively little research on potentially anomalous regions that
contrast with the conventional patterns of vegetation responses
to climate change and human intervention. Anomalous regions
are areas where vegetation changes deviate from the anticipated
outcomes of climate change and human influence.

Previous studies have shown that changes in vegetation cover
are mainly due to the combined effects of climate and human
activities [14], [15], [16]. Browning of vegetation cover by
human activities such as urban expansion, destructive deforesta-
tion, and poor land use, deepens the fragmentation of regional
landscapes and thus weakens the value of ecosystem services
[17], [18]. Conversely, there are positive impacts from human
interventions driving ecological restoration and conservation
efforts to increase vegetation cover. China’s Grain for Green and
Natural Forest Protection Programs have successfully curbed
desertification in the degraded karst regions of southwest China,
thereby enhancing ecosystem resilience [19], [20], [21], [22]. As
people have paid more attention to their health and well-being,
the number of parks and green spaces in densely populated urban
areas has increased [23], [24]. In China, significant fluctuations
in land surface elevation and varying climates across regions
contribute to a high spatial heterogeneity in vegetation distri-
bution. Correlation analysis is often employed to assess these
factors and understand their feedback effects [12], [25], [26].
An increase in temperature has led to an upward trend in the
NDVI in certain high-latitude regions of the Northern Hemi-
sphere [27]. Conversely, it has negatively affected vegetation
growth in arid zones [13]. However, a contrasting scenario has
unfolded in ecologically restored zones in the northwest [28].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0001-6486-9552
https://orcid.org/0000-0003-0016-2977
https://orcid.org/0000-0001-6107-6373
mailto:20231101014@stu.sicnu.edu.cn
mailto:pengli@imde.ac.cn
mailto:pengli@imde.ac.cn
mailto:20221101032@stu.sicnu.edu.cn
mailto:20231101026@stu.sicnu.edu.cn
mailto:yuhuan10@cdut.edu.cn


14338 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Meanwhile, in selected areas of the Tibetan Plateau, an increase
in precipitation does not always lead to vegetation greening [29].
Instead, it may trigger a negative NDVI shift by attenuating
solar radiation and temperature [30]. Therefore, when studying
vegetation responses to the environment, it is crucial to examine
it according to the geographic area according to specific research
objectives.

In the past few decades, China’s terrestrial vegetation ecosys-
tem has improved, but the vegetation recovery in some regions
is different from other regions due to the rapid change of cli-
mate and the impact of human activities [31], [32]. Although
traditional NDVI studies mostly capture temporal and spatial
changes in district vegetation cover [33], [34], it is important
to recognize that alterations in vegetation cover are representa-
tions, often failing to reveal hidden information within a region.
Therefore, it is of practical significance to identify and attribute
anomalous regions. Areas with increased human activities but
green vegetation, such as areas with decreased precipitation
but significantly improved vegetation, can be called anomalous
regions. Identifying and understanding these anomalous regions
has considerable importance for policy-making related to eco-
logical restoration and land management practices. In examining
vegetation responses to climate change and human impacts, prior
studies have predominantly concentrated on variations in NDVI,
neglecting trends in the average annual NDVI. Here, we define
this as vegetation change and make it the focal point of our
research.

NDVI data spanning 2000–2020 were used to classify vege-
tation dynamics across China, and a series of anomalous regions
were defined in this research. A copula conditional probability
model was used to study the potential of vegetation cover scenar-
ios under different states. The probabilistic relationship between
temperature and precipitation trends, population change, and
degree of vegetation cover was analyzed. Through correlation
analysis and the colocation quotient (CLQ), we examined the
statistical and spatial interactions among various anomalous
regions, climatic factors, and socioeconomic variables. Further-
more, we aimed to determine the factors influencing spatial
correlations and changes in the NDVI. The method used is
illustrated in Fig. 1.

II. MATERIALS AND METHODS

A. Data Sources

Owing to the substantial area of inland China, different cli-
matic conditions in various regions have shown considerable
variations in their impact on NDVI. To more effectively investi-
gate the influence of rates of climate change on NDVI variations
on distinct zones, according to the zoning criteria proposed by
Zhang and Xiao [35], [36], we divided the inland region into
eight climatic zones for research, that is, the central, eastern arid
zone, north, northeast, south, southwest, Tibetan Plateau, and
western arid (semiarid) zone (Fig. 2).

The NDVI datasets were obtained from the MOD13Q1 NDVI
monthly datasets processed by Gao [37], with a spatial resolution
of 250 m. From 2000 to 2020, we used the maximal component
approach to extract the annual NDVI. Given that datasets may

Fig. 1. Technical flowchart.

Fig. 2. Average annual NDVI from 2000 to 2020 and the China climate zone
division.

contain negative NDVI values primarily because of topograph-
ical factors, it is crucial to eliminate the impact of such raster
data during the data analysis. Data projection was aligned with
the research objectives for accurate analysis.

Nighttime light data (NTL) were obtained from annually
published datasets on the Harvard Dataverse, with a spatial
resolution of 500 m [38]. Temperature and precipitation data
for the same timeframe were amalgamated from monthly data
with a resolution of 1 km [39]. Population density (PD) data for
2000 and 2020 include 1 km spatial resolution data available
on the WorldPop (https://www.worldpop.org/). To evaluate the
driving forces behind NDVI fluctuations, we integrated 1 km
spatial resolution data for the Standardized Precipitation Evapo-
transpiration Index (SPEI), soil water (SW) content, and a 90 m
spatial resolution Digital Elevation Model sourced from Peng
and Zheng [40], [41]. For more thorough data analysis, all the
datasets were resampled to a spatial resolution of 5 km and
standardized according to the same spatial reference.

https://www.worldpop.org/
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B. Theil–Sen (TS), Median Slope, and Mann–Kendall (MK)
Tests

The TS slope is often used in trend analysis, characterized by
its independence from data distribution assumptions [42], [43].
By integrating the TS slope with the MK test, we computed and
evaluated the trends in NDVI from 2000 to 2020.

β = Median

(
vj − vi
j − i

)
, ∀j > i. (1)

Equation (1) displays the formula of slope. β is the calculated
slope of the data change, the median is the solution of the median
of the data, and vj and vi are the time-series data. In the time
series, a rising trend is shown by a positive β value, while a
downward trend is indicated by a negative β value. The MK test
plays a critical role in assessing the significance of time-series
data. Z denotes the standardized statistical test and n signifies
the total statistical quantity of time-series data, as defined in the
following equations:

Z =

⎧⎪⎪⎨
⎪⎪⎩

S−1√
var(s)

, S > 0

0, S = 0,
S+1√
var(s)

, S < 0

(2)

S =

n−1∑
i=1

n∑
j=i+1

sgn (aj − ai) . (3)

In (3) ai and aj are the average NDVI of years i and j. The
null hypothesis is rejected when |Z| > Z1-α/2, which suggests a
substantial trend in the NDVI time series at the confidence level
α. |Z| exceeding 1.96 indicates passing the significance test at a
95% confidence level.

C. Copula-Based Assessment Approach

The copula function is frequently employed in constructing
correlation models for multidimensional random variables [44].
As this method does not require variables to follow the same dis-
tribution type, it has been widely used in hydrological research
[45], [46]. The adaptability of Copula functions enables them
to accommodate diverse marginal distributions and dependency
structures, crucial for analyzing ecological data characterized
by significant heterogeneity. Selecting an appropriate copula
type enhances data fitting and boosts the model’s predictive
capabilities. This study employs Copula functions to assess
the concurrent probability of NDVI change rates in relation to
variations in precipitation, temperature, and PD dynamics.

The main objective of this research is to employ copula
functions to calculate the joint probabilities of NDVI dynam-
ics for changes in temperature (Temp_NDVI), precipitation
(Prep_NDVI), and PD (PD_NDVI). Maximum likelihood es-
timation was used to calculate the parameters of five copula
functions including t copula, Frank copula, Clayton copula,
Gaussian copula, and Gumbel copula. The Euclidean distance
between the copula function and the empirical copula function
was computed, and the copula function with the minimum
Euclidean distance was chosen as the optimal one.

D. CLQ

Introduced by Leslie and Kronenfeld [47], the global coloca-
tion quotient (GCLQ) evaluates the overall colocation patterns
between two types of point objects. However, challenges arise
when factors like population and land use impede its efficacy
in assessing internal colocation patterns in a specific region.
To address this, Cromley et al. [48] devised a local colocation
quotient (LCLQ) derived from the GCLQ, producing maps that
offer enhanced insights into the spatial relationships between
elements.

GCLQAi→B =
NA→B/NA

NB (N − 1)
. (4)

In (4), GCLQA→B denotes the extent to which Type A points
are attracted by Type B points. The N, NA, and NB represent
the total number of research samples, type A points, and type
B points, respectively, in the study region. The number of Type
A points that are closest to Type B points is represented by the
symbol NA→B.

The observed percentage of Type B points that are closest
neighbors of Type A points is reflected in the numerator. In the
meantime, the denominator is the percentage of Type B points
that are closest neighbors of Type A points in a random scenario.
If GCLQA→B exceeds 1, it indicates that Ai is closest to the Type
B point. A larger value indicates a stronger association between
the types. Conversely, if GCLQA→B is less than 1, it suggests
that the types tend to be dispersed.

LCLQAi→B =
NAi→B

NB (N − 1)
. (5)

In (5), the geographically weighted average of the closest Type
B points within the designated bandwidth of Type A points is
represented by NAi→B, while LCLQAi→B describes the degree
to which Type B points are attached to the Ai point.

NAi→B =

N∑
j=1(j �=i)

⎛
⎝wijfij/

N∑
j=1(j �=i)

wij

⎞
⎠ (6)

wij = exp

(
−0.5 ∗ d2ij

d2ib

)
. (7)

In (6), Ai stands for the ith type A point, and fij denotes if j
is a Type B point (1 means yes, otherwise 0). Here, wij stands
for point the weight of point j, signifying the importance of j for
the ith A-type point. dij represents the distance between the ith
point of Type A and point j, whereas dib represents the bandwidth
surrounding the ith type A point. Each neighborhood of Ai in (7)
was given a geographical weight value using a Gaussian kernel
density function. This function ensures that points closer to Point
A receive higher weights, reflecting their greater importance. A
999-time Monte Carlo simulation was used to confirm the results
and determine the significance of the LCLQ results.

E. Geodetector

The Geodetector statistical method [49], was used to iden-
tify spatial heterogeneity and determine the underlying driving
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TABLE I
VARIABLE GEODETECTOR SELECTION

forces influencing trends in NDVI changes. The utilization of
this method aimed to evaluate the explanatory power and in-
teractions among the factors influencing vegetation dynamics.
The independent variables (X) and dependent variables (Y)
influencing vegetation change are outlined in Table I. It has
been demonstrated that population density and GDP data can be
derived from NTL data. While population density can provide
insights into human activity levels, it may not comprehensively
capture local economic development. The NTL data and human
economic activities have an association [50], [51] which leads
to the use of NTL data as a representation of human activities.

Among the factors considered, aspect, gradient, and elevation
showed significant interannual variations, leading to their inclu-
sion as driving factors in the analysis. This study has focused on
determining how these factors have contributed to the observed
changes in NDVI over the study period.

1) Factor Detector: This method shows that the stronger the
spatial resemblance between the independent variable X and the
dependent variable Y, the greater the impact. This relationship
was quantified using the statistical measure q.

q = 1−
∑L

h=1 Nh∂
2
h

N∂2
. (8)

In (8), where h = 1 …L represents the strata of variable Y or
factor X. Nh and N represent the number of units in stratum h
and in the entire area, respectively. ∂2

h and ∂2 denote the variance
of Y values in stratum h and the entire area, respectively. With
values spanning 0–1, parameter q represents the explanatory
power of each influencing factor on the trend of NDVI. A larger
q value implies a more substantial and influential impact of the
corresponding factor on changes in the independent variable.

2) Interaction Detector: It is mostly used to examine the
relationship between two variables and add up the q values to
find out if there is a rise or fall in the explanatory power of the
two factors. Definitions reference Table II.

III. RESULTS

A. Factor Characteristic Analysis

Fig. 2 shows the spatial heterogeneity of the average annual
NDVI in China from 2000 to 2020. The trend shows a decline

TABLE II
TYPES OF INTERACTION BETWEEN THE TWO FACTORS AS DEFINED IN

GEODETECTOR

in annual NDVI from the southeast coastal terrains toward the
northwest inland expanses. In the eastern monsoon regions with
favorable hydrothermal conditions, woodlands have dominated,
leading to a higher annual NDVI. In contrast, the arid climate of
the northwestern regions, which is characterized by deserts and
barren lands, has led to a lower average annual NDVI. The annual
NDVI shows a fluctuating upward trend at a rate of 0.00233
per year, reflecting the gradual increase in the average annual
temperature at 0.0158°C/year and precipitation at 2.47 mm/year.

By using the TS slope and MK test on the NDVI, temper-
ature, precipitation, NTL data, SPEI, and SW content, Fig. 3
illustrates the spatial distribution of the shifting trends. Refining
the portrayal of PD changes with the adjusted 2000 and 2020
census data, as shown in Fig. 3(h), provides insights into the PD
dynamics. During the previous 20 years, China has undergone
rapid economic growth, with PD changes primarily concentrated
in the eastern coastal areas and key urban agglomerations. The
NTL data reflects the level of human activity, and changes in
space are in line with PD shifts. A total of 81.06% of the region
has shown an increase in temperature and 28.44% has had a
decrease in precipitation.

Based on the TS slope analysis and outcomes of the MK
test, the variations in NDVI were categorized into three levels
under the 95% significance test criterion. These were significant
increases, insignificant changes, and significant decreases, as
shown in Fig. 4. Analysis of the NDVI pixel counts across
different change categories and regions showed that 46.52% of
China exhibited significant vegetation improvement, 50.77% re-
mained unchanged, and 2.71% experienced significant degrada-
tion. Regions such as the eastern arid zone, north, and northeast
showed significant NDVI improvements, exceeding 50% of the
region. Conversely, areas with significant decreases were pre-
dominantly concentrated in the upper Pearl River Delta, Yangtze
River Economic Belt, and Yangtze River Delta. Some vegeta-
tion degradation was also observed in the Ili River Valley, the
northwestern part of the eastern arid zone, the Tibetan Plateau,
and the southern portion of the southwest. These areas and the
distribution of towns and urban centers are highly connected.

B. Partitioning of Anomalous Regions

To investigate the anomalous regions in the NDVI change
trends, a pixel-by-pixel correlation analysis was conducted be-
tween the trends in temperature, precipitation, nighttime lights,
and NDVI changes. The correlation and significance results are
shown in Fig. 5. Temperature was positively correlated with
NDVI in 62.61% of the region. It was primarily concentrated in
southern China, the eastern and western sides of the East Arid
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Fig. 3. Statistical charts and distribution of factors. (a)–(c) Signify interannual variations of NDVI, precipitation, and temperature, respectively. (d)–(g) Trends
of NDVI, precipitation, temperature, and NTL from 2000 to 2020. (h) Evolution of population density from 2000 to 2020.

Zone, and the northern part of the Tibetan Plateau, with the latter
two regions exhibiting higher correlation coefficients [Fig. 5(a)].
In contrast, 71.23% of the area had a positive correlation between
precipitation and NDVI, predominantly in northern China, the
northeastern part of the Tibetan Plateau, and some areas in the
southwest [Fig. 5(b)].

The positive spatial relationship between NTL and NDVI
correlation can be attributed to the diverse rates of change
observed in NTL and NDVI during the analysis. A reduction
in human activity also contributed to vegetation recovery. Scat-
tered positive correlations between NTL data and NDVI were
observed in Xinjiang. This was attributed to favorable water and
heat conditions in the Ili River Valley, surrounding areas of the
Tarim Basin, and lush oases. This has provided an environment
conducive to vegetation growth that has made these areas more
habitable and suitable for development [52].

With reference to the conclusions of some scholars, the cri-
teria for anomaly region division are formulated and shown

TABLE III
IDENTIFICATION CRITERIA FOR ANOMALOUS REGIONS

in Table III [13], [27], [53] [54]. Regions with anomalous
vegetation change were classified into four types based on the
criteria outlined in Table III. Within this framework, regions
exhibiting a significant negative correlation between NDVI and
temperature changes were categorized as Class I. Meanwhile,
regions exhibiting a significant opposite relationship with pre-
cipitation were classified as ClassⅡ. Human activities associated
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Fig. 4. Vegetation change distribution. (a) Spatial distribution of vegetation changes in various climatic zones. (b) Statistical map of vegetation change.

with urban development tend to negatively impact NDVI. Areas
where the change in NTL was significantly positively correlated
with the NDVI change were further subdivided into Class III
and Class IV based on the NDVI change direction.

Traditional studies on NDVI changes may overlook local
variations because the vegetation cover changes depicted are
primarily representations. It is crucial to further examine the
mechanisms underlying these representations and their driving
forces. The spatial distributions of the four anomalous region
classes are shown in Fig. 6(a). Class I was scattered through-
out the spatial domain. Meanwhile, Class Ⅱ had a horizon-
tal distribution, mainly concentrated in the southern region of
China. Class III, being the least abundant, was predominantly
located in the central areas of economically developed regions.
Meanwhile, Class IV was located in the Central Plains and
southeastern coastal areas. The classifications of the anomalous
regions are interconnected. Fig. 6(b) shows that Classes I and Ⅱ
have the largest number of intersections, primarily distributed
in the eastern coastal cities of central China, northern regions of
the Tibetan Plateau, and the Chengdu Plain region. The central
region encompasses numerous cities with high urbanization lev-
els. Despite increases in temperature and precipitation in some
areas, the NDVI still indicates browning, which is primarily
caused by human activity. Vegetation change does not respond
solely to climate change.

C. Vegetation Change Conditional Probability Analysis

Various types of copula functions have distinct effects on
the characterization of the dependence relationships between
random variables. Five copula functions were used to model the
marginal distribution function, and the most applicable copula
function was chosen by comparing the minimum Euclidean
distance. Among these, the Frank, t, and Gumbel copulas exhib-
ited the highest frequency of occurrence. The joint distribution

results between various variables and the change in NDVI are
shown in Fig. 7.

To understand the conditional probabilities of vegetation in-
crease and degradation under various external environmental
changes such as temperature, precipitation, and PD, the cumu-
lative distribution probabilities of variables with a value of zero
were calculated for these four random variables. These values
were the basis for the scenario delineation. External environ-
mental variables are denoted as X, where a value greater than
0 indicates an increasing state. This reflects a positive trend in
vegetation change, indicating favorable vegetation growth con-
ditions, and an ameliorating phase for vegetation. Conversely, a
value of less than 0 implies a decreasing state for X, signifying a
negative trend in vegetation change and vegetation degradation.

Scenario A represents an increase in variable X, leading to
vegetation improvement. Scenario B signifies a decrease in X,
leading to vegetation greening. Scenario C indicates an increase
in X, resulting in vegetation browning. Scenario D denotes a
decrease in X, leading to vegetation browning. The probabilities
of encountering vegetation changes under different scenarios
were determined by applying statistical probability formulas,
as outlined in Table IV. Climate demonstrated the highest
sensitivity to vegetation, followed by precipitation, with PD
ranking the lowest. The synchronous probability between PD
and vegetation conditions exceeded that of precipitation in the
Tibetan Plateau and western arid (semiarid) zone, highlighting
a stronger positive correlation.

D. Colocation Patterns From Anomalous Regions

Using the CLQ spatial analysis tool, we examined the spatial
correlation of the various anomalous regions. Because of the
scattered distribution of anomalous regions and localized vari-
ations in precipitation, temperature, and NTL within specific
geographic extents, setting excessively large bandwidths can
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Fig. 5. Correlation and significance. (a) NDVI and temperature. (b) NDVI and precipitation. (c) and (d) Correlation and significance distributions of NDVI and
NTL, respectively.

Fig. 6. (a) Distribution of anomalous regions. (b) Venn diagram of anomalous regions.
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Fig. 7. Joint probability distribution between environmental variables and vegetation change. (a), (c), and (e) reflect China. (b), (d), and (f) reflect anomalous
regions.

result in over-smoothed outcomes [55]. Through multiple exper-
iments, distance bands of 10, 15, and 25 km were established.
The GCLQ values between the four classes of anomalous regions
consistently remained below 1. This indicated relative spatial
independence among the distributions of anomalous regions.
Table V shows that although the attraction strengths between
different types of anomalous regions increase with bandwidth
expansion, there was no significant colocation pattern across
the entire region. This may be attributed to China’s extensive
land area and substantial internal geographical disparities at the
overall scale.

Class II showed the highest attraction toward Class I, whereas
Class II showed a significant affinity toward Class I. The mutual
attraction between Class III and Class IV generally exceeded
0.9, suggesting a tendency toward mutual dependency between
the NTL and NDVI anomalous regions. Class II exhibited the

least attraction to Classes III and IV. However, although the
GCLQ had an overall colocation pattern, it failed to capture
localized variations in the strength of the associations. To address
this limitation, the LCLQ was introduced to uncover the spatial
variability of correlations between the two regions. In Fig. 8,
the local colocation patterns between the different types are
illustrated by using a bandwidth of 25 km. Given the absence of
significant local colocation patterns between Class III and the
other anomalous regions, Class III was excluded from the study.

The strong attraction of Class II toward Class I was mostly
concentrated in the northern regions of the central region and
southern Tibetan Plateau, as shown in Fig. 8(a). Overlaying
the temperature and precipitation trends showed a decrease in
rainfall in these anomalous regions of the Tibetan Plateau. This
was accompanied by a slight decrease in temperature. However,
vegetation has shown an increased sensitivity to temperature
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TABLE IV
PROBABILITY OF ENCOUNTERING VEGETATION CHANGE UNDER DIFFERENT SCENARIOS

TABLE V
GCLQ VALUES FOR VARIOUS TYPES OF ANOMALOUS REGIONS AT DIFFERENT BANDWIDTHS

fluctuations. Rising temperatures lead to permafrost thawing,
whereas reduced precipitation results in soil aridity and de-
creased vegetation cover [56].

The central area comprises several rapidly urbanizing devel-
oped cities, where extensive green spaces are being converted
into urban areas. The expansion of these cities comes at the
expense of significant green space loss, which primarily con-
tributes to the decline in the NDVI. Class I shows a significant
attraction to nighttime light anomalous regions, primarily con-
centrated in the developed coastal areas in the east. Temperature
likely has a key role in driving surface NDVI changes in moist
coastal plain areas in the east [57]. There was a significant
degree of similarity in the colocation patterns of Class III with
Class I [Fig. 8(b)] and Class IV [Fig. 8(c)] with Class I. Ur-
banization has had a detrimental impact on vegetation growth.
Although urbanization can negatively affect vegetation growth,
the establishment of numerous green parks within and around
cities can lead to greening trends in certain areas. The warming
effects of the urban heat island can also contribute to vegetation
improvement [58].

Because of the nature of the LCLQ metrics that measure
the attraction between Classes I and II, the degree of attrac-
tion between them is asymmetric. Regions with a strong at-
traction from Class I to Class II exhibited inconsistent spatial

distributions. In the central region, there was a higher concen-
tration of exceptional Class II, influenced by Class I [Fig. 8(d)]
and impacted by urbanization. These anomalous regions have
increased precipitation and temperatures, leading to vegetation
degradation. Sparse anomalous regions also exist in Xinjiang,
primarily because the vegetation in this region responds more
sensitively to precipitation [59]. An increase in temperature
alters the annual evaporation rate, leading to decreased humidity,
which is detrimental to vegetation growth. Class III [Fig. 8(e)]
and Class IV [Fig. 8(f)], which experience significant attraction
from Class II, are predominantly located in southeastern coastal
and inland economic centers. They have spatial distribution
patterns similar to those illustrated in Fig. 8(b) and (c). These re-
gions typically receive annual precipitation exceeding 1000 mm
and show an increasing trend. However, vegetation within urban
areas in these regions continues to be influenced by human
activities.

Class VI and Class I [Fig. 8(g)] and Class VI and Class
II [Fig. 8(h)] show significant separation in the southeastern
coastal and Taihang Mountain areas. This has been driven by
human interventions involving extensive land use changes and
the performance of ecological conservation policies. This has
shifted vegetation dynamics toward browning and greening,
which no longer rely solely on natural climatic fluctuations.
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Fig. 8. LCLQ for different anomalous regions. (a)–(c) LCLQ by which Class I is attracted to Class II, Class III, and Class IV, respectively. (d)–(f) LCLQ by
which Class II is attracted to Class I, Class III, and Class IV, respectively. (g) and (h) LCLQ through which Class IV is attracted by Class I and Class II, respectively.

E. Driving Forces of Vegetation Change

Although copula functions have been used to model the
probability of encountering different vegetation changes under
different conditions, the driving forces behind these changes
have not been identified. A commonly used tool for attribution
analysis, Geodetector software was used to explain the driving
forces behind vegetation change. The classification intervals
were set to be greater than 10, and the optimal classification
method was selected from the equal intervals, natural breaks, and
quantile classification methods. Because Geodetector software
is limited to measuring the explanatory power of driving factors,
spearman’s correlation was also used to analyze the relationships
between variables, with both methods showing a high degree of
consistency [60]. The impacts of all anomalous regions on the
driving factors passed the 95% significance test.

Table VI shows the ranking of the influencing factors of
NDVI trend changes due to anomalous regions, from greatest to
least, including SW_trend, Prep_trend, Elevation, NTL_trend,

Gradient, Temp_trend, SPEI_trend, and aspect. The NDVI trend
changes were primarily influenced by SW_trend. SW content
synchronously affected vegetation growth, with precipitation
having a positive impact on NDVI trends in anomalous regions.
The NDVI shows varying growing conditions at different al-
titudes, with an overall upward trend with increasing altitude,
albeit with certain limitations [61]. Table VI shows that different
classes of anomalous regions have distinct primary drivers, with
human activity being the determining factor for Class III. Mean-
while, SW content continues to dominate the NDVI trends for
other types. A factor detector was used to examine the anomalous
regions across the eight regions to investigate the primary drivers
of anomalous regions within distinct regions (Fig. 9).

Fig. 10 illustrates the interactions and impacts among the
variables, showing mainly nonlinear enhancement and double-
factor-enhanced types in the explanatory power between vari-
ables. This suggests that the variables are coupled and enhanced
in their influence on NDVI trends. The interactions between
SW_trend and the other variables exhibit nonlinear enhancement
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TABLE VI
EXPLANATORY POWER OF NDVI_TREND FACTORS

Fig. 9. Significant influences on NDVI_trend in anomalous regions in different regional zones.
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Fig. 10. Interactive detection of factors influencing NDVI_trend. The numeri-
cal values represent the explanatory power of the coupled variables for vegetation
change.

characteristics with relatively high explanatory power. The most
powerful combination, in terms of explanatory strength, was
SW_trend and elevation, followed by Prep_trend and SW_trend.
This is because precipitation within a certain range tends to
increase with increasing elevation, resulting in an increase in
SW content, thereby exhibiting a stronger correlation with the
NDVI trends. The weakest explanatory power was reflected in
the combination of the SPEI_trend and aspect.

IV. DISCUSSION

A. Spatial Correlation Between Vegetation Change and the
Environment

To date, a majority of prior studies have focused on exam-
ining the contributions and mechanisms of human activity and
climate change on vegetation change [15], [62]. They investi-
gated the driving forces behind NDVI changes at both the pixel
and overall scales, often without differentiating the anomalous
spatial characteristics of the study area. We have used a novel
approach by investigating the colocation patterns between NDVI
and external anomalous environmental changes in China using
the CLQ research method. Given China’s extensive land area
and considerable geographical diversity, the GCLQ method has
failed to capture the complicated connections between vegeta-
tion changes and their driving factors. However, research utiliz-
ing LCLQ to investigate local changes in anomalous regions in
China has revealed significant colocation patterns among regions
exhibiting abnormal vegetation changes. These patterns provide
insight into the interactions between vegetation distribution
and environmental factors. For instance, regions with intense
NTL and anomalous temperature or precipitation demonstrate
significant dispersion, suggesting that the abnormal vegetation
changes in these areas are not solely influenced by climate but
are predominantly linked to urban green space development.

B. Climate Influences Vegetation Change

The research findings employing the Copula function indi-
cate that both temperature and precipitation positively influence
long-term regional vegetation cover change. Moreover, temper-
ature emerges as the primary climate factor driving these vegeta-
tion changes, aligning with prior studies [63]. The regions with
anomalous NDVI from temperature and precipitation changes,
as defined in this study, were predominantly concentrated in the
Tibetan Plateau, western arid (semiarid) zones, and southern
China. Despite an increasing precipitation trend, vegetation
cover has continued to decrease. This is primarily attributed to
increased precipitation promoting vegetation growth as eleva-
tion increases in arid mountainous regions. However, increased
precipitation also leads to heightened cloud cover and water
saturation, intensifying the sensitivity of NDVI to tempera-
ture [64]. The correlation between these factors shifted in a
positive direction but lacked statistical significance (p<0.05).
Furthermore, rising temperatures trigger snowmelt [65], which
supports regional vegetation greening. Additionally, vegetation
growth imposes specific temperature requirements. Exceeding
the temperature threshold tolerated by vegetation can lead to
detrimental effects on biological enzyme activity, consequently
impacting the vegetation’s life cycle [54], [66].

C. Impact of Human Activities

Given significant spatial heterogeneity across China, the dis-
tinct anomalous regions are influenced by various external fac-
tors. Our findings suggest that human activities can stimulate
vegetation cover increase. This study used the change in NTL
as a proxy for human activities to investigate their impact on
NDVI change, given the close link between NTL and urbaniza-
tion. There was a significant negative correlation between NTL
changes in the southwest, central, south, northeast, and anoma-
lous regions of NDVI. Class IV represents regions characterized
by both robust economic development and greening vegetation,
reflecting the varying stages of urbanization [67]. In the initial
phases of urban development, land types, including grasslands
and forests, are transformed into impervious surfaces owing
to land requirements. As urban economies advance, there is a
renewed focus on enhancing living environments, such as urban
green spaces, leading to vegetation improvements. Vegetation
cover in central urban areas often surpasses that of outer urban
areas [68]. However, there are exceptions in highly developed
urban agglomeration like the Yangtze River Delta [69]. This
reflects the spatial distribution of anomalous regions where NTL
and NDVI deteriorate simultaneously. According to the copula
conditional probability results, the probability of vegetation
enhancement remained high as the NTL increased or decreased.
This primarily arises from the concentration of nationwide pop-
ulation changes within urban areas. However, the urban area
is small compared to China’s total area. Further investigations
require the use of more precise data for delineation, particularly
to show the occurrence probabilities of vegetation greening and
intensity of human activity in distinct regions, particularly within
urban domains.
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Population migration influences the intensity of land use
activities, thereby driving vegetation changes. In regions of
China with substantial population increases, NDVI has shown
a declining trend, indicating substantial vegetation degrada-
tion. Some researchers in China [70] have also highlighted
the marginal effects of PD changes on vegetation greening.
Here, the changes in NDVI vary with each unit change in
the population across different regions. In certain areas of the
Tibetan Plateau and the western arid (semiarid) zone, a decrease
in population has resulted in a decline in the NDVI. There has
been a positive impact of human activities on vegetation cover in
these regions [71] Over the last century, rural population growth
in the Tibetan region has increased the density of grassland
vegetation in densely populated areas through land management
and irrigation measures. Extensive land reclamation in Xinjiang
has facilitated vegetation restoration [72]. However, owing to
the complex surface conditions in these regions, intensive land
use has been concentrated in areas with favorable hydrothermal
conditions and relatively flat terrain. This study did not capture
the significant attraction phenomenon of Class IV in this region,
caused by anomalous regions of temperature and precipitation.

D. Policies Affect Vegetation Change

The impact of policies on vegetation has been substantiated
[73], [74]. Many afforestation activities and ecological restora-
tion projects implemented over the last century have been ben-
eficial for vegetation restoration. The findings have highlighted
the improvement in vegetation in the project area. The Grain
for Green Program and Natural Forest Protection Program are
key factors contributing to the increase in vegetation in the
Loess Plateau and southwest karst areas of China [75], [76].
The Ant Forest Project has expanded the vegetation area of the
northwestern desert through shrub planting, effectively combat-
ing local soil erosion [77]. As the world’s largest afforestation
program, the Three-North Shelter Forest Program has substan-
tially enlarged the vegetated area of the project region, effec-
tively preventing and managing land degradation in China [28].
However, ecological restoration projects need to consider local
natural conditions and soil environments. In some arid areas,
planting trees for ecological restoration can deplete local water
resources and exacerbate environmental conditions [78]. This
tree-planting approach to vegetation succession also hampered
the effectiveness of ecological restoration projects in certain
parts of southwest China [79]. To address this, the government
has initiated programs such as returning farmland to grassland
and rangeland to grassland to restore ecosystems in arid regions
[80] Various human activities have diverse feedback effects on
vegetation. In this study, regions showing a significant positive
correlation with human activities were defined as anomalous
regions. The response of vegetation changes in these anomalous
regions to human activities has been discussed in detail.

E. Influencing Factors of Vegetation Change Based on
Geodetector

According to Geodetector’s analysis, SW content is a key
factor influencing vegetation change, mainly through its effect

on soil moisture on vegetation change. At different depths,
the SW content at different depths has a generally similar and
positive feedback impact on regional vegetation [43], [81]. In
the regions under scrutiny, vegetation generally exhibited a
decline, particularly influenced by soil water (SW) content in
the southwest, eastern arid, and western arid (semiarid) zones.
This trend closely correlates with the water retention capacity
of the underlying surfaces [82]. While related studies based on
SW content data investigating vegetation responses to extreme
climates are relatively common [83], [84], this study did not
attention to the time-lagged effect of vegetation in response to
drought and cumulative effect. The slope aspect has the lowest
influence on regional vegetation. Theoretically speaking, the
slope aspect has an impact on the distribution of vegetation in
mountainous areas by affecting daylight hours and precipitation
patterns [85]. For example, vegetation growth on the shady slope
is better than that on the sunny slope in the Tibetan Plateau
region. However, the average slope direction in the region is
basically unchanged. Thus it is difficult to have a direct impact
on the trend of vegetation dynamic. Different vegetation types
exhibit varying seasonal responses to precipitation and temper-
ature [86], with shrubs, grasslands, and desert vegetation being
more sensitive to climate change [87].

F. Limitations and Directions for Improvement

This study identified regions where the anomalous NDVI
distribution was attributed to climate change and human ac-
tivities. However, it does not separate the specific roles that
the climate and human activity have played in influencing the
vegetation. This research primarily pays attention to examining
the influences of climate and PD changes on vegetation using
annual data through copula joint functions. Climate effects
on vegetation changes significantly across months, particularly
during the growing season [88]. Although copula functions have
been employed to evaluate the probability of vegetation states
in various diverse external conditions, the spatial distribution
of these probabilities remains unexplored. Multiple variables
have been integrated using vine copula methods to analyze
the probability and spatial arrangement of vegetation changes
under varying climatic conditions [89], [90]. Future research
should further investigate this aspect to provide a more thorough
analysis.

V. CONCLUSION

This study has primarily focused on the anomalous regions
of vegetation change in China related to climate change and
human activities. These regions refer to areas where temperature
and precipitation exhibit a significant negative correlation with
NDVI change and regions where NTL and NDVI display a
significant positive correlation. In this article, various analytical
tools including TS slope, MK test, correlation analysis, Copula
function, CLQ, and Geodetector were employed to assess the
spatial-temporal changes in NDVI across China from 2000
to 2020. The research aimed to identify anomalous regions,
evaluate probabilities of vegetation browning and greening
under diverse climate and population pressures, and explore
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synchronous patterns and driving factors of vegetation change
in these anomalous regions. The results show that:

1) The NDVI in China fluctuated at a rate of 0.00233 per
year. It was observed that the overall vegetation recovery
in the study area was good, and 46.52% of the total
area exhibited a significant increase in overall vegetation
change, which was primarily concentrated in northern
China. Conversely, significant vegetation degradation was
noted in the Pearl River Delta, Ili River Valley region,
Yangtze River Delta, southern Tibetan Plateau, and eastern
arid zone. The northeastern region demonstrated the major
amounts of areas with a significant increase in vegeta-
tion, whereas the eastern arid zone showed a significant
decrease.

2) Correlation analysis showed that precipitation and temper-
ature in China generally exhibit a positive correlation with
NDVI, and both showed significant spatial heterogeneity.
The anomalous regions outlined in this study were primar-
ily concentrated in the Tibetan Plateau and eastern coastal
area. The copula conditional probability analysis indicated
that temperature had a more pronounced influence on
vegetation growth than precipitation. Both factors played
supportive roles, whereas PD had an opposing effect. The
probability of synchronization of vegetation changes in
the Tibetan Plateau, eastern arid zone, and western arid
(semiarid) zone was higher.

3) LCLQ analysis was used to identify whether significant
localized colocation patterns existed between anomalous
regions and to interpret the aggregation results of these
regions.

4) Geodetector software was used to investigate the influ-
encing factors of vegetation change in the anomalous
regions. This showed that SW content, precipitation, and
elevation were the primary determinants. Among these
interactions, the nonlinear relationship between SW con-
tent and elevation had the strongest impact on vegetation
dynamics.

The 2019 IPCC report highlighted the intensification of the
global greenhouse effect. Since 1850, the average global temper-
ature has risen by 1.53°C, leading to frequent extreme weather
events that significantly impact food production and exacerbate
land desertification. Strengthening forest vegetation restoration
and enhancing the carbon absorption capacity of terrestrial
ecosystems are crucial strategies endorsed by the international
community to achieve global “carbon neutrality.” China has
undertaken extensive global vegetation restoration projects, con-
tributing a quarter of the world’s vegetation restoration efforts.
It is important, however, to evaluate these projects realistically:
they focus on restoring vegetation in areas affected by deser-
tification rather than transforming desert areas. When imple-
menting local afforestation programs, practical considerations
such as water and soil resources must be carefully weighed. The
findings of our research have considerable value for determining
the mechanisms by which vegetation interacts with the external
environment. The results have provided key insights for guiding
vegetation conservation planning.
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