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BIR-Net: A Lightweight and Efficient Bilateral
Interaction Road Extraction Network
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Abstract—Road segmentation is a crucial aspect in various fields,
including intelligent transport systems and urban planning. This
article proposes a solution to the problem of inaccurate road region
extraction in small devices with limited resources. The proposed
solution is a lightweight and efficient bilateral interaction road
extraction network, called BIR-Net. First, the detail branch and
semantic branch are constructed to form a bilateral feature extrac-
tion network for capturing road detail information and semantic
information. Then, the shallow interaction module is designed to
address the problem of high intraclass variability and interclass
similarity in remote sensing images. By exchanging the information
of two branches in real time, the edge features of the road are
highlighted. The deep interaction fusion module is proposed to
fuse information from the two branches using bilateral guided
aggregation. Furthermore, to address the characteristics of slender
and curved roads in remote sensing images, we have developed
the road perception attention module. This module updates the
direction weights in real time to track road information, thereby
enhancing the network’s ability to perceive all road information.
The experimental results indicate that BIR-Net has only 3.66M
parameters and 6.49G floating point operations. Moreover, the road
segmentation accuracies in CHN6-CUG and DeepGlobe datasets
are 59.27% and 58.36%, respectively. The proposed method in
this article improves road extraction accuracy while maintaining a
lightweight structure.

Index Terms—Bilateral interaction network, lightweight and
efficient, remote sensing images, road-aware attention module,
road extraction.

I. INTRODUCTION

THE rapid advancement of urban modernization and de-
velopment has led to increased interest in smart city con-

struction, urban planning, and automated driving [1], [2]. Road
extraction plays a crucial role in urban planning and decision
making [3]. To obtain road information on a large scale, high-
resolution remote sensing images have become the primary
data source for road area extraction and real-time updates of
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geospatial databases [4]. Although remote sensing images can
be employed to focus on road information on a larger scale,
the extraction of roads from these images remains a challenging
task due to the irregularity, multiscale nature, high intraclass
variability, and high interclass similarity of road information.

Semantic segmentation techniques can be used to distin-
guish roads from the background in images. The traditional
semantic segmentation methods employ techniques, such as
morphological and texture analysis for road extraction [5], [6].
These methods require manual operators for feature extraction,
followed by template matching and edge detection [7]. The
task of road extraction on remote sensing images has been
challenging due to the time-consuming manual operations and
large errors associated with traditional semantic segmentation
techniques.

In light of the accelerated advancement of deep learning,
deep convolution-based semantic segmentation neural networks
have been put forth and employed for road segmentation and
extraction tasks, yielding favorable outcomes. These networks
have been successfully employed for road segmentation and
extraction tasks. Deep-learning-based semantic segmentation
methods typically adhere to an encoder–decoder architectural
configuration [8]. The purpose of the encoder is to extract
image features layer-by-layer, while the decoder captures the
features at different layers and fuses them for pixel classifica-
tion. FCN [9] is the first to implement semantic segmentation
based on the convolutional neural networks, achieving pixel
classification through two consecutive convolutional layers. The
U-Net family [10], [11] uses a jump-link structure to obtain
multiscale features of the road information, making full use of
the road information. Similarly, DeepLab V3 [12] expands the
sensory field by introducing null convolution in the encoder and
uses convolution kernels of different sizes to capture multiscale
features. This effectively improves the network’s segmentation
performance. Additionally, BiseNet V2 [13] and STDC [14] use
a multibranch structure to process different information individ-
ually and aggregate it, providing better performance in terms
of model complexity and segmentation accuracy. Wang et al.
[15] extracted features based on context fusion and self-learning
sampling to improve segmentation accuracy. Redundant features
were effectively suppressed through double feature fusion to
reduce the complexity of the network model.

Although these methods based on deep convolutional neural
networks demonstrate superior performance in semantic seg-
mentation, they lack comprehensive consideration of local and
global information in road features. Furthermore, the extraction
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accuracy of elongated and curved roads in complex remote
sensing images remains a challenge.

To enhance the precision of road extraction from remote
sensing images, some researchers have utilized large network
models as encoders. Zhou et al. [16] expand the convolutional
layer in the center of the Linknet [17] architecture and in-
troduced inflated convolution. Zhu et al. [18] incorporate the
global context-awareness module into the encoder–decoder to
effectively integrate the global context features. Similarly, the
authors in [19] and [20] have expanded the model structure by
using dilated convolution and ResNet [21] residual connectivity,
respectively. These methods enhance the feature extraction ca-
pacity of the encoder by incorporating intricate modules, thereby
leading to a more pronounced improvement in the accuracy of
road extraction from remote sensing images.

However, the adoption of large models and complex modules
also presents certain challenges, including augmented model
size, elevated number of parameters, more intricate structure,
and so forth. Consequently, these models necessitate enhanced
computational capacity and arithmetic capability, as well as
more sophisticated equipment.

The above network models ignore the significance of shallow
information interaction in the context of information fusion,
thereby limiting the potential of road information. Furthermore,
the interconnection between local and global road information
is overlooked in the process of road information enhancement.
In order to ensure the extraction accuracy of the network model
while simultaneously reducing its weight in order to improve
the efficiency of the model, this article proposes the BIR-Net,
a lightweight and efficient bilateral interaction road extraction
network (BIR-Net). The contributions of this article are as
follows.

1) The article proposes a BIR-Net for extracting complex
roads in remote sensing images. BIR-Net consists of a
detail branch and a semantic branch, which capture road
detail information and semantic information, respectively.
The two branches are associated and fused using a shallow
interaction module (SIM) and a deep interaction fusion
module (DIFM). In addition, the proposed road perception
attention module (RPAM) enables real-time perception
of the location information of narrow and curved roads.
Furthermore, the introduction of auxiliary segmentation
heads at different feature layers of the semantic branches
enhances the multiscale segmentation capability of re-
motely sensed roads.

2) To address the issue of high intraclass variability and in-
terclass similarity in remote sensing road images, we con-
structed a gradual-layer interaction module called SIM.
The shallow bilateral network learns from each other using
maximum pooling and bilinear interpolation methods for
upsampling operations, enhancing the network’s ability to
perceive the intra- and interclasses of the road classes in
remote sensing images with respect to detail and semantic
information.

3) A proposed DIFM employs a bilateral bootstrap aggre-
gation approach to achieve complementarity between the

detail branch and semantic branch information. This en-
hances the network’s overall dependence on road feature
extraction, thereby improving the accuracy of road extrac-
tion from remote sensing images.

4) An RPAM has been developed to address the challenge
of identifying roads with slender curves in remote sensing
images. The module constructs horizontal, vertical, and
global road networks using average pooling to establish
long-term dependencies and capture local road location
information. The dependency relationship of the road is
captured globally, while local information is sensed in
real time. This approach effectively addresses the problem
of extracting slender and curved roads in remote sensing
images.

II. RELATED WORK

A. Road Network Extraction

Semantic segmentation methods represent a prominent ap-
proach for the extraction of road information from remote
sensing images. Li et al. [22] propose a hybrid convolutional
network that fuses multiple subnetworks to extract road features
with different granularities by fusing a full convolutional net-
work, a modified U-net, and a VGG subnetwork. Filho et al.
[23] propose an early fusion network with RGB and surface
model images to improve road surface extraction by providing
complementary geometric data. Tan et al. [24] improve the seg-
mentation accuracy of multiscale roads by encoding and fusing
different levels of convolutional layers. Lin et al. [25] propose
a dual-task-driven combining road shape patterns constructed
as a deep neural network to extract road shape information by
residual convolutional coding and bar convolutional decoding.
Zhang et al. [26] extract multiscale information by designing
a multiscale-assisted predictor and a hybrid loss function. Wu
et al. [27] construct a dense residual network to reduce the loss
of spatial information and enhance the contextual perception to
extract a more complete road region. These methods achieve
good performance in road segmentation accuracy in remote
sensing images.

However, these road extraction networks are overly concerned
with segmentation performance, resulting in a dramatic increase
in the number of network parameters, which is severely limited
by resources. Therefore, Liu et al. [28] propose a lightweight
semantic segmentation model based on the U-Net framework,
which reduces the network parameters and improves the com-
putational speed by introducing lightweight modules to replace
the convolutional layer in U-Net.

Similarly, the authors in [29] and [30] reduce the complexity
of the model by introducing MobileNet V2 and MobileViT
modules as the backbone of the network. Liu et al. [31] propose a
lightweight road detection network LRDNet based on multiscale
convolutional networks and coupled decoding terminals, which
increases the parallelism by coupling the decoding processing of
threaded tasks and reduces the computational cost. Furthermore,
the authors in [13], [32], and [33] use multibranch structure to
aggregate information from different layers, which has good
real-time performance and accuracy. Zou et al. [34] propose
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an all-scale feature fusion network (AF-Net) to extract roads
from remote sensing images, which uses an encoder–decoder
architecture, and the encoder and decoder are connected by the
all-scale feature fusion module. Due to the features with richer
semantic information and more precise spatial information, the
AF-Net outperforms other methods on two benchmark datasets.

However, these networks only aggregate information from
different branches but ignore the importance of shallow infor-
mation interaction. In contrast, this article adopts the method
of shallow interaction and deep interaction fusion to construct
a BIR-Net so as to make fuller use of the feature information
extracted from detail branch and semantic branch.

B. Enhancement of Road Information Technology

Due to the distinctive characteristics of remote sensing road
images, including complex backgrounds and elongated and
curved roads, the road feature information enhancement tech-
nology of remote sensing images has become a crucial step in
improving the accuracy of road segmentation. To extract com-
plete road information, Dai et al. [35] propose a road-enhanced
deformable attention network (RADANet) to learn the remote
dependencies of road pixels. And a road augmentation module
(RAM) is designed to capture the semantic shape information of
roads by four-stripe convolution. Lin et al. [25] use a multiscale,
multidirectional strip convolution module as a decoder to extract
road information using convolution kernels in 0°, 45°, 90°, and
135° directions. This approach is constrained by the availability
of local information on road and ignores global information.
Dong and Chen [36] design a multidimensional attention module
(BMDA) to construct a global attention module using multi-
dimensional information to enhance the global information of
the road during feature extraction. The authors in [18] and [37]
enhance the global dependence of the network on the road by
integrating contextual features to capture global information.

In addition, Luo et al. [38] introduce a hybrid receptive
field module in the encoder to enhance the target road fea-
tures by adaptively adjusting the receptive field sizes of roads
at different scales. Similarly, the authors in [20], [39], and
[40] enhance the receptive field of remotely sensed roads by
introducing the dilated convolution and inflated convolution
attention modules. The edge information of the road is im-
portant to distinguish the road from the background; Ge et al.
[41] propose a new feature viewing transmission network. It
mitigates the phenomenon of broken road segments and miss-
ing connections in road extraction by improving the contour
learning ability. Wang et al. [42] improve the feature extraction
ability of the network when the road is occluded by designing
the dilated attention across stages. Qiu et al. [43] propose the
feature refinement module to refine the road texture and detail
information.

The aforementioned methods merely refine road information
in a unilateral manner, ignoring the connection between local
and global information. In contrast, the RPAM proposed in this
article is capable of capturing both local road information and
global road dependencies in real time.

III. METHODOLOGY

In this section, the framework of the bilateral interaction road
extraction method is described in detail. There are two branches
of the framework, one is the detail branch for extracting the
detail information of the road, and the other is the semantic
branch for extracting the semantic information of the road. The
shallow detail branch and the semantic branch information are
interacted through SIM to guarantee the completeness of the
road information extraction, and DIFM is used to aggregate
the feature information of the two branches. Furthermore, in
consideration of the elongated and curved characteristics of
roads, the RPAM proposed in this article enhances the continuity
of the road extraction region by detecting the road location in
real time and capturing the global dependency of the road.

A. Network Framework

The framework of BIR-Net network is shown in Fig. 1. The
network framework mainly consists of three modular parts:
detail branch, semantic branch, and interaction fusion. The first
module is the detail branch, in which multiple 3×3 convolu-
tions are stacked, and the downsampling operation is performed
using a 3×3 convolution with a step size of 2. This branch is
distinguished by its broad channels and shallow layers, which
are employed to capture low-level details and generate high-
resolution feature representations.

The second module is the semantic branch, which can ef-
fectively reduce the computational cost by narrowing down
the features and fusing them through two different downsam-
pling operations, thereby reducing the number of calculations
required. In the subsequent downsampling, in order to ensure
that the computational load is reduced while the receptive field
is increased, two 3×3 depth separable convolutions are used
instead of the 5×5 depth convolution, and a 1×1 convolution
is used as a projection layer to project the output of the depth
convolution into the low channel capacity space. The feature
representation of this branch is distinguished by narrow channels
and deep layers to capture high-level semantic information.
Meanwhile, an auxiliary segmentation header [13] is introduced
in different layers of semantic branch to extract multiscale road
information. The segmentation header consists of a convolution
with a 3×3 convolution kernel, batch normalization, ReLU
nonlinear activation function, and a convolution operation with
a 1×1 convolution kernel, with the output dimensions set to
the number of semantic categories to be segmented. The RPAM
is added at the last layer of this branch to improve the road
perception capability of the network.

The third module is the interaction fusion module, which
consists of an SIM and a DIFM, respectively. The SIM mod-
ule employs maximum pooling and bilinear interpolation to
enable the communication learning of features in detail and
semantic branches, thereby enhancing the network’s ability to
perceive remote sensing images within and between classes.
DIFM achieves the function of complementing detail branch
and semantic branch information by means of bilateral bootstrap
aggregation.
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Fig. 1. Framework of the proposed BIR-Net network. The segmented backbone network has a detail branch represented by the blue dotted box, a semantic branch
represented by the green dotted box, a shallow interaction network represented by the purple dotted box, and a deep interaction fusion network represented by
the gray module. The network first extracts detailed and semantic information from the picture using a two-branch backbone network. The shallow information
in the two branches is learned interactively during the extraction process. The feature information of the two branches is then fused in the last layer. Finally, a
segmentation header distinguishes the road from the background. The convolutional module’s operation details are described below the network.

The BIR-Net employs a two-path network architecture, com-
prising a spatial path (detail branch) and a contextual path
(semantic branch). The architecture permits the network to
concentrate on both spatial details and contextual information,
circumventing the intricacies of traditional approaches that
necessitate the processing of both. This architecture effectively
reduces the number of network parameters while maintaining the
performance of the network. Furthermore, the SIM is designed
to be completed between neighboring layers when interacting
with spatial and semantic information. This approach avoids
cross-layer information fusion in traditional methods, effec-
tively reducing the computational burden on network models.
Consequently, BIR-Net achieves a lightweight design while
maintaining high performance.

B. Shallow Interaction Module

Remote sensing images are distinguished by high intraclass
variability and high interclass similarity. Specifically, the chal-
lenge arises primarily from the significant discrepancies in the
characteristics exhibited by entities belonging to the same se-
mantic class. The variability in the style, shape, size, and dis-
tribution of entities frequently presents challenges in accurately
extracting roadway information. The issue of high interclass

similarity can be attributed primarily to the presence of identical
objects that overlap between different scene classes or high
semantic scene categories.

Currently, many segmentation networks [23], [44], [45] are
prone to the phenomenon of “disconnection” in the feature
extraction stage; in other words, it is difficult to ensure that the
details and semantic information of each layer are compatible.
This leads to the inability to achieve good results in the remote
sensing road extraction task. Therefore, in this article, an SIM
is designed, as shown in Fig. 2. The SIM module facilitates the
communication of both detail and semantic information while
extracting remote sensing road features. This enables layer-by-
layer information to learn from each other and to monitor the
changes in features within and between classes of remote sensing
images.

The issue of significant intraclass variability pertains to the
fact that roads may exhibit considerable dissimilarities in their
spectral characteristics. These dissimilarities may originate from
disparate materials, age, maintenance status, and other variables.
In such instances, algorithms may encounter difficulties in dis-
cerning road areas exhibiting disparate spectral characteristics as
belonging to the same class when relying exclusively on spectral
data. In order to address this issue, it is essential to consider the
role of spatial information. Spatial information encompasses
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Fig. 2. SIM. The feature map for the detail branch is represented in blue, while
the feature map for the semantic branch is represented in yellow. The network
facilitates interactive learning by merging the feature information from both
branches.

not only the location of individual pixels but also the spatial
relationships between them, as well as the shape, direction, and
width of the road. Accordingly, in order to utilize the spatial
information in the detail branch, SIM operates as follows.

First, a maximum pooling layer (MaxPool 2-D) with a convo-
lution kernel size of 3×3 and a step size of 2 is selected for the
downsampling operation in the detail bifurcation layer, which
can be computed as follows:

Y [i, j] = max(x[p, q]) (1)

where Y[i, j] is the value of the pixel in row i and column j of
the output feature map, x is the input feature map, p and q are
the row index and column index of the input feature map, and
max is the operation of taking the maximum value.

The method reduces the feature map x of size H×W to the
feature map y of size H/2 × W/2 based on the number of feature
channels that remain unchanged, with Y retaining the texture
information in the detail branch.

Then, the feature map Y and the feature map M in the semantic
branch are add fused so that the semantic branch successfully
receives the detail information that is more sensitive to the
texture feature information.

The term “high interclass similarity” refers to the fact that
roads are in close proximity to other features (e.g., rivers, bare
soil, etc.) in terms of their spectral properties. This makes it
challenging to accurately distinguish between them based solely
on pixel-level spectral information. In this instance, it is of
paramount importance to consider the contextual information.
Contextual information encompasses information about the lo-
cal area surrounding the pixel, the broader regional context, and
the topology of the road network. This information furnishes the
algorithm with spatial relationships and dependencies between
pixels, thereby facilitating more accurate recognition of roads.
Consequently, in order to utilize the contextual information in
the semantic branch, the processes of SIM are as follows.

For the input size of H/2×W/2 feature map M, the semantic
branching layer selects the bilinear interpolation method for
upsampling to obtain the feature map N of size H×W, and the

computational steps are shown as follows:

f (R1) =
x2 − x

x2 − x1
f (Q11) +

x− x1

x2 − x1
f (Q21)

f (R2) =
x2 − x

x2 − x1
f (Q12) +

x− x1

x2 − x1
f (Q22) (2)

f(P ) =
y2 − y

y2 − y1
f(R1) +

y − y1
y2 − y1

f(R2) (3)

where Q11 = (x1, y1), Q12 = (x1, y2), Q21 = (x2, y1), and Q22 =
(x2, y2) are the four closest points to point P, which is the target
pixel point f(x, y).

The linear interpolation in the x-direction is calculated by (2)
to obtain f(R1) and f(R2), which is inserted into (3) to calculate
the linear interpolation f(P) in the y-direction, and finally, the
target pixel value P is obtained by simplification, as shown in
the following equation:

f(P ) = f(x, y)=
1

(x2−x1)(y2−y1)
[f(Q11)(x2−x)(y2−y)

+ f(Q21)(x− x1)(y2 − y)+f(Q12)(x2−x)(y−y1)

+ f(Q22)(x− x1)(y − y1)]. (4)

This method allows for the retention of high semantic infor-
mation, and the incorporation of feature information N into the
detail branch via the ADD method enables the detail branch and
the semantic branch to communicate successfully.

The utilization of SIM can effectively address the issue of
high intraclass variability and high interclass similarity in remote
sensing images by integrating contextual and spatial informa-
tion.

C. Deep-Layer Interaction Fusion Module

Traditional fusion methods [46], [47] combine two types
of feature responses by summation and concatenation in an
elementary way. The low-layer detail branch and the high-layer
semantic branch exhibit disparate levels of feature representa-
tion, so the simple combination of these two types of information
is ineffective in harnessing their full potential. Yu et al. [13]
have inherently encoded multiscale information by capturing
feature representations at different scales and allowing simple
complementation of the two branches of information.

In this article, a DIFM is constructed, as shown in Fig. 3.
Bilateral bootstrap aggregation is employed in the DIFM module
to achieve a complementary fusion of deep information from the
detail branch and the semantic branch. In brief, the detail branch
features are downsampled and interact with the semantic branch
features, while the semantic branch features are upsampled
and interact with the detail branch features. This deep-layer
complementarity allows information from both branches to be
fully utilized through interaction fusion.

The precise location of the road within the deep interaction
fusion is of lesser importance than the relative location of the
road in relation to the background. Therefore, first, in the detail
branch, downsampling is performed using two times of average
pooling in order to obtain feature information that is more
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Fig. 3. DIFM. The network’s blue section represents the steps taken during
the fusion of the detail layer, while the green section represents the steps taken
during the fusion of the semantic layer. The fusion process involves two layers
of interaction.

sensitive to the background information, which is beneficial for
the subsequent classification task.

Then, to enhance the precision of the road segmentation
algorithm while maintaining a lightweight model, the ghost
convolution (GConv) [48] is introduced into the DIFM module
to replace the normal convolution. This convolution replaces the
regular convolution approach by combining a small number of
convolution kernels with a cheaper linear variation operation
to achieve higher model performance with lower computational
cost, and the ghost convolution is calculated as shown in the
following equation:

y1 = Conv(x)

y2 = Φi,j (y1) ∀i = 1, . . . ,m, j = 1, . . . , s

Y = concat(y1, y2) (5)

where y1 is the feature map of the current evidence using regular
convolution, representing linear transformations in different di-
rections. The feature maps y1 and y2 are fused by concatenation
to obtain the fused feature map Y. Ф denotes a convolution
operation on a feature-by-feature layer.

Finally, the information in the two branches is summed and
the features are further fused by a convolutional kernel size of
3×3 ghost convolution, resulting in a feature map that is more
conducive to the road segmentation task.

D. Road Perception Attention Module

The target features in traditional images are predominantly
distributed in a block-like manner. However, the bar-shaped
roads in remote sensing images exhibit a distinctive shape.
Therefore, the traditional square convolution kernel gets more

irrelevant information when extracting road features. Conse-
quently, as long as the location information of the strip road
is perceived, the road shape in the specified direction can be
taken into account, thereby enhancing the accuracy of the road
feature extraction.

Road features can be captured more efficiently by using atten-
tion mechanisms [29], [31]. The more classical channel attention
mechanisms include squeeze-and-excitation (SE) attention [49]
and convolutional block attention module (CBAM) [50]. Coor-
dinate attention (CA) [51] decomposes channel attention into a
1-D feature encoding process in two spatial directions, which can
capture long-range dependencies in one spatial direction while
preserving precise position information in the other. However,
it is difficult for CA to capture the global information of roads
with elongated curved features in remote sensing images.

In this article, a new RPAM is constructed, of which the
structure is shown in Fig. 4. The RPAM module consists of
three branches: horizontal branch, vertical branch, and global
branch. The horizontal branch and the vertical branch are used
to capture the location information of the road, and the global
branch captures the global information.

First, for the input P, a pooled convolution kernel with
dimensions (H, 1) (1, W) is used to encode each channel along
the horizontal and vertical coordinates, respectively, to obtain
the features Zh and Zw, which are aggregated along the two
spatial directions. To ensure that the information of the two
spatial directions interacts with each other, the information of
the two is fused using a concat operation, defined as follows:

Zh =
1

W

∑

0≤i<W

xc(h, i)

Zw =
1

H

∑

0≤j<H

xc(j, w) (6)

F = concat(Zh , Zw) (7)

where H and W are the height and width, respectively, and F is
the fused feature map.

Then, the tensor is decomposed along the spatial dimensions
by the split function, thereby yielding the feature maps X and
Y, respectively. Meanwhile, considering the characteristics of
slender and curved roads in remote sensing images, the 3×3
convolution and sigmoid activation functions are used to capture
finer road features. The generation of attentional weights for
height and width is achieved through the splitting process and
the application of a sigmoid activation function. The weights are
employed to reweight the height and width pooled feature maps,
respectively, with the objective of emphasizing spatial road
regions and suppressing background regions. By multiplying the
original feature maps X and Y with the reweighted height and
width attentional feature maps, the model is made more spatially
focused on road areas. The operation is defined as follows:

gh = σ{s[conv3×3(Fh)]} ×X

gw = σ{s[conv3×3(Fw)]} × Y (8)
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Fig. 4. Structure of RPAM. The network comprises three branches: the horizontal branch (horizontal grid), the vertical branch (vertical grid), and the global
branch (square grid). The blue sections indicate the weights of the road information in the horizontal and vertical directions.

TABLE I
EXPERIMENTAL ENVIRONMENT

where s is the sigmoid activation function and σ denotes the split
function.

Furthermore, the input feature maps are globally average
pooled by concatenating a global average pooling branch, which
generates the average value for each channel and, subsequently,
generates the channel attention weights. Then, the resulting
weights are normalized to a value between 0 and 1 by means
of a sigmoid activation function, thereby indicating the relative
importance of each channel. By multiplying the original feature
map with the channel attention weights, the model can focus
on or suppress different channels, which helps to emphasis the
channels that contain road information.

Finally, the feature information from all branches is fused.
By multiplying the height, width, and channel attention weights
with the original feature map, the RPAM is capable of effectively
capturing road features in remote sensing images by considering
both channel and spatially significant information.

IV. EXPERIMENTS

A. Datasets
CHN6-CUG dataset [52]: The CHN6-CUG dataset is of

remote sensing images of urban roads in China, with images
from six cities, namely Beijing, Shanghai, Wuhan, Shenzhen,

Hong Kong, and Macau. The spatial resolution of the images
is 50 cm/pixel. CHN6-CUG contains 4511 labeled images of
512×512 pixels, of which 3608 are used for model training and
903 for testing.

DeepGlobe dataset [53]: DeepGlobe dataset contains 6226
satellite remote sensing images of 1024 × 1024 pixels and
labels, each with a spatial resolution of 50 cm/pixel. The images
contain urban, suburban, and rural roads from Thailand, India,
and Indonesia, of which 4980 are used for model training and
1246 for testing.

B. Experimental Setting and Evaluation Indicators

The experimental environment is shown in Table I.
The SGD is selected as the model training optimizer with an

initial learning rate of 0.01 and a learning rate decay coefficient
of 0.01. The training period is set to 200 rounds with four images
per batch.

In order to comprehensively evaluate the lightweight and
segmentation performance of the model, Param (number of
parameters), floating point operations (FLOPs), and RIoU are
used as the evaluation metrics. Among them, Param and FLOPs
are used to evaluate the size and complexity of the model,
and RIoU is the intersection ratio of road categories. They are
explained in detail as follows.

1) Param is the number of parameters required for model
training, which can measure the computational complexity
of the model.

2) FLOPs are the number of floating point operations, which
can measure the computational time complexity of the
model.

3) RIoU can measure the segmentation effect of the model on
the road category, which is the intersection ratio of the true
and predicted values of the road category, and is calculated
as follows:

RIoU =
TP

TP + FP + FN
(9)
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TABLE II
BIR-NET ABLATION EXPERIMENTS

TABLE III
EXPERIMENTS VALIDATING TECHNOLOGY EFFECTIVENESS

where TP stands for true example, FP stands for false positive
example, and FN stands for false negative example.

C. Experimental Results

1) Ablation Experiments: Ablation experiments are con-
ducted to evaluate the impact of each module in the BIR-Net
on the network segmentation performance. To facilitate the
experiments, we define DSNet (network with detail branch and
semantic branch without RPAM) as the basic bilateral feature ex-
traction network. The sum operation of two DSNet branches has
been defined. The features of the detail and semantic branches in
DSNet are fused by a simple sum operation, which is designated
as DSNet+Sum.

The DSNet network is utilized as the base network,
with the addition of DIFM, SIM, and RPAM modules to
form the DSNet+Sum+DIFM, DSNet+Sum+DIFM+SIM,
and DSNet+ Sum+DIFM+SIM+RPAM models. The valida-
tion is performed on two datasets, CHN6-CUG and DeepGlobe,
and the experimental results are presented in Table II.

The experimental data show that the model parameter count
(Param) and the FLOPs for road extraction by DSNet+Sum
only are 2.98M and 5.95G, respectively. The road IoU reaches
56.23% and 56.19% on CHN6-CUG and DeepGlobe datasets,
respectively. The addition of DIFM module only increases
Param and FLOPs by 0.44M and 0.31G, respectively. The RIOU
reached 57.37% and 56.47% on CHN6-CUG and DeepGlobe
datasets, respectively. This indicates that richer details and
semantic information are employed to optimize model perfor-
mance.

Additionally, the SIM is added to maintain real-time connec-
tions between detail and semantic branches. As a result, road
segmentation accuracy improves to 58.83% and 58.04% for

detail and semantic branches, respectively. Finally, the RPAM is
included to detect road location features in real time, resulting
in a further improvement of model performance by 0.44% and
0.32%, respectively. The DSNet+ DIFM+SIM+RPAM, which
is the proposed BIR-Net, has only Param of 3.66M and FLOPs
of 6.49G. The road extraction accuracies are up to 59.27% and
58.36%, respectively.

2) Technical Validity Experiments: To validate the effective-
ness of the proposed BIR-Net in this article, we compare the
proposed modules and some general techniques on the CHN6-
CUG dataset. The experimental results are shown in Table III,
in which DSNet is used as the base model for validation. The
proposed method in this article is represented by the bolded part,
while sum is a simple additive feature fusion.

The use of DIFM instead of simple sum fusion results in
an improvement of 0.8% in model accuracy. Additionally, the
introduction of ghost convolution (GConv) reduces the model
complexity by 0.31G and improves accuracy by 0.34% with
minimal increase in the number of parameters. The classical
feature enhancement modules SE and CA attention can improve
features by constructing channel global dependence and location
information, respectively. This results in an effective accuracy
improvement of 1.45% and 1.05%, respectively. CBAM and
BAM combine spatial attention and channel attention mecha-
nisms through series–parallel connection, resulting in a slight
improvement in model accuracy.

However, the aforementioned enhancement modules are
constrained in their capacity to accurately capture the long-range
dependence of roads due to the specificity of road shape features
in remote sensing images. In contrast, the RPAM proposed in this
article is capable of dynamically focusing on the road location
information in real time based on the road feature weights. This
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TABLE IV
COMPARISON OF MAINSTREAM MODELS

leads to an effective improvement in the model’s accuracy, with
an increase of 1.66%.

Furthermore, to substantiate the functionality of the SIM, an
investigation is conducted to ascertain the efficacy of the SIM
module when introduced in isolation. The results demonstrate a
significant improvement in model accuracy, with an increase of
1.85%. The ability of SIM to facilitate the interaction between
detail branch and semantic branch information, as well as to
attend to both intra- and interclass information in remote sensing
images, has been demonstrated to increase the accuracy of the
model.

3) Comparison of Mainstream Models: To verify the ad-
vancement of BIR-Net, we compare it with mainstream road seg-
mentation models. The large models compared include U-Net
[10], DeepLab V3 (ResNet18) [12], DDRNet [57], D-LinkNet
[16], STDC [14], and RADANet [35]. The small models com-
pared include PSPNet (MobileNet V2) [55], MobileViT [56],
BiseNet V2 [13], RoadViT [54], PIDNet [33], and PP-LiteSeg
[58]. Experiments are conducted using the CHN6-CUG and
DeepGlobe datasets, and the results are presented in Table IV.

To ensure the experiment’s validity, the loss function and
accuracy curves of each model converged within 200 epochs
of training, as shown in Fig. 5. The experimental curves indicate
that all models have achieved convergence in both their loss
function and accuracy.

Table IV presents that our BIR-Net model achieves a road
segmentation accuracy of 59.27% on the CHN6-CUG dataset.
Our BIR-Net model has a parameter count of only 3.66M and
a complexity of 6.49G while still being sufficiently lightweight.
Compared with larger models, such as U-Net, Deeplab V3
(ResNet18), and D-LinkNet, the BIR-Net is more advantageous
in terms of both accuracy and lightness.

Meanwhile, DDRNet, PIDNet, and STDC improve the seg-
mentation accuracy by constructing a multibranch aggregation
structure to eliminate redundant channels and parameters in the
network structure. However, the performance of these models
in road extraction accuracy remains inferior to that of BIR-Net.

RADANet achieves the highest road extraction accuracy by
using a large encoder and decoder as the base network and cap-
turing the road shape information through the road enhancement
module. However, pursuing segmentation accuracy excessively
by using a deep encoding–decoding structure leads to an overly
complex network with a dramatic increase in the number of pa-
rameters and computational complexity. The Param and FLOPs
of RADANet are as high as 73.58M and 212.0G, respectively,
which are the highest among all models. In comparison, BIR-Net
has only 4.98% of the Param of RADANet and only 3.06% of
FLOPs of RADANet, making it more suitable for deployment
on smaller devices.

In comparison with the lightweight models Mobile ViT and
RoadViT, BIR-Net exhibits a slightly higher number of pa-
rameters and complexity; however, it has been demonstrated
that BIR-Net improves model accuracy by 16.35% and 2.77%,
respectively. PSPNet(MobileNet V2) uses a lightweight network
as the backbone to reduce the number of parameters, but the
accuracy is also decreased. BIR-Net improves accuracy by 7.1%
with lower model parameter number and complexity than the
former by 1.02M and 3.77G, respectively. PP-LiteSeg employs
a flexible and lightweight decoder to streamline the encoding–
decoding network structure, effectively achieving a balance
between segmentation accuracy and lightweight. However, the
segmentation accuracy of this approach is inferior to that of
BIR-Net.

Furthermore, BIR-Net demonstrates a higher segmentation
accuracy compared with its predecessor, BiseNet V2, by 2.88%
in cases where the number and complexity of parameters are
comparable. Based on these analyses, it is evident that BIR-Net
is a remote sensing image road extraction model that balances
model complexity and accuracy.

To validate the effectiveness of BIR-Net, this article conducts
additional comparison experiments on the DeepGlobe dataset.
Table IV presents a comparison between the lightweight models
PSPNet (MobileNet V2) and BiseNet V2, which have simi-
lar numbers of parameters and complexity. The segmentation
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Fig. 5. Loss function curves and accuracy curves for each model. The
horizontal axis represents the number of training epochs, while the vertical
axis represents the values of the loss function and accuracy. As training time
increases, the loss function and accuracy curves gradually converge. (a) Loss
function curves. (b) Accuracy curves.

accuracies of BIR-Net are higher than those of the for-
mer by 3.52% and 2.28%, respectively. However, Mobile
ViT and RoadViT have lower numbers of parameters and
complexity, resulting in model accuracies of only 47.73%
and 52.3%, respectively, which do not take into account the
segmentation accuracies. However, Mobile ViT and Road-
ViT have lower numbers of parameters and complexity, re-
sulting in model accuracies of only 47.73% and 52.3%,
respectively, which do not take into account the segmentation
accuracies. However, Mobile ViT and RoadViT have lower num-
bers of parameters and complexity, resulting in model accuracies
of only 47.73% and 52.3%, respectively, which do not take
into account the segmentation accuracies. PIDNet exhibits a
similar degree of model accuracy to BIR-Net, yet it comprises
more than twice the number of parameters and is less effective

Fig. 6. Comparison of processing time for each model. The figure represents
the testing process for each model using different colors. The horizontal coor-
dinate indicates the number of tests, and the vertical coordinate indicates the
speed of testing.

than BIR-Net in terms of model lightweighting. PP-LiteSeg
demonstrates an acceptable level of model complexity, yet its
segmentation accuracy is notably inferior.

Compared with the larger models, such as U-Net, Deeplab V3
(ResNet18), DDRNet, D-LinkNet, and STDC, BIR-Net offers
a more advantageous balance between lightness and accuracy.
RADANet achieves the highest segmentation accuracy, but its
complexity, with a parameter count of 73.58M, makes it unsuit-
able for implementation on small devices for road extraction
tasks. In conclusion, the proposed BIR-Net model is capable of
effectively combining segmentation accuracy with a lightweight
design. It has the advantages of being a small model with
high accuracy for the mainstream remote sensing image road
extraction task.

V. DISCUSSION

A. Evaluation of the Processing Speed

In order to assess the efficiency of BIR-Net, the comparison
is made with mainstream models in terms of processing time.
The test is conducted on a 512×512 image, and the results are
presented in Fig. 6.

Fig. 6 demonstrates that the BIR-Net outperforms the main-
stream models in terms of processing speed, with an average
FPS of 8 f·s−1, and is placed in the leading position. Although
MobileViT and PSPNet (MobieNet v2) perform well in terms
of model complexity, their average processing speeds are only
5.5 f·s−1 and 6.2 f·s−1, respectively.

DDRNet and STDC perform moderately well in terms of
segmentation accuracy as well as lightness. D-LinkNet and
DDRNet have similar processing speeds, with an average FPS
of only 4.2 f·s−1. Furthermore, U-Net employs a complex
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Fig. 7. Comparison between the intermediate result output heat maps. The brightness of the illuminated area indicates the level of attention the network gives
to the road features. The proposed BIR-Net pays the most attention to roads, especially with the inclusion of modules. (a) Original image. (b) DSNet+Sum.
(c) DSNet+DIFM. (d) DSNet+DIFM+SIM. (e) BIRNet (Ours).

encoding–decoding structure to extract features, while Deeplab
V3 (ResNet18) uses the large ResNet18 model for feature extrac-
tion. However, their processing speeds are only about 2.3 f·s−1

and 3.4 f·s−1, respectively.
PIDNet and PP-LiteSeg reduce the complexity of the model

by adopting a multipath network frame and a flexible and
lightweight decoder, respectively. The average processing speed
reaches 6.8 f·s−1 and 6.6 f·s−1, respectively. However, this is still
not as good as that of BIR-Net. BiseNetV2 utilizes a concise and
effective model structure for feature extraction, which is similar
to BIR-Net in terms of processing speed. However, BiseNetV2
performs poorly in terms of road segmentation accuracy.

In summary, the proposed BIR-Net achieves an average FPS
of 8 f·s−1 and has higher processing speed than other mainstream
models on images with a size of 512× 512. This further validates
the lightweight nature of our BIR-Net.

B. Evaluation of Ablation Experiments Effect

To demonstrate the process of feature extraction by BIR-Net,
two images were selected at random to generate a feature heat
map, as shown in Fig. 7.

Fig. 7(a) shows the input image, Fig. 7(b) shows the feature
heat map of the bilateral fusion base network, and Fig. 7(c)–(e)
shows the effect diagrams of adding DIFM, SIM, and RPAM in
sequence.

Following the replacement of the sum feature fusion with
DIFM, the road information is enhanced and a greater number
of road areas are illuminated. The incorporation of SIM has
resulted in enhanced focus and clarity of the edges of the learned
road features. Following the incorporation of RPAM, the global
information pertaining to the road is augmented, culminating in
the generation of a comprehensive and lucid road feature effect
map. This outcome serves to substantiate the efficacy of BIR-Net
in the extraction of road features.

Fig. 8. Impact of segmentation effects from different techniques. The dif-
ferences are boxed in red, DFM improves the result completeness, RPAM
improves the accuracy, and SIM improves the connectivity. The proposed
BIR-Net achieves optimal performance. (a) Original image. (b) Real label.
(c) DSNet+sum. (d) DSNet+DIFM (without GConv). (e) DSNet+DIFM.
(f) DSNet+Sum+RPAM. (g) DSNet+Sum+SIM. (h) BIR-Net (without SIM).
(i) BIR-Net.

C. Discussion on Technical Effects

In order to further validate the impact of the proposed model
on the performance of road extraction, binarized images are
employed to facilitate a comparative analysis of the effects of
different techniques. The results are shown in Fig. 8, where
Fig. 8(a) shows the original image and Fig. 8(b)–(h) shows
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Fig. 9. Comparison of the actual road extraction effect between BIR-Net and mainstream models. The differences are boxed in red. In contrast to other networks,
BIR-Net preserves spatial detail and exhibits superior road connectivity and integrity. (a) Original image. (b) Real label. (c) U-Net. (d) Deeplab V3 (ResNet18).
(e) PSPNet (MobileNet V2). (f) Mobile ViT. (g) BiseNet V2. (h) DDRNet. (i) D-LinkNet. (j) STDC. (k) PIDNet. (l) PP-LiteSeg. (m) Ours.

the binarized images. Fig. 8(b) represents the real label, and
Fig. 8(c)–(h) shows the effect of different techniques on road
extraction. Furthermore, the binarized image distinguishes the
road and the background by white and black pixels, respectively.
The red rectangular box highlights the impact of various tech-
niques on road extraction.

The comparison of Fig. 8(c) and (d) reveals that the proposed
deep fusion module is capable of fully leveraging detail branch
and semantic branch information to extract a more comprehen-
sive and continuous road region. Additionally, the introduction
of ghost convolution (GConv) in Fig. 8(e) enhances the road
feature extraction capability, resulting in more comprehensive
road extraction. Fig. 8(c) and (f) demonstrates that the proposed
RPAM can concentrate on the road’s shape in a specific direction
and capture the road’s distant dependency, resulting in a more
continuous road extraction region.

The results of the comparison between Fig. 8(c) and (g)–(i)
demonstrate that the SIM is effective in extracting the real roads
and distinguishing similar backgrounds. This is achieved by
comprehensively utilizing spatial information and contextual
information, which effectively addresses the issue of high in-
traclass variability and interclass similarity in remote sensing
images. This enables the extraction of more comprehensive road
regions. Ultimately, our BIR-Net can extract more complete and
continuous road regions, which is advantageous for urban road
planning.

D. Analysis of the Effects of Road Extraction Compared

To validate the road extraction effect of the BIR-Net network,
this article tests it on slender and curved urban images and
mountainous images obscured by vegetation. Binarized images
are used for comparative analysis with other mainstream models.
In the images, black pixels represent the background and white

pixels represent the roads. The road extraction effect of different
models is highlighted by a red rectangular box in Fig. 9.

The comparison of Fig. 9(e) and (f) with Fig. 9(m) reveals
that the lightweight models fail to extract the fine curved roads,
resulting in incomplete road networks. A comparison of
Fig. 9(c), (d), (i), and (m) reveals that some large network models
continue to encounter difficulties in extracting missing and
discontinuous roads when confronted with slender and curved
roads. In contrast, our BIR-Net can effectively address these
challenges, resulting in more accurate road extraction.

Based on the analysis of Fig. 9(g), (h), (j), (k), and (l), it
is evident that the BiseNet V2, DDRNet, STDC, PIDNet, and
PP-LiteSeg networks exhibit a high level of completeness in ex-
tracting roads, effectively capturing most road details. However,
these networks still encounter some difficulties in accurately
extracting roads in areas with vegetation occlusion and pixels
with high recognition difficulty, resulting in intermittent road
extraction.

Finally, comparing Fig. 9(b) and (m), it is evident that the road
region extracted by our BIR-Net has the highest overlap with the
actual region. In conclusion, BIR-Net is an effective method for
extracting complete and continuous roads from remote sensing
images of heavily occluded, slender, and curved roads. This
is beneficial for urban road planning as it ensures the use of
sufficient lightness.

VI. CONCLUSION

This article presents a lightweight and efficient urban road net-
work extraction model, BIR-Net, which employs a dual-branch
feature extraction backbone network comprising detail branch
and semantic branch. An SIM is designed, which effectively
addresses the issue of high intraclass variability and high inter-
class similarity in remote sensing images by synthesizing spatial
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and contextual information. A deep fusion module is proposed
through a bilateral-guided aggregation approach with the ob-
jective of realizing the function of complementary information
between detail branches and semantic branches. Furthermore,
an RPAM is proposed, which can prioritize the road region
and suppresses the background region by adjusting the attention
weights and reweighting them. This effectively addresses the
issue of intermittent and incomplete extracted road regions
due to elongated and curved roads in remote sensing images.
The number of parameters and FLOPs of BIR-Net are 3.66
M and 6.49 G, respectively, and its computational efficiency is
relatively superior to that of other mainstream models. The road
segmentation accuracies of BIR-Net on the CHN6-CUG and
DeepGlobe datasets are 59.27% and 58.36%, respectively. These
results demonstrate the effectiveness of BIR-Net in extracting
roads from remote sensing images. In consideration of the model
size and segmentation accuracy, BIR-Net is deemed suitable for
deployment on small devices with limited resources.
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