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Abstract—The United States (U.S.) is a global leader in the pro-
duction and exportation of soybeans and corn. Accurate monitor-
ing and estimation of soybean and corn yields in the U.S. is essential
for improving global food security. However, there is currently a
lack of publicly available spatial distribution datasets with high
temporal and spatial resolution for U.S. corn and soybean yields,
which hampers related research and policy-making. Therefore, in
this study, we proposed a statistical downscaling framework to pro-
duce spatially explicit crop yield estimates by utilizing multisource
environmental covariates and ensemble machine learning methods.
We produced distribution maps of soybean and corn yields in the
U.S. from 2006 to 2021 at a 1-km resolution through the optimal
Cubist model, resulting in the USASoy&CornYield1km dataset.
The results demonstrated stable accuracy, with R2 values for corn
ranging from 0.70 to 0.89 (average of 0.80) and for soybeans ranging
from 0.74 to 0.90 (average of 0.81) during the period 2006–2021.
Comparison with the spatial production allocation model (SPAM)
dataset further confirmed the reliability of this dataset, with cor-
relations of 0.84 for soybeans and 0.78 for corn when compared
to SPAM2010. Spatial uncertainty analysis showed that the yield
estimation uncertainty was 14.04% for soybeans and 20.49% for
corn, indicating a generally low level of uncertainty. Overall, the
USASoy&CornYield1km dataset offers higher spatial and tem-
poral resolution, captures yield variations within counties, and
covers a long time span. This study provides significant insights for
analyzing U.S. soybean and corn yields and improving agricultural
production.
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I. INTRODUCTION

CORN, as a crop used for food, feed, and industrial pur-
poses, ranks as the third-largest cereal crop globally, fol-

lowing rice and wheat. Soybeans, on the other hand, represent
the world’s largest source of feed protein and the second-largest
source of vegetable oil [1], [2]. The United States (U.S.) is the
leading producer and exporter of both corn and soybeans. In
2020, it produced 115 million tons of soybeans and 358 million
tons of corn, accounting for over 30% of the world’s soybean and
corn output [3], [4], [5]. The production of soybeans and corn
in the U.S. has a significant impact on the global agricultural
market. However, the growth of these crops is influenced by
several factors, including global warming and extreme weather
conditions, which significantly affect their development [6],
[7], [8]. Therefore, accurately and timely estimating corn and
soybean yield in the U.S. is of great importance for agricultural
production, food security, and international food trade [9], [10].

Numerous scholars have conducted extensive research on
crop yields in the United States. For instance, Jiang et al.
[11] developed a long short-term memory model, incorporating
multisource data to predict corn yield in the U.S. Corn Belt,
achieving robust county-level crop yield estimates. Johnson et al.
[12] compared the effectiveness of remote sensing vegetation
index-based models and simple trend analysis in estimating
county-level crop yields. They found that remote sensing models
have advantages in predicting corn yields. Li et al. [3] used the
extreme gradient boosting (XGBoost) model and multidimen-
sional feature engineering to develop a framework for predict-
ing county-level soybean yields, achieving higher prediction
accuracy compared to other models. However, these methods
are limited to county-level regional scales for yield predictions,
lacking the capability to conduct spatial analysis of crop yields
within counties or observe the continuous geographical variation
of crop yields. Recent advancements have demonstrated the fea-
sibility to conduct more detailed spatial analyses. For example,
Zhang et al. [13] presented a machine learning framework that
successfully predicted the spatial distribution of crop planting at
a detailed (30 m) resolution using historical cropland data layer
(CDL) maps. However, their study only focused on the spatial
distribution of crops and did not involve yield prediction. As
a result, important intracounty variations in crop productivity
are missed, leading to less precise agricultural management and
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suboptimal resource allocation. This limitation hinders efforts
to identify specific areas of high or low productivity, ultimately
affecting decisions related to fertilizer application, irrigation,
and other critical farming practices.

There are some publicly available global crop yield datasets
currently. For example, the global gridded crop model inter-
comparison (GGCMI) phase 1, completed by a collaboration
of multiple crop model groups globally [14], offers a dataset
at a spatial resolution of 0.5 arc-degree longitude and latitude.
The global dataset of historical yields of major crops (GDHY),
produced based on agricultural census statistics and satellite
remote sensing data [15], presents another resource. The spa-
tial production allocation model (SPAM), which enhances and
improves existing crop downscaling models [16], and the global
agro-ecological zones model version 4 (GAEZ 2010), created by
integrating global climate, soil, terrain, and land cover data based
on the United Nations Food and Agriculture Organization crop
yield data [17], are also notable contributions. However, due to
different research objectives and technical method limitations,
these datasets generally have a coarse spatial resolution and
limited time span. For instance, the spatial resolution of GAEZ
and SPAM is approximately 10 km, while that of GDHY and
GGCMI is about 55 km. GDHY and GGCMI offer annual
time resolution, SPAM is updated every five years, and GAEZ
was produced only around 2010. Such spatial resolutions and
time spans limit the application of these data in small-scale
spatial analysis of crop yields and the ability to analyze the
dynamic changes in crop yield and distribution. To the best of
our knowledge, there are currently very few publicly available
crop yield datasets that combine high spatial resolution, a long
time span, and dynamic spatial distribution data of crop yields.

The rapid development of remote sensing technology has
made it feasible to produce high spatial resolution crop yield
datasets. Satellite-based remote sensing observations, offering
long-term and wide-ranging information on crop growth, have
been used by numerous studies for crop yield estimation over
the past decades. Lobell et al. [18] developed a satellite-based
scalable crop yield mapper approach to provide gridded yield
data at a regional scale. Cheng et al. [19] generated and evaluated
a 1 km resolution, long-time span dataset of corn and wheat
crop yields in China using multiple remote sensing indices and
the random forest (RF) model. Zhao et al. [20] developed the
ChinaWheatYield30m, a high-resolution dataset of annual win-
ter wheat yields in China, by integrating satellite observations
with meteorological data using a hierarchical linear model. Wu
et al. [21] created the AsiaRiceYield4 km dataset by inputting
satellite-derived soil and climate data, along with vegetation
parameters, into a RF model, estimating seasonal rice yields
across Asia. Additionally, the application of various machine
learning models in the field of crop yield estimation has achieved
satisfactory results [22], [23], [24], [25]. Compared to traditional
process-based crop models and statistical regression methods,
machine learning models, despite relying on large amounts of
training data and often lacking interpretability [26], allow for
the free selection of input variables without complex parame-
ters [27] and offer higher efficiency and spatial generalization
capabilities. Therefore, the combination of multisource remote

Fig. 1. Distribution of soybean and corn within the study area.

sensing data with machine learning algorithms presents a
promising opportunity for large-scale, high-precision agricul-
tural crop yield prediction.

In this study, we proposed a methodological framework for
generating gridded crop yield estimates for soybean and corn
by leveraging multisource remote sensing data and ensemble
machine learning models. The U.S. Corn Belt region was se-
lected as the study area due to its fundamental importance in
food production. We developed a spatial distribution dataset
of crop yields at 1 km resolution, with annual intervals from
2006 to 2021 (USASoy&CornYield1km). This dataset offers
more precise regional yield information and captures dynamic
changes in annual yields and the geographical distribution of
these crops, which is essential for understanding agricultural
production patterns, guiding agricultural policy-making, and
enhancing food security.

II. DATA AND METHODS

A. Study Area

Our study area was the Corn Belt of the U.S. (see Fig. 1), which
is located in the central and northern U.S. and includes 12 states,
namely Arkansas, Illinois, Indiana, Iowa, Kansas, Minnesota,
Missouri, Nebraska, North Dakota, Ohio, South Dakota, and
Wisconsin. In more recent years, these states have averaged
more than 84% and 85% of U.S. soybean and corn production,
respectively [28]. Most of the region is characterized by a tem-
perate continental climate, with significant spatial heterogeneity
in crop yields among the states.

B. Data

In this study, county-level yield data from official statistics and
annual crop area maps were collected. In addition, we gathered
four categories of remote sensing variables for soybean and corn
yield estimations, including vegetation indices, climate data, soil
data, and elevation. All of these variables are accessible through
the Google Earth Engine (GEE) to enhance the generalizability
and transferability of the research method. All variables were
standardized to the WGS84 coordinate system and resampled
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TABLE I
SUMMARY OF THE DATASETS USED IN THIS STUDY

to 1 km spatial resolution using bilinear interpolation before
subsequent analysis. The detailed information of the data used
in this study have been summarized in Table I.

1) Crop Yield and Distribution: County-level soybean and
corn yields were obtained from the National Agricultural Statis-
tics Service (NASS) of the United States Department of Agri-
culture (USDA).1 The original unit of soybean and corn yields,
bushels/acre, was converted to kilogram/hectare by multiplying
it with a conversion factor of 67.2 and 62.7, respectively. Data for
the cultivation distribution of soybean and corn were obtained
annually from the cropland data layer2 [30], [31] with a 30 m
resolution. We selected the period from 2006 to 2021 for our
study due to gaps in CDL for the Corn Belt prior to 2006. The
CDL data were used to extract remote sensing variable data for
the corresponding crop planting area.

2) Vegetation Index: Vegetation indices play an important
role in monitoring the state of crop growth and have been widely

1Online. [Available]: https://quickstats.nass.usda.gov/
2Online. [Available]: https://nassgeodata.gmu.edu/CropScape/

used for crop yield estimation. Normalized difference vegetation
index (NDVI) and enhanced vegetation index (EVI), obtained
from the aqua moderate resolution imaging spectroradiometer
(MODIS) dataset provided by the GEE,3 were used in our
study. Both indices were a composite of 16 days, with a spatial
resolution of 1 km.

3) Climate Data: Climate predictors used in our study
were extracted from four gridded data sources: the
parameter-elevation regressions on independent slopes model
(PRISM) dataset, MODIS Evapotranspiration/Latent Heat
Flux MOD16A2 product, MODIS Land Surface Temperature
(LST) product and gridded surface meteorological (GRIDMET)
dataset. Specifically, we collected monthly total precipitation
(PPT), monthly mean temperature (Tmean), monthly minimum
and maximum vapor pressure deficit (VPDmin, VPDmax) from
the 4-km PRISM dataset.4 The average 8-day daytime and

3Online. [Available]: https://developers.google.cn/earth-engine/datasets/
catalog/MODIS_061_MYD13A2

4Online. [Available]: https://developers.google.cn/earth-engine/datasets/
catalog/OREGONSTATE_PRISM_AN81m

https://quickstats.nass.usda.gov/
https://nassgeodata.gmu.edu/CropScape/
https://developers.google.cn/earth-engine/datasets/catalog/MODIS_061_MYD13A2
https://developers.google.cn/earth-engine/datasets/catalog/MODIS_061_MYD13A2
https://developers.google.cn/earth-engine/datasets/catalog/OREGONSTATE_PRISM_AN81m
https://developers.google.cn/earth-engine/datasets/catalog/OREGONSTATE_PRISM_AN81m
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Fig. 2. Flowchart of the gridded crop yield generation framework.

nighttime land surface temperatures (LST_Day, LST_Night)
were obtained from the 1 km MODIS LST product,5 while
evaporation (ET) and potential evaporation (PET) were collected
from MOD16A2 product,6 an 8-day composite dataset with a
500 m resolution. Additionally, to characterize regional drought
conditions, the palmer drought severity index (PDSI) was
derived from GRIDMET dataset,7 which has a 4-km spatial
resolution and 5-day temporal resolution.

In summary, the variables can be divided into two categories:
(1) Temperature-related variables, including Tmean, LST_Day
and LST_Night. (2) Water-related variables, including PPT, ET,
PET, VPDmin, VPDmax and PDSI.

4) Soil Data: Soil conditions also have a significant effect on
crop growth and final yield. In our study, volumetric soil water

5Online. [Available]: https://developers.google.cn/earth-engine/datasets/
catalog/MODIS_061_MOD11A2

6Online. [Available]: https://developers.google.cn/earth-engine/datasets/
catalog/MODIS_006_MOD16A2

7Online. [Available]: https://developers.google.cn/earth-engine/datasets/
catalog/GRIDMET_DROUGHT

(VSW) and soil temperature (ST) were derived from ERA5-
Land monthly data with a spatial resolution of 0.1°.8 This dataset
is produced by replaying the land component of the ECMWF
ERA5 climate reanalysis. Considering the depth of the main root
distribution of the studied crop, two depth groups, 0–7 cm and
7–28 cm, were selected for these soil attributes, comprising a
total of four variables for yield estimation (ST1, ST2, VSW1
and VSW2, with 1 representing 0–7 cm and 2 representing 7–28
cm).

5) Elevation: The relationship between terrain attributes and
the spatial patterns of crop yield has been demonstrated by
previous studies, and the digital elevation model (DEM) data
contribute to estimating crop yields [32], [33]. Elevation from
NASADEM with a spatial resolution of 30 m,9 which is a
reprocessing of the shuttle radar topography mission digital
elevation dataset, was used to predict crop yield in this study.

8Online. [Available]: https://developers.google.cn/earth-engine/datasets/
catalog/ECMWF_ERA5_LAND_MONTHLY_AGGR

9Online. [Available]: https://developers.google.cn/earth-engine/datasets/
catalog/NASA_NASADEM_HGT_001

https://developers.google.cn/earth-engine/datasets/catalog/MODIS_061_MOD11A2
https://developers.google.cn/earth-engine/datasets/catalog/MODIS_061_MOD11A2
https://developers.google.cn/earth-engine/datasets/catalog/MODIS_006_MOD16A2
https://developers.google.cn/earth-engine/datasets/catalog/MODIS_006_MOD16A2
https://developers.google.cn/earth-engine/datasets/catalog/GRIDMET_DROUGHT
https://developers.google.cn/earth-engine/datasets/catalog/GRIDMET_DROUGHT
https://developers.google.cn/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_AGGR
https://developers.google.cn/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_AGGR
https://developers.google.cn/earth-engine/datasets/catalog/NASA_NASADEM_HGT_001
https://developers.google.cn/earth-engine/datasets/catalog/NASA_NASADEM_HGT_001
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C. Methods

1) Model Selection and Evaluation: In this study, we se-
lected three widely used ensemble machine learning models for
soybean and corn yield estimation: RF, XGBoost, and Cubist.
RF is an ensemble learning algorithm that improves accuracy
and robustness by constructing multiple decision trees and ag-
gregating their predictions [34]. The RF model can efficiently
process remote sensing datasets with numerous features due to
its low sensitivity to outliers and resistance to overfitting [19],
[35]. The XGBoost model is an efficient implementation of the
gradient boosting algorithm. It enhances model performance by
sequentially adding weak learners to gradually reduce residuals
[36]. XGBoost is not affected by highly correlated features,
thereby reducing issues of multicollinearity among features [3],
[37]. Cubist is a machine learning algorithm that combines
decision trees with linear regression. It initially uses rules similar
to decision trees to split the data into different subsets and then
applies a linear regression model to each subset for prediction
[38]. This approach enables Cubist to effectively handle datasets
containing both linear and nonlinear relationships [39].

Interannual cross-validation was employed to assess the per-
formance of models and select the optimal model in this study.
Specifically, we adopted a “leave-one-year-out” test for model
evaluation [40], [41]. For instance, data from 2007 to 2021 were
used to train the model, which was then used to predict the
yield for 2006. Then the data from 2006 and 2008–2021 were
used to predict for 2007, and so on for each year. The 16 years’
predictions were then compared with the actual annual statistical
yield data year by year. The performance of models, unaffected
by the length of training data, benefits from this testing method,
which provides a comprehensive evaluation of the predictive
capability under various conditions of models.

In this study, we used the coefficient of determination (R2),
root mean squared error (RMSE) and mean absolute error
(MAE) to quantify the model prediction performance. These
metrics were individually computed for each predicted year. The
model with the highest R2 and the lowest RMSE and MAE was
deemed as the optimal model.

2) Gridded Crop Yield Generation: Based on the obtained
optimal yield prediction model, the USASoy&CornYield1km
was generated according to the following steps (see Fig. 2).

a) Data preparation: As stated in Section II-B, we col-
lected a total of 16 remote sensing variables in four categories as
independent variables for the model: vegetation indices (NDVI
and EVI), climate variables (ET, PET, LST_Day, LST_Night,
PPT, Tmean, VPDmin, VPDmax, and PDSI), soil attributes (ST
and VSW at 0–7 cm and 7–28 cm depths), and elevation, were
used as independent variables in the model. Crop statistical yield
for each year provided by NASS was the dependent variable
of the model. Previous studies have demonstrated that using a
priori crop yield information from the previous five years in the
same region will facilitate the construction of estimation models
[4], [42]. This is because crop yields in the same region tend to
remain relatively stable in the absence of major environmental
changes. Therefore, we also input the average yield of the
previous five years as the independent variable of the model.

For example, to estimate the crop yield for 2021, we calculated
the average yield for each county from 2016 to 2020 as the
historical average yield. Therefore, the model includes a total of
17 independent variables.

b) Growth stage aggregation: The 17 variables selected
for the study include many images taken throughout the crop
growing season, with excessive images much likely to lead to
data redundancy and hamper model calculations. To reduce
the number of predictors, we aggregated 15 remote sensing
variables (excluding elevation) at different crop growth stages.
Specifically, for soybean, the growing season has been divided
into the planting-emerging stage (April to June), blooming-
podding stage (July to August), and dropping-harvesting stage
(September to November) according to the Crop Calendars and
Crop Progress Report published by USDA [43], [44]. Similarly,
the growth season of corn can be divided into planting-emerging
stage (April to May), silking stage (June to July), and mature-
harvesting stage (August to October). We calculated the average
of the 15 variables for different stages respectively and put the
mean values into model as independent variables. Thus, a total
of 45 variables (15 variables × 3 stages) were derived for each
year.

c) CDL mask: All remote sensing variables were masked
using the CDL data of the respective years. To use the CDL
for masking remote sensing variables and, concurrently, to
minimize the effects of mixed pixels, we used a pixel-by-pixel
proportion discrimination method [40]. First, a 1 km × 1 km
spatial grid was established within the study area. Subsequently,
the total area of the soybean (or corn) CDL pixels within each
grid cell was then calculated. Only grid cells with an area
percentage greater than 50% were selected as soybean (or corn)
dominated pixels and used to mask the remote sensing variables
[45].

d) County-level aggregation: The average of each masked
variable within county-level units was computed to match the
annual crop yields as reported in NASS. This procedure yielded
an annual set of 47 variables (45 remote sensing variables at
different stages, elevation and historical average yield) for each
county for yield prediction.

e) Developing the optimal models: The Cubist, RF, and
XGBoost models were used to fit the 47 county-level vari-
ables with the crop yield. Subsequently, the accuracy of the
models was evaluated through the “leave-one-year-out” test (as
described in Section II-C1) to select the optimal model.

f) Gridded crop yield generation: For each crop, gridded-
scale predictive variables, consistent with the administrative-
level selected predictors, were input into the optimal estimation
model [20], [21], and the gridded annual crop yield dataset,
USASoy&CornYield1km, was generated, which covered the
period from 2006 to 2021.

g) Results evaluation: We compared USASoy&
CornYield1km with statistical yield and other gridded datasets to
assess the accuracy and reliability of USASoy&CornYield1km
(See Section II-C3 for details).

3) Evaluation and Assessment of Gridded Crop Yield Data:
In this study, we employed three different methods to validate
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the reliability of the generated 1-km gridded crop yield data.
Firstly, for the USASoy&CornYield1km produced by the op-
timal model, the “leave-one-year-out” test was also used to
assess its reliability. We aggregated USASoy&CornYield1km
into county-level units and then compared them with the
yearly statistical yield [21]. In addition to R2, RMSE, and
MAE, we also calculated the relative root mean square er-
ror (rRMSE) to compare the estimation accuracy of US-
ASoyYield1km and USACornYield1 km, which are subsets of
the USASoy&CornYield1km dataset. For the aggregated results,
the rRMSE for each year was calculated as the ratio of the
year’s RMSE to the average statistical yield across all counties
[46] (1). For the raster images of the USASoy&CornYield1km,
the calculation of rRMSE was performed through the method
described by Luo et al. [47] and Wu et al. [21], as outlined
in (2). The rRMSE for each county was then assigned to the
centroids, and kriging interpolation was applied to generate a
spatial distribution map of rRMSE, masked using the CDL data
processed in Section II-C2

rRMSEstatistics =
RMSEj

Oj

× 100% (1)

rRMSEimages =

√√√√ 1

n

n∑
j=1

(
Oi,j − Ei,j

Oi,j

)2

× 100% (2)

where i is the number of administrative units, j is the year, and n
is the total number of years,Oi,j andEi,j stands for the statistical
yield and estimated yield in the ith administrative unit of year
j, respectively, and Oj is the average statistical yield across all
counties in year j.

Second, to further test the robustness and reliability of the
gridded yield data, we compared the USASoy&CornYield1km
dataset with soybean and corn yields derived from the SPAM,10

which is a commonly used global dataset for gridded crop yield
estimates [16].

Third, since the spatial resolution of SPAM data is relatively
coarse (∼10 km) and only the 2010 dataset from SPAM is
available for such a comparative analysis, we also compared
USASoy&CornYield1km with the GOSIF GPP. Gross primary
productivity (GPP) represents the total amount of carbon diox-
ide that is fixed by plants during photosynthesis, which is a
fundamental process driving crop growth and yield. Therefore,
GPP is closely related to crop yield, as it reflects the overall
photosynthetic activity and biomass accumulation of crops over
time [48], [49]. Using GPP as a validation metric allows us
to assess the consistency and accuracy of our gridded yield
estimates at a finer spatial resolution. The GOSIF GPP dataset,11

with its spatial resolution of approximately 5 km and a temporal
resolution of 8 days, offers detailed and timely insights into
the photosynthetic performance of crops [29]. By comparing
USASoy&CornYield1km with GOSIF GPP, we can evaluate
how well our crop yield estimates capture the spatial and
temporal variations in crop productivity. The long time-series

10Online. [Available]: https://mapspam.info/
11Online. [Available]: http://data.globalecology.unh.edu

of GOSIF GPP also allows for a comprehensive comparison
with USASoy&CornYield1km throughout the entirety of our
study period (2006–2021). Combining these three validation
measures, we demonstrate the accuracy and robustness of our
production results.

III. RESULTS

A. Performance of the Prediction Models

Fig. 3 presents the accuracy of yield predictions for soybean
and corn at the county level using Cubist, XGBoost, and RF.
It is evident that all models achieved satisfactory results in
county-level yields prediction. Among them, the Cubist model
slightly outperforms XGBoost and RF. In predicting soybean
yields, the Cubist model has averaged an R2 of 0.81, RMSE of
303.59 kg/ha, and MAE of 239.49 kg/ha over 16 years. In
comparison, XGBoost averages an R2 of 0.79, RMSE of 314.62
kg/ha, and MAE of 245.93 kg/ha, while RF has an R2 of 0.80,
RMSE of 314.06 kg/ha, and MAE of 245.70 kg/ha. This disparity
is even more pronounced in corn yield predictions. For instance,
Cubist achieves an average R2 of 0.80, RMSE of 987.11 kg/ha,
and MAE of 762.51 kg/ha, whereas both XGBoost and RF have
an average R2 around 0.75, with RMSE exceeding 1100 kg/ha
and MAE approaching 880 kg/ha. Consequently, we adopted
Cubist as the optimal estimation model in subsequent analysis
and employed it in the production of gridded crop yield estimates
(i.e., USASoy&CornYield1km).

B. Comparison of the Generated Gridded Crop Yield With
Observations

After aggregating USASoy&CornYield1km in county-level
units, we compared it with the observed yields, and the results
are presented in Fig. 4 (soybean) and Fig. 5 (corn), respec-
tively. It can be found that the ranges of R2, RMSE, and MAE
for soybean are 0.70–0.86, 282.36–592.85 kg/ha, and 220.34–
519.81 kg/ha, respectively, and those for corn are 0.43–0.88,
993.08–2695.78 kg/ha, and 781.58–2192.23 kg/ha. These re-
sults indicate that the accuracy of USASoy&CornYield1km
at the county level is at a high level in all years. For a fair
comparison of yield prediction accuracy between soybean and
corn, we calculated the rRMSE for both crops. Our findings
showed that soybean has a lower rRMSE range (9.4%–21.48%,
average of 13.18%) compared to corn (11.54%–38.57%, average
of 17.74%), indicating that the soybean yield prediction accu-
racy is higher than the corn. Notably, the accuracy of the yield
predictions for both crops is lowest in 2012. Coincidentally,
2012 experienced the most severe agricultural drought in the
U.S. Corn Belt since 1988. Hence, the lower accuracy in that
year may be attributed to the extreme climatic conditions, as
previously reported by other yield prediction studies [3], [40],
[42]. During the same period, corn yields reached their lowest
level since 1995, while soybean yields were also affected though
the impact was less significant. This situation aligns with the
anticipated model accuracy. In 2012, the rRMSE of the yield
prediction results for soybean and corn were as high as 21.48%
and 38.75%, respectively. In contrast, the rRMSE for both crops

https://mapspam.info/
http://data.globalecology.unh.edu
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Fig. 3. Model performance (R2, RMSE, and MAE) of county-level yields estimation for soybean (a), (c), (e) and corn (b), (d), (f) through interannual cross-
validation.

was less than 20% in other years, indicating good consistency
between the predicted yields and the observed yields [50].

C. Comparison of the Generated Gridded Crop Yield With
SPAM

To further validate the accuracy of the generated gridded
crop yield estimates, we compared USASoy&CornYield1km
with SPAM yield spatial dataset. Fig. 6(a)–(c) show the distri-
bution of soybean yields in USASoyYield1km (soybean sub-
set of USASoy&CornYield1km) and SPAM across the U.S.
Corn Belt, compared with county-level yield statistics. The
yield distribution in South Dakota is highlighted, which demon-
strates greater spatial heterogeneity along its border with neigh-
boring states, as shown in Fig. 6(a1)–(c1). The spatial dis-
tribution comparison of USACornYield1 km (corn subset of
USASoy&CornYield1km) with SPAM and county-level yield
statistics is displayed in Fig. 7. It is apparent that the spatial
distribution of USASoy&CornYield1km is very similar to the
SPAM but with enhanced capability to display more spatial
details of crop yields, and shows a high level of consistency
with the observed yield data.

Moreover, we aggregated USASoyYield1km within grid cells
corresponding to the size of SPAM pixels and conducted a
pixel-by-pixel comparison, as shown in Fig. 8(a). And the com-
parison between both datasets and statistical yields is presented

in Fig. 8(b). A similar comparison between USACornYield1
km and SPAM is shown in Fig. 9. These comparisons indicate a
high correlation between the yields in USASoy&CornYield1km
and those in SPAM, with correlation coefficients of 0.84 for
soybean and 0.78 for corn. Additionally, both SPAM and
USASoy&CornYield1km show high correlation when com-
pared with observed yields. These results suggest that US-
ASoy&CornYield1km is highly reliable at the pixel scale.

D. Comparison of the Generated Gridded Crop Yield With
GOSIF GPP

As detailed in Section II-C3, the gross primary productivity
is a vital remote sensing variable indicating vegetation growth
status and is closely related to crop yield. In this study, we
compared the GOSIF GPP with our USASoy&CornYield1km
dataset to evaluate the ability of the generated gridded crop
yield dataset to capture the spatial and temporal variations in
crop productivity. We aggregated the GOSIF GPP data dur-
ing different growth stages of soybeans and corn, and then
calculated average values within each county-level unit. This
allowed us to explore the correlation between the aggregated
GOSIF GPP results at various growth stages and the statistical
yields, as shown in Fig. 10(a). Apparently, the highest corre-
lation between aggregated GPP and annual yield is observed
during the mid-growing season (July to August for soybeans
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Fig. 4. Interannual cross-validation results of USASoyYield1km with county-level statistical yields. Note that USASoyYield1km is a soybean subset of the
USASoy&CornYield1km dataset.

Fig. 5. Interannual cross-validation results of USACornYield1km with county-level statistical yields. Note that USACornYield1 km is a corn subset of the
USASoy&CornYield1km dataset.
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Fig. 6. Yield distribution of (a) USASoyYield1km, (b) SPAM, and (c) observed yields in 2010. Panels (a1) to (c1) show zoomed-in views of the yield distribution
along the South Dakota (SD) border, where (a1) is USASoyYield1km, (b1) is SPAM, and (c1) is county-level statistical yields. Note that, due to the limited temporal
coverage of SPAM, only soybean yields from the 2010 SPAM dataset are available for comparison with USASoyYield1km.

and June to July for corn). Consequently, we compared the
mid-season aggregated GPP with the USASoy&CornYield1km
at pixel scale, using a method similar to that used with the
SPAM dataset. The comparison results, presented in Fig. 10(b),
indicate a strong correlation between the yields of the two crops
in the USASoy&CornYield1km dataset and the GOSIF GPP.
The correlation coefficients range from 0.66 to 0.87 for soybean,
with an average of 0.80, and from 0.59 to 0.83 for corn, with an
average of 0.70. The year with the lowest correlation was notably
the extreme drought year of 2012. The observed correlation
between GOSIF GPP and USASoy&CornYield1km suggests
that the reliability of USASoy&CornYield1km at the pixel scale
is not limited to the year 2010 but extends to all predicted
years, indicating a consistent level of reliability across the study
periods.

E. Spatial Patterns and Uncertainty Evaluation

Fig. 11 shows the spatial pattern of the multiyear average
values and annual distributions of USASoy&CornYield1km
between 2006 and 2021, indicating a remarkably similar distri-
bution pattern for both corn and soybean yields. For soybeans,
Nebraska recorded the highest average yield (3667.00 kg/ha),
followed by Illinois (3558.79 kg/ha) and Iowa (3517.20 kg/ha).
In the case of corn, Illinois achieved the highest average yield
of 10 579.59 kg/ha, followed by Iowa (10 547.53 kg/ha) and

Arkansas (10 410.27 kg/ha). In contrast, the states of North
Dakota, Kansas, and South Dakota showed the lowest average
yields for both soybeans and corn, with yields of 2102.58,
2526.08, 2729.40 kg/ha for soybeans, and 6173.09, 6907.28,
7152.77 kg/ha for corn, respectively. Overall, these data are
highly consistent with statistics provided by the NASS, with
an R2 of 0.97 for soybeans and 0.95 for corn, and RMSE of
218.79 kg/ha for soybeans and 345.27 kg/ha for corn. Therefore,
the USASoy&CornYield1km dataset exhibits high accuracy not
only at the county level but also at the state level. The central
region of the Corn Belt, particularly Nebraska, Illinois, and
Iowa, presents as highly productive areas for both soybeans and
corn. This may be attributed to favorable climatic conditions and
advanced agricultural techniques [51], [52].

Moreover, we evaluated the yield estimation uncertainty, with
its spatial distribution shown in Fig. 12. In more than three-
quarters of the regions, the rRMSE for soybeans is less than
15% and for corn less than 25%. The regional average rRMSE is
14.04% for soybeans and 20.49% for corn, indicating a generally
low level of uncertainty in the USASoy&CornYield1km dataset.
The uncertainty for both soybeans and corn is relatively low in
central states such as Iowa and Nebraska. High uncertainty is
distributed in North Dakota and South Dakota for both crops.
Notably, the uncertainty for corn and soybean in Missouri and
southern Illinois is comparatively high, and significantly higher
for corn than for soybeans in the same region. According to
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Fig. 7. Yield distribution of (a) USACornYield1 km, (b) SPAM and (c) observed yields in 2010. Panels (a1) to (c1) show zoomed-in views of the yield distribution
along the South Dakota (SD) border, where (a1) is USACornYield1 km, (b1) is SPAM, and (c1) is county-level statistical yields. Note that, due to the limited
temporal coverage of SPAM, only corn yields from the 2010 SPAM dataset are available for comparison with USACornYield1 km.

Fig. 8. Quantitative comparison between USASoyYield1km and SPAM. Panel (a) shows the correlation between USASoyYield1km and SPAM, and panel
(b) shows the correlation between the two and observed yields.

the crop yield distribution data published by the USDA, Illinois,
despite a major producer of soybeans and corn, has its production
mainly concentrated in the northern counties, with significantly
smaller planting areas for both crops in the southern part of
the state. In Missouri, the planting areas for both crops are
relatively small as well. This suggests that regions with smaller
crop planting areas tend to exhibit relatively higher uncertainty

[4], [21]. This pattern is also evident in the central regions of
North Dakota and South Dakota, as well as in Kansas, where the
crop planting is more scattered.

F. Importance Analysis of the Predictors

In this study, the 47 variables used for crop yield prediction
show significant variations in contributions, as illustrated by the
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Fig. 9. Quantitative comparison between USACornYield1 km and SPAM. Panel (a) shows the correlation between USACornYield1 km and SPAM, and panel
(b) shows the correlation between the two and observed yields.

Fig. 10. Annual correlation of GOSIF GPP with USASoy&CornYield1km and statistical yield. Panel (a) shows the correlation between GOSIF GPP aggregated at
different growth stages and statistical yield, and panel (b) shows the correlation between GOSIF GPP during the mid-growing season and USASoy&CornYield1km.

variable importance ranking from the optimal Cubist model (see
Fig. 13). For both soybean and corn, historical yield is the most
important variable. For soybeans, EVI during the bloom-pod
stage (July to August) has a high contribution, followed by ST1,
PPT during the same period and DEM. For corn, EVI is equally
important in both the silk and mature-harvest stages, and PDSI
also makes a significant contribution. Notably, the contribution
of DEM for soybean yield prediction is significantly higher than
for corn. The variables that contribute least to yield prediction
for both crops are the LSTs, regardless of whether it is daytime
or nighttime.

The pie charts in Fig. 13 show the relative importance of veg-
etation indices, climate data, and soil data at different stages of
crop growth. It is evident that for both soybeans and corn, climate
data contribute the least to yield prediction at every stage. For
soybeans, soil data is most influential during the plant-emerge
stage, while vegetation indices are predominant in the bloom-
pod stage. In the drop-harvest stage, the importance of both
these factors is approximately equal. In the case of corn, soil data
remains the most significant contributor during the plant-emerge
stage. However, for both the silk and mature-harvest stages,

the importance of vegetation indices surpasses that of soil data.
This pattern suggests that soil attributes have a more substantial
impact on crop yield during the early stages of growth. As the
crops enter their peak growth phase, vegetation indices become
more indicative of the final yield. While climate does affect crop
yields, it is less effective as a standalone predictor [3].

IV. DISCUSSION

A. Advancements of the Gridded Crop Yield Estimates

High-resolution crop yield distribution information can en-
hance agricultural management by facilitating optimized re-
source use and promoting environmental sustainability [19],
[53]. In this study, we proposed a statistical downscaling
framework and generated a high-resolution dataset for soy-
bean and corn yields from 2006 to 2021, known as US-
ASoy&CornYield1km, covering the primary planting regions
of the United States. This was accomplished through the inte-
gration of multisource geospatial data and advanced machine
learning techniques. Compared to other existing and publicly
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Fig. 11. Spatial distribution of multiyear average yields and annual distribution of USASoy&CornYield1km for the period 2006 to 2021. Left panels (a) and (c)
represent the spatial distribution of average yields for soybeans and corn, respectively. Right panels (b) and (d) represent the annual yield distribution for soybeans
and corn, respectively.

available crop yield datasets, such as SPAM and GDHY, the
USASoy&CornYield1km dataset has several advantages.

First, the gridded crop yield estimates generated in this study
has a high spatio-temporal resolution with a long time span.
USASoy&CornYield1km provides a spatial resolution of 1 km
and a time span of 16 years (2006–2021), which is superior
to existing public datasets. The annual temporal resolution
coupled with the long time span allows for the interannual
dynamic analysis of crop yields. By accurately downscaling
crop yield statistics from region to pixel scale, a high spatial
resolution of 1 km has been achieved, which enables US-
ASoy&CornYield1km to provide more accurate spatial infor-
mation on crop yields and reflect internal yield variability within
administrative units (e.g., counties). This approach overcomes
the limitations of traditional statistical data and low spatial res-
olution datasets in conducting spatial analysis within counties,
thereby facilitating precise monitoring of crop yields over large
areas [15], which can guide agricultural production and improve
productivity.

Moreover, the generated spatial yield dataset has a stable
accuracy. The Cubist model constructed in our study, compared
to other models, demonstrated optimal performance with high
accuracy in the “leave-one-year-out” test, ensuring the precision
of yield estimation [40], [41]. The study also incorporated four
categories of variables for crop yield inversion. By aggregat-
ing these variables at different growth stages of the crops,
comprehensive growth information throughout the season was
provided, improving the accuracy of the predictions. The high
correlation between USASoy&CornYield1km and county-level
yield statistics indicates high accuracy at the county scale;
comparisons with SPAM data demonstrate the reliability of
USASoy&CornYield1km at the pixel scale. Such stable ac-
curacy indicates that USASoy&CornYield1km can provide a
reliable basis for agricultural management and production [54].
In addition, in this study, we discriminated soybean and corn
planting areas pixel by pixel, accounting for spatial and temporal
dynamics of the crop planting conditions. This method incor-
porates richer crop planting information compared to constant
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Fig. 12. Spatial distribution of uncertainty (rRMSE, %) in USASoy&
CornYield1km. (a) Represents the uncertainty of soybean yield and (b) rep-
resents the uncertainty of corn yield.

cultivation area maps [55], better reflecting the spatiotemporal
changes in crop planting areas and thereby greatly enhancing
the accuracy of our yield estimates.

B. Generalizability and Transferability of the Method

The spatial transferability of the proposed method is a critical
aspect that determines its applicability across different geo-
graphical regions. Unlike the U.S. Corn Belt, other regions may
have different agricultural and climatic conditions and often lack
high-precision crop distribution data similar to the CDL. This
makes the spatial transfer of the method challenging. However,
inspired by the work of Hao et al. [56], who successfully
predicted crop spatial distribution in other regions using CDL as
training samples, we found that the same crop grown in different
regions of the world exhibits similar temporal growth patterns.
This similarity allows for the prediction of crop planting spatial
distribution in any region using a similar approach proposed by
Hao et al. [56]. Besides crop spatial distribution data, all the
training data used in this study can be downloaded from GEE,
covering any region globally. These data generally do not suffer

from missing values and adequately reflect the varying agri-
cultural and climatic conditions of different regions. Therefore,
the crop yield prediction method proposed in this study holds
potential for application within the existing transfer learning
framework.

Another noteworthy issue is that the CDL used in the study is
typically released in January or February of the following year.
For example, the CDL for 2023 was published in February 2024.
This means that the models built in this study can only improve
the spatial resolution of crop yield from the previous year, and
cannot directly predict crop yield spatial distribution maps with
high spatial resolution for the following year. This limitation
hinders the application of this method for in-season crop yield
prediction. However, thanks to the work of Zhang et al. [13],
who used historical CDL as training samples and employed mul-
tilayer artificial neural networks to predict the new year’s crop
planting distribution, predicting the spatial distribution before
the growing season has become possible. This study combined
historical yield statistics with remote sensing information to
construct a Cubist model that downscales the crop yield statistics
for the new year. By integrating this method with the approach
proposed by Zhang et al. [13], it may become possible to obtain
high spatial resolution crop yield distribution maps during the
mid-growing season. This would be of significant importance
for agricultural production decision-making.

C. Uncertainties and Limitations

In this study, we conducted an uncertainty analysis of the
generated crop yield estimates across the spatial domain, as
shown in Fig. 12. The results demonstrate that, for most re-
gions, the uncertainty indicated by the rRMSE is below 15%
for soybeans and less than 25% for corn. This suggests an
overall low level of uncertainty in the gridded crop yield dataset,
USASoy&CornYield1km. While USASoy&CornYield1km of-
fers considerable advantages, some limitations still exist. For
instance, areas with smaller scale and scattered crop cultivation,
such as in South Dakota, North Dakota, and Kansas, exhibit
relatively higher uncertainty in crop yield prediction. This may
be attributable to the occurrence of mixed pixels during the crop
yield prediction processes due to the different spatial resolutions
of multisource data, introducing uncertainty. Some of the mete-
orological and soil data used in our study, although commonly
used in previous studies, have a coarser spatial resolution. Mixed
pixels are inevitably generated during the prediction process and
adversely affect the accuracy of the gridded crop yield estimates.
This mixed-pixel effect has also been reported by previous yield
estimation studies [20], [21]. The use of CDL data for classifying
1 km crop planting areas may also create mixed pixels. However,
we have minimized this uncertainty as much as possible by
employing the per-pixel proportion discrimination method [45].

Furthermore, we observed that counties with higher pre-
diction uncertainty are predominantly located in the western
and southern Corn Belt, where crops experience more severe
heat and drought during the summer [6], [57]. This suggests
that the abnormal climate conditions can also impact the crop
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Fig. 13. Relative importance of predictors used in inversion of soybean (a) and corn (b) yields. The pie charts in the figure show the proportioned importance of
the vegetation index, climate data and soil data at different growth stages.

yield prediction accuracy [20]. In the various accuracy vali-
dations carried out in our experiments, the year 2012, which
was characterized by extreme drought, exhibited the lowest
accuracy (see Figs. 4 and 5). This indicates that the reliability
of USASoy&CornYield1km was negatively impacted by the
occurrence of extreme weather events. Although we have tried
to incorporate climate factors such as the drought index PDSI
to represent the impact of abnormal weather conditions on crop
yields, it appears that in the case of significant meteorological
disasters, the introduction of a few predictive factors does not
effectively improve the accuracy. This phenomenon has also
been observed in previous studies and remains an issue worthy
of further exploration.

Additionally, this study only predicted the spatial distribution
of yield for corn and soybeans. Predicting the yield distribution
for these two crops is relatively straightforward due to their
regular corn-soybean rotation pattern in the U.S. Corn Belt [58].
For other crops, especially those which are intercropped and
have complex distribution patterns within the same region [59],

although the same methods can be directly applied, the model’s
performance remains to be further explored. Despite these lim-
itations, our study still achieved satisfactory performance in
crop yield estimation (see Figs. 6–9), demonstrating fine spatial
resolution and covering a long time span.

D. Implications of the 1-km Gridded Crop Yield Dataset

The 1-km resolution crop yield dataset generated in this study
holds significant implications for both the scientific community
and local agricultural management.

For the scientific community, this dataset offers a valuable
resource for conducting detailed studies on crop yield variability,
climate change impacts on agriculture, and the development of
new agricultural models [60]. The high spatial and temporal
resolution allows researchers to perform fine-scale analyses and
understand the dynamics of crop yields at a more granular level,
facilitating more accurate forecasting and policy-making [61].
For instance, researchers can utilize this dataset to examine the
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effects of climatic factors, such as temperature and precipitation
variability, on crop yields over time, and to develop more pre-
cise models for predicting future yields under different climate
scenarios. Furthermore, this dataset can aid in improving our
understanding of the interactions between crop growth and envi-
ronmental factors, supporting the development of more resilient
agricultural systems in the face of climate change.

For local agricultural management, this dataset provides a
powerful tool to optimize resource allocation, enhance decision-
making, and improve overall productivity [62], [63]. By offering
detailed insights into yield variability within smaller adminis-
trative units, such as counties or even individual fields, farmers
and agricultural managers can identify high-yield and low-yield
areas. This enables targeted interventions, such as precision
fertilization, irrigation management, and pest control, ultimately
leading to more efficient use of resources and increased crop
yields [64]. For example, understanding yield variability at a
fine spatial scale allows for the implementation of site-specific
management practices that can address the unique needs of
different areas within a field, thereby improving productivity and
sustainability. Additionally, the long-term data can help assess
the impacts of past management practices and environmental
changes, guiding future strategies to ensure sustainable agri-
cultural development [65]. Historical yield data, in conjunction
with environmental and management information, can help in
developing adaptive management practices that mitigate the
impacts of climate variability, such as droughts or heatwaves,
ensuring food security and agricultural sustainability.

V. CONCLUSION

In this study, we developed a statistical downscaling frame-
work to generate spatially explicit crop yield estimates by
leveraging multisource environmental covariates and ensemble
machine learning methods. Using the optimal Cubist model,
we produced a soybean and corn yield distribution dataset
(USASoy&CornYield1km) for the U.S. Corn Belt from 2006
to 2021 at a 1 km resolution. The crop yield estimation model
exhibited satisfactory performance, with R2 values ranging from
0.70 to 0.89 (average of 0.80) for corn and 0.74 to 0.90 (average
of 0.81) for soybeans. Compared to other publicly available crop
yield datasets, USASoy&CornYield1km provides higher spatio-
temporal resolution and shows high spatial consistency with
county-level yield statistics. To assess the pixel-scale reliability
of USASoy&CornYield1km, we compared it with the SPAM
dataset, finding correlations of up to 0.78 for corn and 0.84 for
soybeans. Further comparison with GOSIF GPP data across the
entire study period demonstrates its capability to characterize
regional crop productivity from 2006 to 2021. Moreover, spatial
uncertainty analysis shows that the estimation uncertainty is
14.04% for soybeans and 20.49% for corn, indicating a generally
low level of uncertainty in the USASoy&CornYield1km dataset.

Overall, our USASoy&CornYield1km dataset successfully
downscaled yield data from county-level administrative units to
kilometer-scale high-resolution data, overcoming the limitations
of traditional yield statistical data that lack the capability for
spatially detailed analysis. It reflects the spatial variability of

crop yields within counties, which is beneficial for agricultural
production and further academic research.

APPENDIX

The USASoy&CornYield1km dataset generated in this study
will be shared upon reasonable request.
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