
14368 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Dual-Branch Feature Interaction Network for Coastal
Wetland Classification Using Sentinel-1 and 2
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Abstract—The combination of multispectral image (MSI) and
synthetic aperture radar (SAR) data has made certain progress
in coastal wetland classification. How to realize the interactive
fusion between the two data and make full use of their fusion
characteristics becomes challenging. However, the existing joint
classification methods neglect interaction information between fea-
tures and underutilize fusion features. Therefore, this article pro-
poses a dual-branch feature interaction network (DFI-Net) that
joins MSI and SAR data for coastal wetland classification. The
dual-branch independent structure of 3DCNN processing MSI and
2DCNN processing SAR is designed, which can effectively capture
spectral–spatial features and polarization features. In addition, we
develop two novel modules. The feature interaction fusion block is
designed to enhance the complementarity between the features of
the two kinds of data. This block employs a cross-agent attention
mechanism to realize effective interaction between MSI and SAR
features and adaptive fusion of contextual information from the
two branches. Finally, a plug-and-play module channel–spatial
transformer encode (CSTE) is proposed to improve the utilization
rate of interactive fusion data. The CSTE utilizes two parallel
transformers to deeply mine information in interactive fusion data
and explore channel–spatial features across all dimensions to the
maximum extent possible. The classification experiment is con-
ducted on the Yellow River Delta coastal wetland dataset. The
experimental results show that the overall accuracy of DFI-Net
reaches 97.03%, which outperforms the performance of other
competitive approaches. The effectiveness of DFI-Net provides a
reference method for combining MSI and SAR for coastal wetland
classification.

Index Terms—Classification, coastal wetland, data interactive
fusion, multispectral image (MSI), synthetic aperture radar (SAR).

I. INTRODUCTION

W ETLANDS, alongside oceans and forests, constitute
the three major ecosystems globally, renowned as the
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kidneys of the Earth, natural reservoirs, and treasuries of species.
Coastal wetlands, situated in the transition zone between sea and
land [1], play a crucial role in providing ecosystem services,
offering habitats for wildlife, safeguarding coastlines, and pro-
moting global economic development [2], [3], [4]. However,
due to natural and anthropogenic factors, coastal wetlands are
facing challenges, such as a reduction in scale, degradation
of ecological carrying capacity, and decline in habitat quality
[5]. Therefore, the protection of coastal wetlands is urgent, and
classification is an essential prerequisite for the better protection
of coastal wetland ecosystems.

The traditional wetland survey methods primarily rely on
manual interpretation and field surveys, which are characterized
by low efficiency, high costs, and long time cycles [6]. It is
not easy to meet the monitoring and management needs of
large-scale wetlands using these methods. Remote sensing (RS)
techniques have overcome the limitations of traditional methods,
providing significant convenience for wetland classification [7].
Especially, multispectral image (MSI) has been widely applied
to wetland classification due to its characteristics of high spatial
resolution and wide spatial coverage [8], [9], [10]. However,
using MSI alone for coastal wetland classification will face some
difficulties. On the one hand, the highly fragmented landscape
pattern of coastal wetlands leads to significant changes in the
shape and scale of land features, which increases the interclass
variability and decreases the intraclass similarity. On the other
hand, some vegetation classes have overlapping spectral re-
flectance during peak growing seasons. Similar spectral features
make it difficult to accurately identify different vegetation types
[11], [12].

Fortunately, synthetic aperture radar (SAR) is an active imag-
ing sensor that contains abundant information, such as phase,
intensity, and polarization [13], [14]. Because of the different
Earth surface information from MSI, SAR is also often used
for coastal wetland classification and mapping [15], [16]. Fur-
thermore, the ability of SAR signals to penetrate through veg-
etation canopies gives them an advantage over optical sensors
[17], [18]. Therefore, considering that SAR can be an effective
supplementary data to MSI, the combination of MSI and SAR
data has become a widely adopted method for coastal wetland
classification. In addition, the high spatiotemporal resolution
Sentinel-1 SAR (S1) and Sentinel-2 MSI (S2) collected by the
European Space Agency provide free data support for wetland
classification and monitoring [19]. Researchers have done a lot
of research on combining S1/2 (S1 and S2) data for wetland
classification [20], [21], [22].
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Typical machine learning methods, such as decision tree,
support vector machine, random forest, and Bayesian optimized
tree, were commonly used in the early stages of research for
wetland classification combining MSI and SAR data [23], [24],
[25]. Feature extraction and feature selection are also major
challenges in multisource RS wetland classification. In response
to this challenge, many scholars have carried out feature opti-
mization research to improve the accuracy of wetland classi-
fication based on traditional machine learning methods [26],
[27]. Some machine learning algorithms have been applied to
coastal wetland classification and worked well [28]. However,
traditional machine learning methods often rely on manually
designed features. Different methods will choose different fea-
tures, which can lead to bias in feature selection. As a result, the
model overly relies on these specific features, performs well on
training data, has poor generalization ability on new data, and
increases the risk of overfitting. In addition, machine learning
is prone to ignoring the correlation between features, which has
obvious limitations when dealing with features with complex
relationships.

In recent years, the application of deep learning to combine
multisource data for wetland classification has gradually become
a research hotspot. Deep learning has strong feature learning
capabilities. When dealing with complex wetland environments,
subtle differences and complex patterns that are difficult to rec-
ognize by humans can be captured without manually designing
features [29]. In addition, deep-learning models exhibit good
generalization ability. It is guaranteed to maintain high accuracy
on previously unseen test data after training. Deep-learning
methods have been proven to perform well in swamp vegetation
mapping tasks [30]. At present, the joint MSI and SAR wetland
classification model based on deep learning can be divided into
single-branch network [31], [32], [33] and multibranch network
[34], [35].

Convolutional neural network (CNN) is one of the typical
single-branch classification algorithms. DeLuncey et al. [36]
successful discriminability of the wetland categories Unet-CNN
using MSI and SAR images. However, the deep convolutional
structure consumes a lot of time on CNN and CNN cannot
capture rich global information limited by the convolution ker-
nel. Therefore, the researchers explored multimodel combined
single-branch deep-learning architectures, including the model
integrating AlexNet and generative adversarial network (GAN)
and the combination of CNN and vision transformer [37], [38].
Compared with CNN alone, multimodel combined network
can make full use of the advantages of different networks and
improve the accuracy of wetland classification, which is par-
ticularly important for capturing complex spatial relationships
and heterogeneous features in wetland classification. What
is more, the multisource transformer under a single-branch
network framework is an excellent tool for drawing wetland
maps [39], [40]. The fractional Fourier image transformer also
provides the latest idea for multisource data joint classification
of wetlands [41]. Unfortunately, the single-branch classification
algorithms do not consider the difference between MSI and
SAR data, and it is not reasonable to process data with different
information in the same way. Therefore, multibranch networks

that adopt different processing methods for different data
are gradually being proposed. Research has shown that the
multibranch structure has good application capabilities and
performs well in wetland mapping. The dual-branch network
is an effective framework for increasing the possibility of
wetland classification using both MSI and SAR data [42]. If
there are other types of data to assist in classification besides
MSI and SAR data, a three-branch network can be used. Recent
articles have demonstrated that using three-branch networks for
wetland classification has great potential [43], [44]. Whether
it is a dual-branch or three-branch network design, their
commonality is that they allow for simultaneous processing of
MSI and SAR data. They can also utilize the unique functionality
of each branch to extract features from different data to capture
heterogeneous information. Specifically, the focus of the
above methods is to design multibranch MSI and SAR feature
extraction models. In the feature fusion stage, only the extracted
effective features are directly stacked or simply concatenated,
which does not consider the interaction information between
MSI and SAR features. However, feature interaction can obtain
more discriminant fusion features, which is also important for
wetland classification using MSI and SAR data. One aspect
of feature interaction is how to design a practical feature
interaction fusion module to ensure features after interaction
fusion possess higher information richness. Another aspect is
how to realize the deep mining and utilization of interactive
fusion features.

To solve the above problems, we propose a dual-branch
feature interaction network (DFI-Net) for joint coastal wetland
classification using MSI and SAR data. First, double-branch
networks are used to simultaneously extract MSI space-spectral
features and SAR polarization features. Second, cross-agent
attention is introduced to design a feature interaction fusion
block (FIFB), which is used to cross and fuse contextual in-
formation from both branches and realize the complementary
advantages between MSI and SAR data. Then, we develop an
efficient channel–spatial transformer encoder (CSTE) module.
Through two parallel transformer encode branches, the module
deeply mines the channel–spatial information in the interactive
fusion data in a combinatorial manner. Finally, the deep features
extracted from the two branches are combined into the classifier
to obtain the classification result. The main contributions of
DFI-Net are summarized as follows.

1) In view of the difference between MSI and SAR data,
this article designs a DFI-Net that can process different
types of data simultaneously. DFI-Net readjusts the fea-
ture interaction mechanism and deep information mining
structure to better realize the feature complementarity and
information exchange between MSI and SAR data.

2) An FIFB is proposed to perform the information inter-
action of MSI and SAR features. This module takes the
features extracted from two CNN branches as inputs and
achieves cross-agent attention between MSI and SAR data
by generating self-attention on the feature map. FIFB
promotes the complementary advantages of MSI and
SAR data, which improves the expression ability of fused
features.
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Fig. 1. Illustrates the proposed DFI-Net, including the preliminary feature extraction module, FIFB, and deep mining module.

3) In order to improve the utilization of interactive fusion
data, a CSTE module is developed to mine its channel–
spatial characteristics deeply. The attention weight is gen-
erated by the channel and spatial position information, and
then the convolutional layer is fed, respectively, to gener-
ate deep channel–spatial features. The introduction of rich
deep features improves discriminability and classification
accuracy. In addition, the designed CSTE is flexible and
effective. It can be used as a plug-and-play module.

The rest of this article is organized as follows. Section II
presents the details of the proposed method DFI-Net. Section III
introduces the study area and datasets. In Section IV, the exper-
imental results are analyzed. Section V provides the discussion.
Finally, Section VI concludes this article.

II. PROPOSED METHOD

The overall network of DFI-Net for coastal wetland classifi-
cation using MSI and SAR data is shown in Fig. 1. It consists of
four parts.

1) The 3D–2DCNN, preliminary feature extraction for MSI
and SAR.

2) FIFB achieves complementary advantages between MSI
and SAR data through feature interaction and fusion.

3) CSTE for deep mining of channel–spatial information in
interactive fusion data.

4) Classifier, which inputs synthetic features into the classi-
fier to obtain a classification map.

A. MSI and SAR Feature Extraction Via CNNs

CNN is one of the most famous deep-learning algorithms,
which can automatically learn local features and texture infor-
mation in RS images. It is very effective for 2-D RS data. In
addition, 3DCNN has been shown to have a unique advantage
in processing 3-D RS data by utilizing spectral–spatial infor-
mation simultaneously. Therefore, in the proposed network,
3DCNN and 2DCNN double-branch structures are used to

extract spectral-space features from MSI data and polarization
features from SAR data, respectively.

As shown in Fig. 1, the proposed dual-branch CNN network
has a simple and shallow structure. Extract discriminative spatial
and spectral features from MSI data using 3DCNN. Each MSI
patch cube XP

M of size s × s × b is used as the input training
data for the Conv3-D layer. In the Conv3-D layer, the size of the
convolution kernel is set to 64@1× 1× 1. After the convolution
operation, 64 2-D feature maps can be generated.

Unlike MSI processing, 2DCNN is used to extract polariza-
tion features from SAR data. Each SAR patch cube XP

S of size
s × s serves as the input to the Conv2-D layer. In this layer, the
size of the convolution kernel is set to 64@5 × 5. To regularize
and accelerate the training process, the batch normalization layer
and rectified linear unit layer are continuously applied after the
convolutional layer.

B. Feature Interactive Fusion Block

The complementary information between MSI and SAR can
be captured through feature interaction. Cross attention can
interactively process different types of data [45]. Agent attention
has the advantages of both linear complexity and high expres-
siveness [46]. Inspired by the above two types of attention, we
design a new cross-agent attention called FIFB, as shown in
Fig. 2. Specifically, it consists of two steps. The first step is to
generate agent token A using the features of one type of data as
the main feature and perform attention calculation between key
K and value V generated by the features of another type of data.
This step aggregates two heterogeneous features to obtain the
agent feature VA. The second step is to use A as the key and VA

as the value to perform the second attention calculation using
the query Q generated by the main features. In our network,
there are two FIFBs. The features of MSI and SAR data are
sequentially used as the main features of the interaction fusion
module. After obtaining the two interaction fusion results, they
are added together to get the final interaction fusion feature.
This module enables efficient interaction between MSI and SAR



XU et al.: DUAL-BRANCH FEATURE INTERACTION NETWORK FOR COASTAL WETLAND CLASSIFICATION USING SENTINEL-1 AND 2 14371

Fig. 2. Overview of the FIFB.

features and adaptive fusion of the two branches. It is worth
noting that agent attention has been applied for the first time
in wetland classification tasks. Next, we will provide a detailed
introduction to the implementation process of FIFB.

First, we select F1 as the main feature and obtain Q through a
linear project. Then, the pooling strategy is further used for Q to
obtain A. The K and V are obtained through the linear project
using another feature F2. The process can be represented as
follows:

Q = Wq F1, K = Wk F2, V = Wv F2 (1)

A = pool (Q) (2)

where Wq , Wk, and Wv are the learnable weights, and pool(·)
represents the pooling operations.

Next, we feed Q, A, K, and V into the agent attention
mechanism to calculate the interactive fusion result T . Agent
attention consists of two parts of operations: agent aggregation
and agent broadcast. The agent aggregation operation treats the
A as a query and performs attention calculations among A, K,
and V to get the VA. In agent broadcast operation, A is used
as key and VA as value, and Q is used for the second attention
calculation to obtain the output AT . The essence of this process
is that the newly defined agent token A acts as Q, aggregates
global information from K and V , and then broadcasts it back
toQ. Finally, theAT is connected with the input main featureF1

to obtain the T . The calculation process is expressed as follows:

T = Cat
(
σ
(
QAT

)
σ
(
AKT

)
V, F1

)
(3)

where σ(·) represents the softmax function, and Cat(·) repre-
sents the connection of each channel.

We obtain TM
S and TS

M for MSI and SAR data through FIFB,
respectively. Add them together to get the final interaction fusion
feature Tend, as shown in the following formula:

FMSI as F1

FSAR as F2

}
⇒ TM

S

FSAR as F1

FMSI as F2

}
⇒ TS

M

Tend = TM
S + TS

M . (4)

C. CSTE Module

To further improve the utilization rate of Tend, we design a
new form of transformer encoder module-CSTE, inspired by
channel and position attention [47]. The detailed structure is
shown in Fig. 3. CSTE consists of two parallel channel trans-
former encoder and spatial transformer encoder, which are used
to mine deep channel–spatial information of interactive fusion
data. The first innovation is to introduce a deep convolutional
layer between attention through residual connection. The second
innovation is to integrate two transformer encoders into a unified
module. CSTE first calculates the weight distribution of inter-
active fusion data through attention, in order to capture global
contextual information. This step ensures information integrity
and contextual relevance during the deep feature mining process.
Then, add a convolutional layer after the attention mechanism.
The embedding of the convolutional layer enhances the ability
to represent local details. The parallel connection structure of
CTE and STE can simultaneously focus on spatial and channel
information, and the extracted deep features are comprehensive
and accurate. Specifically, the design of the CSTE approach
has strong flexibility and can be seamlessly integrated into the
existing deep-learning models.

1) Spatial Transformer Encode: As shown in Fig. 3, the
spatial transformer encoding (STE) consists of a spatial posi-
tion attention module (PAM) and deep convolution. A residual
skip connection is designed before the PAM block and deep
convolution. Precisely, PAM attention mechanisms combined
with convolution operations can capture global–local informa-
tion between different positions to enhance feature expression
capabilities. Residual connections help the model train more
stably. The following is the implementation of STE.

The interaction fusion featureTend ∈ R
C×H×W generates two

new feature maps E and F through a convolutional layer, where
{E, F} ∈ R

C×H×W . Then, through the reshape operation, the
E and F shapes are changed to R

C×N , where N = H ×W ,
representing the number of pixels. After matrix multiplication
of E and F , the softmax layer is applied to obtain the spatial at-
tention map S ∈ R

N×N . The calculation process is represented
as follows:

Sji =
exp (Ei · Fi)∑N
i=1 exp (Ei · Fj)

(5)

where Sji represents the influence of the ith position in a pixel
on the jth position. If the features of two pixels are similar, this
value represents their correlation strength.

While generating the E and F feature maps, input the Tend

into the convolutional layer to generate a new feature map D ∈
R

C×H×W . And reshape it as a tensor of RC×N . After obtaining
the new tensor, perform matrix multiplication with the transpose
of S and reshape the result as the feature map of RC×H×W .

After calculating the feature map, it is multiplied by learnable
parameters α and added to the residual of the Tend to obtain the
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Fig. 3. Detailed structure of the CSTE module.

output L ∈ R
C×H×W , which is represented as follows:

Lj = α
N∑
i=1

(SjiDi) + Tendj . (6)

Finally, a deep convolution layer is introduced and connected
with L residual to obtain the final output U ∈ R

C×H×W , which
is expressed by the equation:

U = Conv2D (L) + L (7)

where Conv2D(·) represents the 2-D convolution operation.
2) Channel Transformer Encode (CTE): The CTE consists

of a channel attention module (CAM) and deep convolution. As
shown in Fig. 3, residual skip connections are also designed
before the CAM block and deep convolution. Unlike PAM,
CAM directly calculates the channel attention map G ∈ R

C×C

in Tend ∈ R
C×H×W .

First, the Tend is reshaped from R
C×H×W to R

C×N . Then,
vector operations are performed on Tend and its transpose. At
last, the softmax activation function is used to obtain the channel
attention mapG ∈ R

C×C . The process is represented as follows:

Gji =
exp (Tendi · Tendi)∑C
i=1 exp (Tendi · Tendj)

(8)

whereGji represents the influence of layer i feature map channel
ith on layer j feature map channel jth.

Next, vector operations are performed between G and the
transpose of Tend, followed by reshaping the result to R

C×H×W

using reshape. The resulting tensor is combined with a scaling
parameter β and then undergoes elementwise residual sum-
mation with the Tend to obtain the output I ∈ R

C×H×W . The
calculation process is represented as follows:

Ij = β
c∑

i=1

(Gji · Tendj) + Tendj . (9)

Finally, we introduce a deep convolutional layer and make
residual connections with I to obtain the final output V ∈
R

C×H×W . It can be expressed as follows:

V = Conv2D (I) + I. (10)

D. Classification Module

The output of the CSTE is fed into the multilayer perceptron
(MLP) layer. The MLP has two linear layers with Gaussian
error linear unit (GELU) operations implemented by the fully
connected (FC) layer. GELU in MLP is a standard function
defined as follows:

GELU (V ) = V Φ (V ) =
V

2

[
1 + erf

(
V√
2

)]
(11)

where Φ(V ) represents the standard Gaussian cumulative dis-
tribution function, erf(V ) =

∫ V

0 e−t2dt. The MLP module is
summarized as follows:

MLP (V ) = FC2 (GELU (FC1 (V ))) . (12)

After MLP, a global average pooling and FC layer are used to
obtain the final classification result.

III. STUDY AREA AND DATASETS

A. Study Area

The Yellow River Delta is located in the northeast of Shandong
Province, China, between Bohai Bay and Laizhou Bay. It is
an alluvial plain formed by the sediment of the Yellow River
in the Bohai depression. The Yellow River Delta boasts the
world’s largest, best-preserved, and youngest coastal wetland
ecosystem. This study selects the estuary of the Yellow River
Delta as the research area, as shown in Fig. 4.

This area is located at midlatitude and belongs to a temperate
continental monsoon climate with four distinct seasons. The
average annual temperature is about 12.9 °C, and the average
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Fig. 4. (a) Overview of the study area. (b) Pseudocolor image for MSI (R, Band8; G, Band4; and B, Band3) in Yellow River estuary.

yearly precipitation is 560 mm. In the study area, vegetation
coverage is high, and wetland vegetation types are abundant. The
main wetland vegetation types are natural vegetation, such as
tamarix chinensis, suaeda salsa, phragmites communis, willow
forests, and exotic species spartina alterniflora. Different types
of vegetation may have similar spectral characteristics or spatial
distribution, which makes the identification and classification of
vegetation communities relatively difficult.

B. Datasets Description

1) Sentinel-1/2 Datasets and Preprocessing: The sentinel
series data are powerful and freely available RS data from the
existing satellite images, known for their high spatial resolution,
good spectral quality, and easy accessibility. S1 and S2 are the
source guarantees for SAR and MSI data in wetland classifica-
tion tasks and can be downloaded for free from the European
Space Agency’s Copernicus Open Access Center.

S1 operates at a C-band wavelength (centered around 5.55 cm)
with an orbital altitude of 700 km and a revisit period of 6
days. We acquired the S1 interference wide field ground-area
detection level-1 backscattering coefficient product for 2021.
First, S1 data are preprocessed using the SNAP platform, which
includes track correction, thermal noise removal, radiometric
calibration, refined Lee filtering, terrain correction, and crop-
ping. Second, the difference and ratio of VV and VH bands
are calculated.

The S2 imaging has a width of 290 km and covers 13 spectral
bands, which are divided into visible light, near infrared, and
shortwave infrared. We got S2 MSI level-2A products for 2021.
First of all, we perform resampling and cropping preprocessing
operations on the S2 data. Second, ten widely used bands for
wetland classification were selected according to research needs,
namely B2, B3, B4, B5, B6, B7, B8, B8a, B11, and B12 [48],
[49]. After resampling the MSI and SAR images to a spatial
resolution of 10 m × 10 m, we performed georeferencing to
unify the projection coordinate system into WGS-84 UTM Zone

50N. The S1 and S2 data information used in the experiment is
shown in Table I.

2) Ground Truth (GT): In August 2023, the research group
went to the Yellow River Delta to carry out a field investigation.
The location of accessible sample points is recorded using the
global positioning system (GPS) and the photographs of the
site are taken. In areas inaccessible to personnel, UAR aerial
photography is used to conduct surveys and identify vegetation
species through visual interpretation. Eight types of wetland
cover were divided into salt soil, natural willow forest, spartina
alterniflora, reed, tamarisk, cultivated land, water body, and tidal
flat. At the same time, by combining historical data and Google
Earth image, manual interpretation of MSI image is performed
to complete the drawing of GT. The S1, S2, and GT of the study
area together constitute the Yellow River delta coastal wetland
dataset (YRCWD), as shown in Fig. 5.

The research area is 2048 × 2048 pixels. After removing
background pixels, 2 440 523 samples are retained. Randomly
select 0.5% of the samples from each category for training
and validation, with a 1:1 ratio of training and validation. The
remaining samples are used for testing. Detailed information
about the samples used for training, validation, and testing for
each class can be found in Table II.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

1) Implementation Details: To ensure experimental fairness,
all methods are implemented on the deep-learning framework of
PyTorch 1.13.1, and use NVIDIA GeForce RTX 3060 GPU, Intel
Core i5-12490F CPU, and 16-GB RAM platform for training.
For the training phase, the batch size and the number of training
periods are set to 128 and 200, respectively. The loss function
uses CrossEntropy. The Adam algorithm is chosen as the initial
optimizer to optimize the network.

2) Evaluation Metrics: To evaluate the classification perfor-
mance of the proposed network and other existing models, calcu-
late three commonly used evaluation metrics, including overall
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TABLE I
DETAILED INFORMATION ON S1 AND S2 DATA

Fig. 5. YRCWD. (a) RGB illustration of S2 image (MSI). (b) Grayscale VH band illustration of S1 image (SAR). (c) GT.

TABLE II
NUMBER OF TRAINING, VALIDATION, AND TESTING SAMPLES FOR THE YRCWD

TABLE III
CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS ON THE YRCWD

accuracy (OA), average accuracy (AA), and kappa coefficient
(K). For each indicator, a higher value indicates a more accurate
classification.

B. Comparison Methods

Compare with several advanced and representative classifi-
cation methods to verify the effectiveness and superiority of
DFI-Net on YRCWD. The comparison methods include a CNN-
based 3-D deep learning (3DCNN) [50], a residual spectral–
spatial attention network (RSSAN) [51], an attention-based
bidirectional long short-term memory network (ABLSTM) [52],

a transformer-based backbone network named spectral for-
mer (Speformer) [53], a group-aware hierarchical transformer
(GAHT) [54], HCTNet [55], and extended vision transformer
(ExViT) [56]. Considering that 3DCNN, RSSAN, ABLSTM,
Speformer, and GAHT are only developed for single-source
data classification, MSI and SAR are concatenated into a cube
as their inputs. All of the experiments are repeated five times,
and the average results with standard variations are reported.
Table III lists the OA, AA, and K of each classification method
on YRCWD (bold values represent the optimal classification
accuracy under the same evaluation criteria).
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TABLE IV
ABLATION ANALYSIS EXPERIMENT IN YRCWD

The evaluation data show that the proposed DFI-Net achieves
the highest OA, AA, and K in classification tasks, demonstrating
superior performance. Compared with 2DCNN, 3DCNN
simultaneously extracts channel–spatial features, which is
more 1-D than 2DCNN. The OA value of this classification
method is only 94.58%, which almost cannot classify natural
willow forest, and the classification effect is poor. RSSAN
designs spectral attention module and spatial attention module
and embeds them into residual structure. Compared with
3DCNN, the OA improvement rate is 1.46%. The OA values of
ABLSTM and Speformer are not much different from those of
3DCNN, which are 94.78% and 94.97%, respectively. GAHT
uses the GAN model to show good classification performance
and classification accuracy, with OA up to 96.53%. Apart
from GAHT, the OAs of the MSI and SAR joint classification
models HCTNet, ExViT, and DFI-Net are all higher than those
of 3DCNN, RSSAN, ABLSTM, and Speformer, which use
single-source data as input. This indicates that the model with
branch architecture is more suitable for MSI and SAR joint
classification tasks. Furthermore, DFI-Net achieves an OA
value of 97.03%, which is 2.45% higher than that of 3DCNN
(i.e., 94.58%), 0.99% higher than that of RSSAN (i.e., 96.04%),
2.25% higher than that of ABLSTM (i.e., 94.78%), 2.06%
higher than that of Speformer (i.e., 94.97%), 0.5% higher than
that of GAHT (i.e., 96.53%), 0.54% higher than that of HCTNet
(i.e., 96.49%), and 0.69% higher than that of ExViT (i.e.,
96.34%). It can be seen that the proposed DFI-Net exhibits the
most competitive classification accuracy. In particular, DFI-Net
takes the lead in the classification accuracy of various categories,
which is confirmed by the calculation results of AA and K.

For the sake of intuitive analysis, the final classification dia-
gram of all methods on the Yellow River coastal wetland dataset
is shown in Fig. 6. Due to the large size of the scene, select a rep-
resentative area to zoom in to investigate and highlight the details
of the classification results of different methods. Compared with
other methods, DFI-Net provides the classification map closest
to the GT map. The visualization results of DFI-Net classifi-
cation maps have the characteristics of less misclassification,
low noise, accurate edges, and smooth effects. The reason why
the proposed method achieves superior classification results is
due to the complementary advantages of MSI and SAR features
and the maximum utilization of spatial–channel information in
interactive fusion features.

C. Ablation Study

Since the proposed network benefits from multiple compo-
nents, we analyze the necessity of each component and its

contribution to classification accuracy through a series of ab-
lation experiments. In detail, the proposed network is mainly
divided into three parts: 3D–2DCNN for feature extraction,
FIFB for feature interaction fusion, and CSTE for mining deep
channel–spatial information.

As we can see in Table IV, DFI-Net outperforms all its variants
(bold values represent the optimal classification accuracy under
the same evaluation criteria). In Case 1, the 3D–2DCNN com-
ponent was removed and the original MSI and SAR data were
taken directly as inputs. Compared with Case 4, the OA value of
this variant decreased by 1.01%, which verified the significant
effect of the convolutional module in the initial stage of feature
extraction. This indicates that the spectral–spatial features ex-
tracted by 3D–2DCNN from the raw data are effective. Case 2
removed FIFB, and OA was 0.17% lower than the optimal value.
Compared with Case 4, although OA decreased only slightly,
AA value significantly reduced by 2.52%. This suggests that
feature association is promoted in interactive fusion, and the
classification accuracy of various ground objects is improved.
Case 3 achieved 95.99% OA without the CSTE component,
which is 1.04% lower than Case 4. This shows that DFI-Net
benefits from CSTE and improves the accuracy of the model
under the condition of deep information of interactive fusion
features. The ablation analysis further confirms the effectiveness
of the proposed network framework, showing that all of its
major components are important and indispensable. Through
this combination, DFI-Net achieves state-of-the-art performance
in the joint classification task of MSI and SAR data.

V. DISCUSSION

A. Sensitivity Analysis of Different Patch Sizes

In practical processing, patch size determines how many
surrounding pixels are used to classify center pixels, which
is a basic parameter that affects classification performance.
Although smaller patches can capture fine-grained details, they
require additional contextual information to accurately classify.
In contrast, larger patches contain more contextual information
but require more computing resources. It is crucial to conduct
experiments to determine the optimal patch size, which can en-
sure computational efficiency and improve model classification
performance. So, we conduct a series of experiments. Change the
patch size of the input image from small to large and observe
its impact on classification accuracy. We test several different
patch sizes {3×3, 5×5, 7×7, 9×9, 11×11}, and the OA and
time changes are shown in Fig. 7.
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Fig. 6. (a) GT. (b) 3DCNN. (c) RSSAN. (d) ABLSTM. (e) Speformer. (f) GAHT. (g) HCTNet. (h) ExViT. (i) Proposed. (j) Legend.
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Fig. 7. Influence of different patch sizes on the OA and time.

Fig. 7 shows the impact of different patch sizes on the OA and
processing time on YRCWD. The results show that, as the patch
size increases from 3 to 9, the OA steadily increases from 96.00%
to 97.23%. Increase the patch size to 11, the accuracy is not
significantly improved. Furthermore, increase to 13, OA shows a
downward trend. During the whole process, the processing time
increases from 6.48 min to approximately 21.17 min, showing
a linear growth trend. Further analyzing the patch size increase
from 7 to 9, the 0.2% increase in accuracy pays a time cost of
up to 3 min. Therefore, compared with the 9 × 9 patch, the 7 ×
7 patch is better.

The reasons for the first increase and then decrease of OA
are analyzed. When the patch size is small, the model may find
it challenging to capture the context information of the image.
As a result, the model may be unable to fully comprehend the
image features, leading to reduced classification accuracy. With
the gradual increase of patch size of the input image, the model
can obtain more context information and image details, thus
improving the classification accuracy. However, when the patch
size is too large, the redundant information in the patch can
affect the discriminability of the central pixel, thereby reducing
experimental performance. As for training time, a slow increase
followed by a rapid increase is observed. Patch size that is
too large can lead to problems of dimensionality explosion
and insufficient computational resources for the model, which
make both training and inference difficult and, thereby, increase
training time.

In summary, the change in patch size significantly affects the
classification accuracy. Appropriately increasing the patch size
can improve the classification performance, but a patch size that
is too large will lead to information redundancy and calculation
burden. Therefore, in order to balance model accuracy and
calculation overhead, we set the patch size to 7 × 7.

B. Robustness Analysis of Different Numbers of Training
Samples

In wetland classification, increasing the number of training
samples cannot only reduce the data imbalance but also improve
the learning and generalization ability of the model. However,
more training samples lead to longer training times. Therefore,

Fig. 8. OA of different methods with different numbers of training samples
per class.

achieving a balance between performance and training time with
an appropriate sample size is important for optimizing wetland
classification models. To verify the stability and generalization
ability of the proposed method, we compare the classification
performance of all methods under different training sample
ratios. The 0.15%, 0.25%, 0.5%, 0.75%, and 1% of each sample
are randomly selected as the training data of YRCWD. Fig. 8
shows the OA results for the different classifiers.

As can be seen from Fig. 8, the more training samples there
are, the higher the classification accuracy of the model. The
classification performance of all models is positively correlated
with the number of training samples. Compared with several
reference methods, the proposed DFI-Net maintains the best
classification performance in the whole sample size range. Even
in the case of limited training data, it still has the highest classifi-
cation accuracy. The OA of GAHT and HCTNet is slightly lower
than that of DFI-Net. ExViT is close to the OA of GAHT and
HCTNet at higher training ratios (0.75% and 1%). ABLSTM and
3DCNN performed poorly in OA compared with other methods,
especially 3DCNN performs the worst at low training ratios.
Most models improve significantly when the training ratio goes
from 0.15% to 0.25%, which we consider 0.25% as the critical
training ratio.

VI. CONCLUSION

In this article, a dual-branch network based on feature inter-
action is designed for the joint classification of coastal wetlands
using MSI and SAR data. FIFB realizes feature interaction and
fusion from different data, which weakens the feature differ-
ences between MSI and SAR and promotes information balance.
The CSTE module fully mines channel–spatial features in the
high-dimensional space after interactive fusion. It enhances the
expression ability of MSI and SAR fusion features and improves
the overall classification accuracy. A series of experiments are
conducted on the YRCWD. DFI-Net has better classification
performance than the comparison model. For future work, the
domain adaptive method is considered to be introduced into the
model to realize cross-scene classification tasks for coastal wet-
lands. It can solve difficulties, such as the high cost of collecting
labeled samples and inconsistent collection conditions.
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