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WSMsFNet: Joint the Whole Supervision and
Multiscale Fusion Network for Remote Sensing

Image Change Detection
Bin Wang , Xiaohu Jiang , Pinle Qin , and Jianchao Zeng

Abstract—Remote sensing image change detection aims to ex-
tract high-level semantic feature to identify the changed areas
(CAs) between dual-temporal images (DTIs). However, the diver-
sity in the CA shape and size poses certain challenge to the change
detection (CD) task. Besides, different illumination conditions in
the same scene of the DTI further increase the CD difficulty. In
response to these above issues, this article proposes a multiscale
feature fusion CD network-WSMsFNet, which fully utilizes the
local and global information of multiscale features to achieve com-
prehensive representation of the change scene. In addition, the
network improves the feature extraction ability of each module
through the whole process supervision loss function. First, the
network hierarchically extracts different scale information of the
two temporal RS. Then, special information enhancement and
fusion modules are constructed for various feature layers (i.e., the
same level, adjacent level, and global features), aiming to enhance
the local feature representation ability and contextual information
relevance of the deep network. Finally, the whole-process loss
function is set to supervise the intermediate layer learning, which
can effectively enhance the feature representation ability and guide
feature extraction direction of each module. Experiments have
shown that the WSMsFNet has achieved significant results in both
qualitative and quantitative indicators.

Index Terms—Change detection, convolutional neural network
(CNN), multiscale feature (MSF) fusion, the whole process
supervision, transformer.

I. INTRODUCTION

R EMOTE sensing image change detection (RSCD) aims to
understand the differences between images of the same
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Fig. 1. Multiscale change regions and CD results of DTIs. According to (a)
and (b), light disturbance does increase the difficulty of RSCD. Therefore, deep
semantic information needs to be extracted to achieve high-precision change
identification. According to (c) and (d), the shape and size fluctuation range
of RSCD is indeed significant, involving multiple scale features. Besides, it
can be seen from lines 2–3 that some CD regions show certain correlation in
spatial context, reflecting the importance of global features in CD. (a)T1. (b)T2.
(c) GT. (d) Ours.

area at different times and mark these changed areas (CAs) [1].
It has been widely used in fields such as urban expansion
analysis, disaster assessment, military strikes, and vegetation
cover detection [2], [3], [4], [5]. At present, the change detection
(CD) field is experiencing the following challenges, as shown in
Fig. 1: 1) the shooting conditions in different periods (such as
illumination, season, etc.) may cause varying degrees of interfer-
ence to intelligent models (even humans) in judging whether the
scene has changed; and 2) the change range about CA attributes
such as the size, shape, and quantity is relatively large. Therefore,
this article intends to study the CD network based on multiscale
feature (MSF) fusion, aiming to extract high-level semantic
feature (HLSF) to bridge the semantic gap caused by noise
disturbances such as lighting, and achieve accurate identification
for interest change regions.

Traditional CD methods can be roughly divided into
three categories [6]: 1) image arithmetic-based; 2) image
transformation-based; and 3) postclassification methods. Image
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arithmetic-based methods include image differencing, image
ratioing, Change Vector Analysis, etc. They usually first uses
relevant arithmetic (e.g., subtraction or division) to obtain fea-
ture maps, and then distinguish CA and unchanged area (UA)
information through segmentation thresholds. Obviously, seg-
mentation threshold may be the difficulty and key point for such
methods. Image transformation-based methods include Princi-
pal Component Analysis, Multivariate Alteration Detection, etc.
They transform these images into specific feature spaces, and im-
prove the CD accuracy by highlighting the CA and suppressing
the UA. The postclassification methods first classify the target
objects of DTIs, and then compare and analyze the classification
results to generate CA. Obviously, that accuracy depends on the
classification accuracy. Therefore, the cumulative error effect
gradually becomes more severe.

The development of machine learning has improved the CD
effect to a certain extent [7], [8], such as supporting vector
machine, random forest, etc. However, the selection of relevant
methods and the model generalization ability cause challenges
for practical applications when facing different scenarios.

Deep learning (DL) have been widely used in CD tasks and
have shown good performance due to their powerful feature ex-
traction and nonlinear representation [9], [10], [11]. Intrinsically,
this is attributed to various deep networks that can break through
the surface interference of change noise, mine HLSF about the
interest region, and achieve intelligent target recognition.

According to the feature map extraction and fusion, the
DL-based CD framework can be roughly divided into three
categories [12], [13]: 1) early fusion; 2) late fusion; and 3)
multilevel feature fusion (i.e., correlation fusion). The early
fusion-based CD deep networks cascade the input DTIs at the
beginning, and perform feature extraction, encoding, decoding,
and other operations to obtain the final CD result. The late-stage
methods often adopt a dual-stream structure to extract deep
features of the original images, then perform feature fusion
and pixel classification. However, the abovementioned methods
clearly lack hierarchical interaction and global representation
of MSF depth features, which is definitely not conducive to the
extraction of HLSF for CD. Recently, more research efforts have
been dedicated to extracting deep information through Siamese
CNNs (SCNNs) and fusing corresponding layer features to
determine CAs [14], [15]. This is known as the multilevel feature
fusion-based CD method. Obviously, these nets can effectively
integrate shallow features (e.g., target texture, corner, edge,
etc.) and deep semantic information (e.g., image content and
semantic concept), alleviating or even eliminating the semantic
gap between various levels to improve CD performance.

At present, the common multilayer feature fusion can be
roughly categorized into two ways: 1) same scale; and 2) mul-
tiple different scales synchronous fusion. Same-scale features
share the most direct correlation in terms of pixel positions and
are the simplest to realize, such as direct addition, subtraction,
or cascading [16], [17], [18], [19]. However, this oversimpli-
fied fusion model is hardly able to bridge the semantic gap
between different features to extract their effective informa-
tion. For this reason, several studies have been conducted to
recognize changes of interest occurring in dual-temporal RS

images through CNN-based attention mechanisms (e.g., spa-
tial, channel). To ensure feature consistency across bitempo-
ral images, Peng et al. [20] made some modifications to the
channel attention mechanism. Chen et al. [21] used spatial
and channel graph convolution networks to effectively explore
the dual temporal image features relationship. Although they
all may learn the correlation between feature maps in a fixed
neighborhood, the limited sampling scope makes it impossible
to characterize long-distance information relations. Recently,
some studies have achieved contextual modeling in both spatial
and temporal scales through the Transformer, which effectively
improves the global properties of RSCD. Luo et al. [22] filtered
out redundant information through residual Transformer and
focused on changing features. Mao et al. [23] fed multiple edge
features to the Transformer and constructed a high-frequency
cues guidance module. Huang et al. [24] designed dense cross
spatial attention to capture long-range dense spatial interac-
tions. For MSF fusion, researchers often realize them based on
pyramids or U-Net and its variants [25], [26], [27], [28], [29].
However, the fusion approach that only consists of CNN still
leads to its inability to develop global dependencies [30], [31].
In addition, the relevant features in the RSCD are not exactly the
same but roughly similar, so the information embedded in the
neighboring feature layers needs to be mined deeply. However,
this element has been neglected by most research works. Feng
et al. [32] combined spatial and channel attention to extract local
correlation information from adjacent scale feature maps. In this
article, we will explore the potential relationship among features
and integrate their valuable information from the same-scale,
adjacent-scale, and multiscale, and focus on the global-local
association information modeling at each stage.

Furthermore, most DL-based CD networks only impose loss
functions between the prediction and label ends, such as cross-
entropy, dice loss, contrastive loss, and their simple linear combi-
nations. However, many experiments have shown that multilevel
supervision oriented towards the training process is beneficial for
improving model convergence and detection performance [33],
[34], [35]. Therefore, it is quite meaningful to conduct in-depth
research on the entire supervision about the model training.

To address the aforementioned issues, we construct a hier-
archical MSF fusion DL architecture for RSCD-WSMsFNet
as shown in Fig. 2, aiming at extracting multiscale HLSFs
to identify whether the scene has changed. Then, the same-
level difference feature enhancement module (SLDFEM) and
cross-scale adjacent level feature fusion module (CSALFFM)
are proposed to improve contextual relevance of local features.
Furthermore, WSMsFNet further extracts global dependencies
between DTIs based on cross-attention mechanism by multiscale
global feature fusion module (MSGFFM). Finally, the fully
supervised loss function is deliberately designed for alleviating
gradient vanishing and enhancing the recognition power of
module feature extraction.

The main contributions of this article are as follows.
1) Targeting the uncertainty and underlying contextual rela-

tions of CAs in bitemporal RS images, this article proposes
the CD deep network WSMsFNet based on MSF fusion
and Transformer variants.
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Fig. 2. Overall architecture of the WSMsFNet. The SLDFEM is designed to enhance and fuse effective information of the same-layer features with consistent
size. The CSALFFM is proposed to promote the correlation between neighboring feature map. The MSGFFM has effectively achieved long-distance relationship
modeling for various depth features through transformer. Those outputs of the above three modules are compared with the labels obtained by downsampling GT
to achieve full process supervision.

2) To achieve comprehensive MSF merging, we have devel-
oped modules for same scale layer, adjacent variable scale
layer, and multiple different scale layers to implement
feature integration and strengthening. Moreover, each fea-
ture convergence synchronously takes into account local
feature extraction and contextual global modeling to guar-
antee the effectiveness of feature refinement.

3) To ensure the correctness and efficiency of feature learn-
ing, the whole-procedure supervision paradigm has been
utilized to orient the model main intermediate feature ex-
traction, which is designed to achieve a supervised training
process for each multiscale fusion module learning by
cropping the original labels.

The rest of this article is organized as follows. Section II
briefly describes related work, Section III mainly describes the
model architecture and details, Section IV focuses on the exper-
iment, Section V provides a summary, and Section VI discusses
the results and reflects on the implications and limitations of the
work. Finally, Section VII concludes this article.

II. RELATED WORK

A. CNN-Based CD Models

With the advancement in HRRS, the fine and complex texture
of land objects pose new challenges for traditional CD methods.
Fortunately, the excellent big-data processing capability of DL
provides the possibility to solve this problem, and its most widely
used is no different from CNNs.

Numerous researchers have developed CD models based on
the Full Convolutional network and Unet, such as FC-EF [36],
FC-Siam-conc [36], FC-Siam-diff [36], EUNet-CD [37], MTL-
CD [38], etc. In addition, another mainstream of CNN-based
CD networks is Siamese networks, such as BESNet [39],
ECFNet [40], and MCDnet [41], etc. These models employ
the dual-stream architecture to extract deep features from dual-
temporal remote sensing image (DTRSI) and strengthen relevant
features to obtain CD results.

To explore the temporal correlation of feature tensors, some
researchers have proposed CD models incorporating Long Short
Term Memory networks, such as EGRCNN [42] and ML-
EDAN [43], etc.

Notably, to enable CNNs can accurately focus on important
features and suppress anothers, researchers have proposed CD
networks based on attention mechanisms, including channel,
spatial, and self-attention mechanisms, such as EUNet-CD [37],
FHD [44], and ASGF [45], etc. These methods mainly achieve
feature reweighting in various ways (e.g., channel, spatial, and
correlation) to highlight informative features and ultimately
enhance the CD performance.

B. Transformer-Based CD Models

Because of its ability to model global context information
excellently, the Transformer has been rapidly introduced into
computer vision from natural language processing, includ-
ing image classification [46], [47], segmentation [48], object
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detection [49], [50], super-resolution [51], denoising [52], video
detection [53], and tracking [54], [55].

Correspondingly, the Transformer has also attracted exten-
sive research attention about CD Networks (e.g., Change-
Former [56] and ICIF-Net [32], etc.) utilized Transformer as a
backbone for extracting global features from the originals. Song
et al. [57] proposed a multiscale Swin transformer supervised
network (MSTDSNet) for monitoring urban land changes using
DTHRRS. Chen et al. [58] designed a DTI transformer (BIT) to
efficiently model contexts within the spatial-temporal domain.

In summary, the complementary advantages of CNN and
Transformer help extract more comprehensive and identifiable
information [59], [60]. Inspired by this, we will continue to
explore the potential of Transformer in RSCD.

C. Loss Functions

Loss function plays a crucial role in continuously improving
model by measuring the difference between the prediction and
the ground truth (GT). Commonly, the Loss function of CD
models includes cross entropy, contrast loss, dice loss, and their
linear weighted combination.

Besides the aforementioned Loss functions, researchers also
attempted to apply relevant improvements for specific chal-
lenges. To encourage category related features, Sun et al. [38]
constrained CD task by the auxiliary semantic segmentation
loss function. Feng et al. [32] minimized the cross-entropy
loss between three prediction heads to get local and global
characteristics. Lei et al. [39] used a new boundary extraction
loss combined with the contractive loss function to optimize the
BESNet. ML-EDAN [43] is trained in an end-to-end manner
with a new joint loss function considering both reconstruction
error and pixel-wise classification error.

In general, the loss function is placed at the network
end. To make these intermediate features more representative,
some researchers have explored multilayer supervised learn-
ing. SCDTN [61] employed cross-entropy to supervise fea-
ture learning of two subnetworks, effectively enhancing the
module’s feature extraction capability. Bandara and Patel [62]
minimized their unsupervised “similarity-dissimilarity loss,”
where they simultaneously maximized the distance between CA
while minimizing the distance between UA in DTIs and deep
features.

III. METHOD

Due to differences in imaging conditions such as season, light-
ing, sensor, and the complexity of the land surface, objects with
the same semantic information in DTRSI often exhibit various
features. To bridge such semantic gap, this article proposes a
RSCD deep network framework to achieve robust recognition
of HLSF about complex scenes. The model aggressively utilizes
the local feature extraction of CNNs and the long-distance
relationship modeling of Transformer.

A. Overall Architecture

The pipeline of WSMsFNet is shown in Fig. 2. Intuitively, it
adopts the SCNN structure, consisting of a feature extraction

Algorithm 1: Inference of WSMsFNet-based Model for CD.

Input: The DTIs \boldmath {T1, T2} ∈ RH×W×3

Output: PV (a prediction change mask)
1: //step1: Extract MSFs by a SCNN backbone

(M-layers)
2: for i ∈ {1, 2} do
3: for j ∈ {1,M} do

F j
i = SCNN_Backbone{Ti}

4: end for
5: end for
6: //step2: Use SLDFEM to integrate same-level features
7: for i ∈ {1,M} do

F i
SL = SLDFEM{F i

1, F
i
2}

8: end for
9: //step3: Enhance neighborhood relation via CSALFFM

10: for i ∈ {1,M − 1} do
F

i
CS = CSALFFM{F i

1, F
i+1
1 , F i

2, F
i+1
2 }

11: end for
12: //step4: Implement global context information

modeling
13: for i ∈ {1,M} do

Fo = MSGFFM{F i
SL, F

i
CS , F

1
1 , F

1
2 }

14: end for
15: //step5: Obtain change mask by the prediction head
16: PV = Prediction_head{Fo}

network and three auxiliary modules (i.e., SLDFEM,
CSALFFM, and MSGFFM).

The WSMsFNet frame can be summarized as Algorithm 1.
First, the DTIs T1, T2 ∈ RH×W×3 are fed into the SCNN

for feature extraction, parallelly attaining original multiscale
local features {(F i

1, F
i
2); i ∈ [1,M ]} through the backbone (e.g.,

Resnet34), where {F i
1, F

i
2} ∈ RH/2i×W/2i×Ci

b .
Then, the paired features in ith stage {F i

1, F
i
2} are, respec-

tively, input into SLDFEM, and their salient and differential
features are further extracted as the transformer’s Q, K and V ,
respectively. This operation forms new feature representation
F i

SL ∈ RH/2i×W/2i×Ci
s , which could establish global depen-

dency relationship on local features from CNN.
Simultaneously, these features {F i

1, F
i+1
1 , F i

2, F
i+1
2 } are fed

into CSALFFM for multiscale aggregating information F
i
CS ∈

RH/2i×W/2i×Ci
c , which is conducive to develop the context

correlation between neighboring features.
Next, the transformer is exploited to refine and decode the

aforementioned enhanced MSFs. The output of transformer
decoder Fo ∈ RH/2M×W/2M×Co is the tensor prototype of CD
mask.

Finally, the predicted value (PV ∈ RH×W×2) is generated
by the detection head. It is worth noting that the midresults of
involved modules are all supervised by multiscale labels, which
derives from downsampling to GT.

B. Illustration of the Module SLDFEM

In general, the CD difference map is obtained by directly sub-
tracting the DTIs, and then drawing discernible features through
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Fig. 3. Overall structure diagram of the module SLDFEM.

Fig. 4. Illustration of attention modules: (a) S-CPAM. (b) DS-CPAM.

a series of convolution, pooling, or attention mechanisms, etc.
However, interferences (e.g., illumination, shadows, and UA
noise) may lead to the erroneous accumulation and hinder the
discrimination of CD targets. In addition, the SCNN backbone
extracts HLSFs from the DTIs by weight-sharing. Therefore,
the UAs in the same-level map pairs are expected to show the
same semantic information. However, due to noise and other
factors, some UAs exhibit significant pixel-level differences and
interfere with the final CD.

To address the abovementioned issues, we propose SLDFEM
to improve the quality of local differential feature, as shown in
Fig. 3. The SLDFEM first cascades the input through spatial and
channel perspectives and extracts the effective information from
the originals. Then, differential and salient features are obtained
through element level addition and subtraction, respectively. At
last, the long-distance dependency relationship of peer features
is modeled via cross self-attention.

For input features F i
1 and F i

2, SLDFEM cascades and feeds
them into the space-channel parallel attention module (S-
CPAM) to select and focus on important deep information. As
depicted in Fig. 4(a), the S-CPAM cascades F i

1 and F i
2 into

convergent featureF i
c and performs feature aggregation through

1x1 convolution. Then, the dimension-reduced result undergoes
a 3×3 convolution, spatial attention, and another 3×3 convolu-
tion to obtain spatially enhanced features F i

sa. Simultaneously,
f1∗1
d=1(F

i
c) is passed via channel attention and multiplied withF i

sa

to yield the output F i
co, representing spatial and channel-wise

consistent features.

Fig. 5. Overall structure diagram of the module CSALFFM.

The entire S-CPAM can be represented by (1)

g1(X ) = CA
(
f1∗1
d=1(X )

)� {f3∗3
d=1

(
SA

(
f3∗3
d=1(X )

))}
(1)

where X represents a tensor. For F i
co = g1(F

i
1 C©F i

2), multi-
plication and residual-connections are performed with F i

1 and
F i
2 separately. Then, it would result in deeply enhanced related

features F i
e1 and F i

e2. To explore the global correlation of the
same-level features, SLDFEM performs self-attention on the
feature-enhanced F i

co. As shown in Fig. 3, element-wise opera-
tions (i.e., addition and subtraction) are applied to F i

e1 and F i
e2,

respectively, to obtain the prominent and differential information
about DTIs. It is worth noting that in the design of self-attention,
the prominent feature is regarded as as Q, and the differential
feature F i

e1-F i
e2 is used as K and V . That aims to match the key

information of prominent and differential features to enhance
the noteworthy differential value, namely the semantic CA.

The entire self-attention can be represented as follows:⎧⎪⎨⎪⎩
Qi

1 = f1∗1
d=1

(
F i
e1 + F i

e2

)
W i

q1

Ki
1 = f1∗1

d=1

(
F i
e1 − F i

e2

)
W i

k1

V i
1 = f1∗1

d=1

(
F i
e1 − F i

e2

)
W i

v1.

(2)

The final output F i
SL = Att(Qi

1,K
i
1, V

i
1 ), whose details are

shown as follows:

F i
SL = σ

(
Qi

1K
i
1√

d

)
V i
1 . (3)

C. Illustration of the Module CSALFFM

With the net-depth increase, the extracted features gradually
transitions from low-level (such as edges, textures, etc.) to
HLSF. Considering the RS complexity, enhancing the feature
correlation is obviously beneficial for the model to understand
the semantic information of CAs. Except for the same-level, the
correlation between adjacent layer is the strongest throughout
the feature extraction process. Inspired by this, we propose the
CSALFFM to achieve potential valid information from neigh-
bouring maps.

As shown in Fig. 5, the CSALFFM input consists of two
sets of adjacent feature pairs (i.e.,{F i

1, F
i+1
1 ;F i

2, F
i+1
2 }). First,
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1×1 convolution and transposed convolution operations are
performed on the deep features {F i+1

1 , F i+1
2 }. On one hand, the

channel number is adjusted to be the same for the two layers. On
the other hand, the size of adjacent feature maps is unified, while
spatial attention mechanism is used to enhance their prominent
features.

The entire process is shown as follows:

F
i
SA1 = SA

{
f
(
f1∗1
d=1

(
F i+1
1

))
+ F i

1

}
(4)

where f(·) represents the transposed convolution operator.
Simultaneously, since deep features have the more wider

receptive field, transforming them into channel weights can
highlight the effective information of shallow features. There-
fore, 1×1 convolution is applied to F i+1

1 to compress it to
the same channel number as F i

1, and global average pooling
is used to fuse and compress the spatial dimension information.
Then, linear operations and activation functions are applied to
transform F i+1

1 into channel weights.
The entire process is shown as follows:

F
i
CA1 = gap

(
f1∗1
d=1(F

i+1
1 )

) ∗ F i
1. (5)

Finally, following the residual-connection paradigm,F i
1 is added

to the spatial-related features and channel-related features de-
scribed above, resulting in the fused adjacent layer features F

i
1,

which is shown as follows:

F
i
1 = F i

1 + F
i
SA1 + F

i
CA1. (6)

Similarly, F
i
SA2, F

i
CA2, F

i
2 can be obtained.

After fully fusing neighboring features, CSALFFM further
extracts their global information (cascading), significant in-
formation (adding), and differential information (subtracting).
Then, self-attention are performed to fully explore the potential
HLSF of the current adjacent layer.

The entire process is represented as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q

i
= f1∗1

d=1

(
F

i
1 C©F

i
2 C©(F

i
1 + F

i
2)
)
W

i
q

K
i
= f1∗1

d=1(F
i
1 − F

i
2)W

i
k

V
i
= f1∗1

d=1

(
F

i
1 − F

i
2

)
W

i
v.

(7)

Final output F̄ i
CS = Att(Q

i
,K

i
, V

i
), namely

F
i
CS = σ

(
Q

i
K

iT

√
d

)
V

i
. (8)

D. Illustration of the Module MSGFFM

Local relevance and contextual information have been en-
hanced in SLDFEM and CSALFFM, respectively. To establish
the global long-range dependency relationship of DTIs, we
propose the MSGFFM based on transformer decoder.

For MSFs refined by the SLDFEM and CSALFFM, as shown
in Fig. 6, we intend to use the residual-paradigm to fuse and
heighten them.

Fig. 6. Overall structure diagram of the module MSGFFM.

First, the large-scale features are gradually strengthened to
achieve the MSF fusion are as follows:

F̃ i
SL =

⎧⎪⎪⎨⎪⎪⎩
g2(F

i
SL), i = 1

g2(F
i
SL C© F̃ i−1

SL ), i ∈ [2,M − 1]

g1(F
i
SL C© F̃ i−1

SL ), i = M

(9)

where g2(·) is the MSF enhancement function, which adopts
the specially designed different-scale spatial channel parallel
attention module (DSS-CPAM) as shown in Fig. 4(b). The
structure of DSS-CPAM is similar to S-CPAM, but with the
addition of a max pooling layer before the 3×3 convolution to
downsample and unify their feature scale.

Then, the different-scale features (F i
SL, F

i
CS) are adjusted to

the same size and directly sent to the fusion end, acting as skip-
connection (i.e., original features)

F̃SL = F̃M
SL + C

(
d2M−i(F i

SL)
)

(10)

where C(·) refers to the cascading function, and dn(X ) repre-
sents performing n-fold downsampling on the tensor X .

In this way, the multiscale fusion results F̃SL and F̃AL ex-
tracted by SLDFEM and CSALFFM are obtained. Then, we
apply the multihead cross-attention mechanism to model the
global contextual relationships. Specifically, F̃SL and F̃AL, which
contain more deep semantic features, are cascaded and fed into
the transformer decoder as K and V . The decoder requirement
Q is crucial for transformer. It needs to focus on both the feature
scale (related to the transformer output size) and the multilevel
physical and semantic meaning, which could help to achieve a
balance between deep and shallow information. Therefore, the
large-sized maps that appear in the entire feature extraction and
enhancement process are treated as Q

FQ = C
(
F 1
1 − F 1

2 , F
1
SL, F̄

1
CS,

u2(F
2
1 − F 2

2 ), u2(F
2
SL), u2(F̄

2
CS)
)

(11)
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where un(X ) represents performing n-fold upsampling on the
tensor X .

The entire attention can be represented as follows:⎧⎪⎪⎨⎪⎪⎩
Q̃ = (FQ)W̃q

K̃ = (F̃SL C©F̃AL)W̃k

Ṽ = (F̃SL C©F̃AL)W̃v.

(12)

The output of transformer decoder Fo = Att(Q̃, K̃, Ṽ )

Fo = σ

(
Q̃K̃T

√
d

)
Ṽ (13)

MSA
(
FQ, F̃SL C©F̃AL

)
= Concat(head1, . . . , headh)W̃o (14)

headj = Att{FQW̃
j
q ,

(F̃SL C©F̃AL)W̃
j
k , (F̃SL C©F̃AL)W̃

j
v } (15)

where W̃q, W̃k, W̃v , and W̃o represent linear projection, and h
represents the number of attention heads. In addition, the MLP
consists of two linear layers with a GELU activation function in
between.

To get the final CD result PV, the detection head performs
3×3 convolution on the output of transformer decoder Fo, i.e.,
PV = softmax(f3∗3

d=1(Fo)).

E. Loss Function

1) Main Loss Function: An inherent problem in CD is the
class imbalance between positive and negative samples. Regard-
less of the dataset, the number of negative samples (i.e., UA
pixels) almost always exceeds that of positive samples (i.e., CA
pixels). This often leads to neural networks ignoring the learning
for positive samples and instead focusing on the less-important
information from negative samples.

To address this issue, the main loss function combines binary
cross-entropy (BCE) and dice coefficient to guide the training
process in this article.

We mainly measure the difference between the probability
distributions of two given random variables through the BCE,
while the dice coefficient is used to test the similarity between
different sets of variables (e.g., the DTIs pixels).

The main loss function is as follows:

Lmain = λ1 ∗ Lbce + λ2 ∗ Ldice (16)

Lbce = − y · log y′n − (1− y) · log(1− y′n) (17)

Ldice = 1− (2 · y · softmax(y′))/(y + softmax(y′)) (18)

where y represents the GT, and y′ stands for the model predicted
value.

2) Auxiliary Loss Function: To supervise the feature learning
in the intermediate layers, a cross-entropy loss function is set
for each fusion module. Considering the size nonuniformity, the
CD labels are downsampled to match the size of the intermediate
layers.

The auxiliary loss function is as follows:

LAUX =

M∑
i=1

Li(Zi, f
(
F i

SL

)
) +

M−1∑
i=1

Li

(
Zi, f

(
F

i
CS

))
(19)

where Li and Li both refer to cross-entropy loss function; Zi

represents a multiscale label, which is achieved by downsam-
pling GT according to the intermediate PV size.

3) The Final Loss is Attained:

Ltotal = λ1 ∗ Lbce + λ2 ∗ Ldice + λ3 ∗ LAUX (20)

where λi, i ∈ {1, 2, 3} are the regularization coefficients.

IV. EXPERIMENTAL SETUP

A. Dataset

To validate the effectiveness of WSMsFNet, we conducted
experiments on three representative HRRSCD datasets (i.e.,
LEVIR-CD, CDD, and SYSUCD). Each dataset consists of a
change map and two HRRS images captured at different times
in the same area. The details of the three datasets are as follows:

LEVIR-CD dataset: The LEVIR-CD dataset consists of 637
pairs of HRRS with the size of 1024×1024. These images are
from 20 different areas in several cities in Texas, with the spatial
resolution of 0.5 m. The main change type in this dataset is
about building. For the experiment, we cropped each image into
nonoverlapping blocks of size 256×256. The image number of
the training, validation, and test set is 7120, 1024, and 2048
pairs, respectively.

CDD dataset: The CDD dataset consists of 16 000 pairs
images with the size of 256×256, including training, verifica-
tion, and test sets of 10 000, 3000, and 3000 pairs, respectively.
The spatial resolution of CDD ranges from 0.3 to 1.0 m. It
contains changes in different objects such as buildings, roads,
and vehicles, while ignoring changes caused by factors such as
seasonality and brightness.

SYSUCD dataset: This dataset consists of 20 000 pairs of
aerial images captured in Hong Kong between 2007 and 2014,
with the size of 256×256 and the spatial resolution of 0.5 m.
The main change types in this dataset are as follows:

1) newly built urban buildings;
2) suburban expansion;
3) preconstruction groundwork;
4) vegetation change;
5) road expansion;
6) coastal construction.
In addition, the 20 000 image pairs are divided into a training

set (10 000 pairs), a validation set (4000 pairs), and a testing set
(4000 pairs).

B. Experimental Parameters

The WSMsFNet is trained and tested using a single NVIDIA
RTX3090 GPU. We adapt the Adam optimizer to reform the
model, with an initial learning rate of 0.001 linearly decaying to
0. In addition, validation is conducted after each training cycle,
and the best model on the validation set is used to evaluate the test
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TABLE I
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS ON VARIOUS DATASETS

set. The backbone layer M is uniformly set to 5, and Ci
b, C

i
s ∈

{64, 64, 128, 256, 512}.

C. Evaluation Metrics

To comprehensively reflect model performance, we evaluate
the experimental results using five evaluation metrics: precision
(P), recall (Re), F1 score, overall accuracy (OA), and mean
intersection over union (mIoU). The definitions of these metrics
are as follows:

P =
TP

TP + FP
(21)

Re =
TP

TP + FN
(22)

F1 =
2× P× Re

P + Re
(23)

OA =
TP+ TN

TP + TN+ FP + FN
(24)

mIoU =
1

2

(
TP

TP + FP + FN
+

TN
TN + FN + FP

)
. (25)

V. EXPERIMENTAL RESULTS

A. Comparative Methods

To validate the WSMsFNet effectiveness, we compare it with
several advanced CD methods, including STANet [63], DTCD-
SCN [64], SRCDNet [65], MSPSNet [66], ChangeFormer [56],
BiT [58], ICIF [32], DMINet [67], and USSFCNet [68] etc.
For fairness, we train and test the aforementioned CD networks
using their publicly available codes and default hyperparameters
on our unified platform. Eventually, the quantitative comparison
on the datasets is shown in Table I, and the model visual results
are presented in Figs. 7, 8, and 9. To facilitate distinction, we use
different colors to represent TP (white), TN (black), FP (red),
and FN (green). In the case study, we choose various sizes and
quantities of change targets for comparison, which is convenient
for comprehensive evaluation of model performance.

B. Quantitative Comparison

Table I shows the overall performance comparison of different
algorithms on three datasets. The quantitative metrics indicate
that our WSMsFNet, after tuning with regularization terms,
consistently outperforms other algorithms. For example, F1 and
mIoU surpass BIT 2.29/0.98/4.42 points, 1.98/1.01/3.93 points
in three datasets, respectively.

Furthermore, our CNN backbone only uses ResNet34 and
does not involves more complex structures such as ResNet50,
FPN, and Unet. This may be attributed to our model ability to
fuse multiscale spatio-temporal information and enhance feature
representation by modeling global contextual relations.

C. Results and Discussion on the LEVIR-CD Dataset

Fig. 7 showcases the visual comparison of different method
on the LEVIR-CD. Many algorithms tend to struggle with false
negatives for small targets, such as SRCD, MSPS, Change-
Former, ICIFNet, DMINet, and USSFCNet. When multiple CD
targets are present, algorithms may experience varying degrees
of false positives near the edges, especially STANet, SRCD,
and USSFCNet. For complex and densely arranged structures,
issues of false positives (MSPS, BIT, ChangeFormer) and false
negatives (STANet, SRCD, ICIFNet, and DMINet) often arise
near the boundaries. Therefore, the completeness and smooth-
ness of the building boundaries could intuitively reflect the
model performance. Complex scenes can also interfere with the
CD performance for certain algorithms, such as MSPS, BIT,
ChangeFormer, and DMINet. Regardless of the target size and
amount, the WSMsFNet demonstrates superior performance in
terms of target completeness and boundary precision. This might
be attributed to the model effective fusion of MSF.

D. Results and Discussion on the CDD Dataset

Their detection results on the CDD dataset are shown in Fig. 8.
Compared to the other two datasets, the CDD expresses more
complex scenes and greater disturbance in the CAs. In addition,
the distribution of CAs is uneven, and the type and size of change
targets vary critically. Visually, the BIT, Changeformer, and
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Fig. 7. Detection results on the LEVIR-CD using different methods. (a) A. (b) B. (c) Lable. (d) STANet. (e) DTCDSCN. (f) SRCDNet. (g) MSPSNet. (h) BIT.
(i) Change Former. (j) ICIFNet. (k) DMINet. (l) USSFCNet. (m) WSMsFNet.

Fig. 8. Detection results on the CDD using different methods. (a) A. (b) B. (c) Lable. (d) STANet. (e) DTCDSCN. (f) SRCDNet. (g) MSPSNet. (h) BIT. (i) Change
Former. (j) ICIFNet. (k) DMINet. (l) USSFCNet. (m) WSMsFNet.
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Fig. 9. Detection results on the SYSUCD using different methods. (a) A. (b) B. (c) Lable. (d) STANet. (e) DTCDSCN. (f) SRCDNet. (g) MSPSNet. (h) BIT.
(i) Change former. (j) ICIF. (k) DMINet. (l) USSFCNet. (m) WSMsFNet.

USSFCNet exhibit significant false negatives overall. STANet
and MSPSNet show certain false positives at different scales.
Models such as MSPS, BIT, ChangeFormer, ICIFNet, DMINet,
and USSFCNet all are prone to missing smaller targets scat-
tered in the scene. For larger CAs, many methods exhibit false
negatives at the target edges (e.g., MSPS and ICIFNet, etc.) or
detection errors (e.g., MSPS and STANet, etc.). In comparison,
WSMsFNet shows better adaptability to detecting those wider
ranges of change targets.

E. Results and Discussion on the SYSUCD Dataset

Fig. 9 showcases the visual CD results on the SYSUCD. Due
to the greater number and complexity of change types in the
SYSUCD dataset, some models exhibit relatively poorer CD
performance compared to LEVIR-CD. Under similar lighting
conditions, there are noticeable false negatives in the small
target areas for DTCDSCN, BIT, Changeformer, ICIFNet, and
DMINet. For big target, the scene complexity causes the de-
tected target boundaries to be affected in different degrees.
When disturbed by luminosity, STANet, DTCDSCN, SRCD-
Net, MSPS, and BIT all show significant false positives, while
STANet, ChangeFormer, and DMINet exhibit more prominent
false negatives. Overall, the WSMsFNet finds CA with clear
boundaries, fewer false positives, and false negatives, showing
better adaptability when facing some wider ranges of change

types. This may be attributed that WSMsFNet could extract
HLSF through MSF fusion and result in better robustness.

F. Regularization Parameter Setting

To evaluate the contribution of each loss term, we conducted
ablation experiment about the hyperparameters λ1, λ2, and λ3,
whose results are shown in Table II. For the LEVIR-CD, there is
a slight difference in overall performance under various tradeoff
parameters. It can be seen that the cross-entropy, dice loss, and
deep supervision auxiliary loss have relatively balanced effects
on the model and dataset. We chose the weight-ratio with the
highest Re (1:1:1) as the optimal parameter, which is 2.2% higher
in recall than the lowest value (90.6 versus 88.4). For the CDD,
the optimal parameter configuration (2:2:1) is tremendously
significant. The proportions of cross-entropy and dice loss are
the same and both higher than the deep supervision loss. Simi-
larly, the optimal regularization coefficient for the SYSUCD is
(2:2:3). They clearly outperform other configurations in terms of
comprehensive metrics (i.e., F1 and mIoU). This indicates that
the level of requirement for deep supervision varies for different
datasets.

G. Ablation Experiments

As shown in Table III, we conducted ablation experiments to
verify the effectiveness of the module. The experiment shows
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TABLE II
EXPERIMENTAL RESULTS OF REGULARIZATION COEFFICIENTS

TABLE III
MODULE ABLATION EXPERIMENT

that regardless of which dataset, each module has made its own
contribution to improving model performance.

H. Convergence Analysis

To visualize the training process, we test the convergence and
accuracy of WSMsFNet on the LEVIR-CD. Fig. 10(a) shows
that the model loss rapidly decreases within the first 25 epochs,
both for the testing and validation sets. The validation set loss
has stabilized after 100 epochs, indicating good convergence of
the WSMsFNet. Similarly, the F1 score rapidly increases within
the first 25 epochs, and that remains stable after 100 epochs on
the validation set. It indicates that the WSMsFNet is convergent,
stable, and effective. This may be attributed that the WSMsFNet
could learn effective MSF and global contextual information,
which accurately represents the interest areas for the detected
CAs.

I. Network Visualization

To better illustrate the learning effectiveness, a sample from
the test set is used to visualize the heatmaps of each stage in
WSMsFNet. The heatmaps provide the intuitive explanation for
the network learning about the changing targets. The visualiza-
tion results are shown in Fig. 11. Given DTIs, the hierarchical
features are first extracted from shallow to deep levels using
ResNet. Then, the designed intralevel and adjacent-level fusion
modules concentrate the attention mechanism on the interest
regions. It is apparent that the intralevel fused features are more
refined, while the adjacent-level fused features have the richer

Fig. 10. Convergence and accuracy of WSMsFNet on the LEVIR-CD during
training/validation sets. (a) The overall trend of loss value regarding train-
ing/validation sets. (b) The overall trend of F1 score regarding training/validation
sets.

scale, demonstrating the effectiveness of these modules. For
the decoding stage, the output represented by “Q” showcases
the contour and position information of the CAs, highlighting
the requirements of CD; while the “K and V ” mainly contains
spatial or HLSF that could exist in the CAs. Meanwhile, the
attention towards unchanged targets is noticeably reduced in the
decoding stage.

Overall, WSMsFNet effectively learns semantic features in a
hierarchical manner to highlight the changed targets.
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Fig. 11. Visualization of key modules in WSMsFNet. Each thermal map is generated by adding and normalizing channel-level elements to the corresponding
feature map tensor. For the convenience of observation, each visualization image is upsampled to 256×256 through bilinear interpolation.

VI. DISCUSSION

To suit the CA nonuniformity, the WSMsFNet aims to refine
the multiscale features of the dual-temporal image to realize
RSCD in the region of interest. In the feature fusion stage for
each scale, this article fully regards the global-local correlation
relationship modeling. In addition, the full-process supervision
also makes each feature extraction and fusion module more
efficient. Experiments show that our model performs better than
others in several metrics (F1 and OA, etc.).

However, the WSMsFNet still exists some limitations: One is
the problem of model light-weighting. This model parameter is
up to 33.5 MB, and streamlining parameters under the premise
of guaranteeing performance is the focus of our future research.
The others is the model robustness problem. When the model
suffers from serious noise, light interference, or even specialized
malicious attacks, specific measures of improving robustness
should be invoked to cope with such situations.

VII. CONCLUSION

Aiming at the variability and potential contextual relation-
ships of CAs in dual-phase RS images, this article proposes
the CD depth network WSMsFNet based on MSF fusion and
Transformer variants. First, ResNet34 has been adopted as back-
bone to extract multiscale local features from DTRSI. Then,
we introduce modules such as SLDFEM, CSALFFM, and MS-
GFFM to achieve MSF fusion and enhance the representation
of global contextual information. Finally, an auxiliary loss func-
tion is designed to supervise the learning of intermediate layer
features. Moreover, the experiments on the LEVIR-CD, CDD,
and SYSUCD datasets demonstrate that WSMsFNet achieves
favorable results in terms of comprehensive metrics (F1, mIoU)
and qualitative comparisons. This verifies the strong adaptability
of WSMsFNet in detecting different types of change targets.
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