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AFPF-Net: Adjacent-Level Feature Progressive
Fusion Full Convolutional Network for

Remote Sensing Change Detection
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Abstract—In recent years, convolutional neural networks have
achieved good results in the field of change detection (CD) owing
to their exceptional feature extraction capabilities. However, ac-
curately detecting objects with completely changing details, given
the complex imaging conditions of bitemporal images, remains
a formidable challenge. Aiming at the above challenge, we have
designed a new method for remote sensing image CD. First, to
capture the fine difference features at different scales, the feature
difference enhancement module is proposed to enhance the infor-
mation interactions not only among the bitemporal features but also
between the difference features of the previous layer and the rough
difference map of the current layer. Second, to accurately capture
the entire region of change, the adjacent-level feature progressive
fusion module is proposed, which extracts complementary infor-
mation by progressively fusing high-level and low-level features,
therefore enhancing the change features. Finally, based on the
above two modules, a full convolution-based adjacent-level feature
progressive fusion network (AFPF-Net) is designed. To validate the
effectiveness of AFPF-Net, experimental evaluations are performed
on two different datasets, the LEVIR-CD and WHU-CD datasets.
Compared to the sub-optimal network in the experiments, the
F1-score on these two datasets improved by 0.33% and 1.74%,
and total model complexity is relatively reduced, achieving better
balance between model performance and complexity compared to
the experimental state-of-the-art network.

Index Terms—Adjacent-level feature progressive fusion (AFPF),
change detection (CD), convolutional neural network (CNN),
feature difference enhancement (FDE), remote sensing image.

I. INTRODUCTION

CHANGE detection (CD) is the process of identifying
differences in bitemporal images captured over different

periods in the same region. With the increasing ability to acquire
high-resolution remote sensing images and the progression of
imaging technology, CD has received an increasing amount of
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attention and has gained applications in many aspects of real
life, such as land development CD [1], [2], global resource
monitoring [3], urban management [4], and damage assessment
[5], [6].

In recent years, deep learning (DL) has demonstrated re-
markable progress in computer vision applications, including
object detection, image segmentation, and image classifica-
tion, owing to the rapid improvement in convolutional neural
networks (CNNs) [9], [10], [11]. DL-based methods not only
significantly reduce the need for manual intervention compared
to the conventional hand-crafted feature approach, but they
also mitigate the occurrence of errors that may arise from data
preprocessing [12]. In addition, as the importance of CNN in
image processing has grown, an increasing number of entirely
convolutional-based CD networks have emerged [13], [14], [15].
According to the strategy of bitemporal image feature fusion,
full convolution-based CD methods can be categorized into
early fusion and late fusion [16]. In early fusion methods, the
bitemporal images are used as inputs to the CD network after
concatenating or differencing. For example, Peng et al. [17]
designed a difference-enhanced dense-attention convolutional
network that concatenated pairs of bitemporal images as inputs
to the networks, from which accurate change features were
extracted. Before fusing the temporal features, the later fusion
approach extracts the bitemporal image features separately using
the Siamese network. For example, Daudt et al. [15] applied the
Siamese network before stitching and then performed the fusion
of the temporal features.

Despite previous CD methods having made tremendous
advancements, detecting changing objects with complete
change details is still a challenging task, as shown in Fig. 1.
Recent approaches have begun to combine concatenation and
difference operations to perform bitemporal feature fusion [18],
[19]. However, the captured temporal difference information
still contains a substantial quantity of difficult to distinguish
“nonsemantic changes” [20], such as those caused by car
motion, sensor noise, or human subjective factors. In addition
to bitemporal feature fusion multiscale feature fusion [21], [22]
is also a crucial component in CD. In general, low-level features
possess detailed spatial information but lack comprehensive
semantic information, whereas high-level features possess
detailed semantic information but are devoid of fine-grained or
boundary information. Multiscale feature fusion can integrate
the complementary information between them. However, since
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Fig. 1. Visualization results of different methods. (a) T1 image. (b) T2 image.
(c) Label. (d) AFCF3D-Net [7]. (e) DMINet [8]. (f) AFPF-Net. TP, TN, FN, and
FP are denoted as white, black, blue, and red. These methods cannot accurately
detect the complete change object, but AFPF-Net obtains more accurate change
detection results.

the semantic difference exists between features at low and high
levels, the noise of low-level features and the rough boundaries
of high-level features may interfere with the direct fusion of
change information, making it difficult to accurately detect
changing objects with complete change details.

Therefore, we propose a new adjacent-level feature progres-
sive fusion fully convolutional network (AFPF-Net), which can
achieve better detection results by enhancing the information
exchange between the bi-temporal features, and the adjacent-
layer feature fusion. In AFPF-Net, after extracting multiscale
temporal features from the Siamese CNN, the number of chan-
nels for each scale feature is reduced from {64, 128, 256, 512}
to {64, 64, 64, 64} by using channel reduction (CR). Then,
the feature difference enhancement (FDE) module is used to
combine the feature concatenation, element-wise subtraction,
and the upper layer of variation features to extract the fine
difference information. After that, the adjacent-level feature
progressive fusion (AFPF) module is designed to acquire and
integrate the supplementary information in the features with
different scales to enhance and improve different aspects of the
changing objects. The main contributions are as follows.

1) To enhance the details of change regions and extract
reliable change information fully, the FDE module is
designed. After extracting and fusing bitemporal features,
the residual connection is used to aggregate the informa-
tion from the previous layer difference to enhance the
discrepancy among the current bitemporal features and
capture more accurate change features.

2) To address the incompleteness of change areas and the
noise interference resulting from the direct fusion of differ-
ent scale features, the AFPF module is designed. Through
the knowledge review branch and the boundary compen-
sating branch, complementary information between the
cross-layers is used to improve the change features. The
enhanced features have more complete change regions and
smoother boundaries.

3) Based on the above two modules, a fully convolutional
network, AFPF-Net, for remote sensing change detection
is designed. Among the state-of-the-art (SOTA) methods

that are already compared, superior detection results are
achieved compared to pure transformer networks or net-
works with a combination of transformer and convolution.

4) A set of experiments is carried out on the LEVIR-CD
and WHU-CD datasets in order to assess the effectiveness
of AFPF-Net. The F1-score on these two datasets is im-
proved by 0.33% and 1.74%, respectively, compared to
the suboptimal network.

The rest of this article is organized as follows. Section II
presents DL approaches for CD methods, including both non-
transformer and transformer-based techniques. Section III de-
tails the design concept of the method. Section IV summarizes
and analyzes the results of the experiment. Finally, Section V
concludes this article.

II. RELATED WORK

Since the proposed network relies on the CNN, in this section,
the CD method based on DL is mainly introduced. Recently,
the DL approach has become the main solution for CD of
remote sensing images because of its excellent feature expres-
sion capability. In terms of fusion strategies for bitemporal
images, DL-based approaches can be simply categorized into
early fusion and late fusion [16]. Early fusion methods use the
image after concatenation or difference operation of the bitem-
poral image as the input. Late fusion approaches use a Siamese
network architecture to separately retrieve the characteristics of
the bitemporal images.

A. CNN-Based Model

To cope with uncorrelated change regions and extract more
accurate change regions, a number of recent studies have im-
proved the generalization capability of the network through the
perspectives of bitemporal information fusion and multiscale
feature aggregation, which are the key components for extracting
changes from dual-temporal remotely sensed images.

The dual-temporal information fusion strategy [23], [24],
[25], as an important part of remote sensing change detec-
tion, can provide reliable change information and enhance the
details of the change region. In the process of fusing bitem-
poral information, researchers have widely used difference or
splice operations to extract and fuse features. To fully extract
the change information between bitemporal images, Zhu et al.
[23] proposed a feature comparison module to capture feature
difference maps at different scales. In addition, the number
of channels for features at different scales is unified so that
the contribution of each feature is the same, which reduces
the information loss in the fusion process. However, extracting
the change information between pairs of features at different
scales separately still makes it difficult to accurately capture the
complex change information in different features. Therefore,
Lei et al. [24] proposed a difference enhancement module,
which subtracted the bitemporal features to obtain the difference
feature map, then utilizes the attention mechanism to capture
the weights of the real changed regions and map them back
to the original features. Thus, it serves to guide for the next
layer of feature extraction. Zhong and Wu [25] proposed a
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novel network (T-UNet) based on a three-branch encoder, and
to allow features from different branches to interact and fuse
effectively, a multibranch spatial domain cross-attention module
was proposed. This module allows full interaction of the differ-
ence feature maps at different scales, suppresses pseudochanges
induced by the difference computation or noise, and completes
the real changes that may be missing in the high-level feature
information.

In addition, the multiscale feature fusion strategies [18],
[26], [27], [28], [29], also serve as an important components
in remote sensing change detection, providing both high-level
features rich in semantic information and low-level features
rich in fine-grained information. In order to fully utilize the
information of different scale features, the deeply supervised
image fusion network designed by Zhang et al. [26] fused multi-
scale features which were taken out of a two-stream architecture
using a Siamese network and then employed in a disparity dis-
crimination network for CD. To extract accurate change maps,
a convolutional block attention module [27] was used in the
disparity discrimination network. To meet the demand for fusing
multiscale features, Fang et al. [28] proposed a NestedUNet-
based densely connected Siamese network (SNUNet) for fusing
multiscale features. Liu et al. [29] proposed a very lightweight
Siamese network based on SNUNet, which eliminated duplicate
connections at the cost of losing a small amount of accuracy
and greatly reduced the number of parameters. With further
research, Wang et al. [18] proposed a deeply supervised network
(ADS-Net) based on an attention mechanism using intermediate
layer fusion. After feature extraction process from each layer,
the bitemporal features obtained during the encoding phase were
connected to the result of the preceding layer in the decoding
section. Additionally, the differential feature maps were con-
nected to the bitemporal feature maps and used as inputs to each
decoding layer. To further strengthen the intrinsic connection
between the temporal features at each level and to capture more
representative change features, Li et al. [19] proposed a guided
progressive refinement model. Initially, different scale change
features are aggregated, and then the fused features are used
to iteratively refine the multiscale features, so that the pseu-
dochange information in the low-level features is filtered out and
the rough boundary in the high-level features is further polished.
Wang et al. [30] proposed a new spatial–spectral cross-fusion
network for a remote sensing image change detection model.
By misplacing and reorganizing temporal features at different
levels in the channel domain, not only the semantic differences
between different features are reduced, but also the semantic
information in each feature is enhanced. Li et al. [31] introduced
an online uncertainty estimation branch, compelling the network
to allocate more attention toward the actual area of change. A
knowledge review strategy was also introduced to increase the
distinguishability of the different features by continuously learn-
ing the parts where conflicts between low-level and high-level
features occur.

Furthermore, to capture more precise regions of change, sev-
eral approaches have been identified through extensive research,
such as fusion of multiscale features across layers [32], 3-D
convolution [7], and attentional mechanisms [33], [34], [35],

[36], [37]. It is worth noting that various forms of attentional
mechanisms have emerged as they have become increasingly
influential in computer vision. For example, Zheng et al. [33]
utilized spatial, channel squeezing, and channel excitation mod-
ules to recalibrate the space and channels so that the network
focuses on more useful features. Eftekhari et al. [34] proposed a
parallel spatial channel attention mechanism to learn the details
of changes more stably and achieve more accurate CD results
compared to serial. Chen et al. [35] proposed a biattention
fully convolutional Siamese network (DASNet). This network
addressed the issue of an unbalanced penalty between changed
and unchanged feature pairs by weighting the dual-edge contrast
loss. Additionally, the network utilized a biattention mechanism
to accurately identify the change regions, resulting in enhanced
model performance. The attention mechanisms are becoming
increasingly popular in the CD domain due to the significant
improvement of the attention mechanisms for network perfor-
mance and the presence of plug-and-play properties.

However, the information interaction among bi-temporal fea-
tures and the extraction of complementary information among
features with changes at different scales are still not fully inves-
tigated in the current research. Therefore, we design a module
to extract features efficiently and introduce another module to
realize feature complementation.

B. Transformer-Based Model

Transformer [38] has recently made significant progress in
the domain of natural language processing. Due to its pow-
erful representation capabilities, researchers have applied it to
computer vision tasks in areas, such as semantic segmentation
[39], [40], target detection [41], and image classification [42].
Subsequently, the transformer has also started to be used for CD
tasks. For example, Chen et al. [43] proposed a bitemporal image
transformer (BITNet), in which the context in the bitemporal
images is better modeled by the transformer encoder to eliminate
irrelevant changes and distinguish relevant changes. Feng et al.
[44] proposed the intrascale cross-interaction and interscale fea-
ture fusion network (ICIF-Net). By leveraging the efficiency of
CNNs in extracting local features and the capabilities of Trans-
former in global modeling, parallel processing together provides
change targets and fine-grained details in CD from remotely
sensed images. Mao et al. [45] proposed a transformer-based
multiscale feature fusion network, which utilized a transformer
to capture correlations between changing regions and other
regions over long distances and then aggregated these features
for a stronger semantic and localized representation. Although
the introduction of transformers has improved the performance
of CD networks, it has also added a large number of parameters.
Therefore, AFPF-Net adopts a fully convolutional structure,
which reduces the number of parameters while also surpassing
other compared SOTA methods.

III. METHODOLOGY

This section first introduces the overall structure and workflow
of AFPF-Net, then provides a comprehensive description of the



13856 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 2. Overall structure of AFPF-net. Initially, the temporal features are captured through a weight-sharing backbone network, followed by channel reduction
through CRs. The FDEs are responsible for capturing temporal features at multiple levels, and finally, the final change map is generated by progressively fusing
temporal difference features through the AFPFs.

FDE module and AFPF module, and finally provides the hybrid
loss function.

A. Overall Structure

The whole structure of AFPF-Net is shown in Fig. 2, which
includes four modules: the feature extraction module (Back-
bone), the CR module, the feature difference enhancement
(FDE) module, and the AFPF module. To capture more accurate
feature difference maps between bitemporal feature pairs, the
FDE is proposed to capture change features. To overcome the se-
mantic differences between different scale features and to extract
complementary information between low-level and high-level
features, the AFPF module is proposed to fuse different scale
features. The network utilizes the pretrained ResNet18 [46] as
the Backbone. A Siamese network with shared weights is used to
capture features from the bitemporal image pairs T1 and T2. The

extracted multiscale features may be denoted as F 1
i and F 2

i , i
� {1, 2, 3, 4}. Then, the number of extracted multiscale feature
channels is unified to 64 using the CR module. Next, feature
extraction and fusion are performed on the bitemporal feature
pairs by FDE, and residual connections are used to aggregate
the difference information of the previous layer to obtain a
fine difference feature. Finally, the feature difference maps at
various scales are input into AFPF, and the complementary
information between neighboring layers is fused to produce the
final prediction maps.

B. Feature Difference Enhancement (FDE) Module

Since rich change information is included in the low-level
feature difference map, FDE first extracts the variation informa-
tion from it. However, the low-level feature difference map also
contains pseudochanges, so the residual connection is used in
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FDE to aggregate the previous layer variance information, which
not only enhances the difference of the bitemporal features in
the current layer but also removes some of the pseudochanges
present in the variance information of the previous layer. This
is due to the receptive field is relatively large in the deep
network, and the extracted high-level feature difference maps
have a lower proportion of pseudochanges than low-level feature
difference maps. The weight of pixels in pseudochange areas
is significantly reduced, and the weight of pixels in the region
of the real changes is relatively increased when the weights of
the two difference maps are averaged. The function of FDE is
closely related to the above two points, and its detailed design
is illustrated in Fig. 2(d).

Specifically, the different scales of features extracted from the
Backbone are initially processed via the CR module in Fig. 2(b),
which unifies the channel number of different scales of features
to 64, which reduces the use of memory and computation for
subsequent operations. As shown in Fig. 2(d), the CR-processed
features are fed into the FDE module, whose inputs are com-
posed of three parts: F 1

i , F 2
i , and the difference features after

enhancement of the previous layer. When i = 1, only the lowest
level temporal feature pairs are used as inputs, and when i �
{2, 3, 4}, the inputs are all composed of three parts. The rough
feature difference map Dr

i is first computed in the FDE using
element-wise subtraction, followed by an absolution operation.
Then the difference feature extraction is performed by 3 × 3
convolution, and the attention map D̂i is obtained by the spatial
attention module (SAM) [27]. This process can be represented
as follows:

Dr
i = Conv3×3

(∣∣F 1
i � F 2

i

∣∣) (1)

D̂i = SAM (Dr
i ) (2)

where � denotes an element-wise subtraction operation, | · | is
an absolution operation, Conv3×3(·) represents a 3 × 3 convo-
lutional layer, a batch normalization (BN), and a ReLu function.
The subsequent convolutional structure is consistent with that
here. Meanwhile, the change feature Dr

i−1 of the previous layer
is downsampled by a 3 × 3 convolution to make its spatial
dimension consistent with F 1

i , after which the change attention
map D̂i−1 is obtained by SAM. The refined change attention
map is obtained by averaging the weights of the two change
attention maps D̂i and D̂i−1. This process can be represented as
follows:

D̂i−1 =

{
null i = 1
SAM

(
Conv3×3

(
Dr

i−1

))
1 < i ≤ 4

(3)

D̂ =
D̂i + D̂i−1

2
(4)

where D̂ denotes the refined change attention map. We further
emphasize the temporal feature change areas by elementwise
multiply. After that, to improve the feature representation, the
original temporal features are combined with the augmented
temporal features by addition. Finally, the change information is
extracted by 3 × 3 convolution. This process can be represented

as follows:

F̂ 1
i = Conv3×3

(
D̂ ⊗ F 1

i ⊕ F 1
i

)
(5)

F̂ 2
i = Conv3×3

(
D̂ ⊗ F 2

i ⊕ F 2
i

)
(6)

where ⊕ denotes an elementwise addition operation, ⊗ de-
notes an elementwise multiply operation, F̂ 1

i and F̂ 2
i denote

the temporal features after change enhancement at T1 and T2
moments, respectively. After the results of concatenating F̂ 1

i and
F̂ 2
i are input into the channel attention module (CAM) [27] to

capture the channel correlation, the channel-enhanced features
are fed into a 3 × 3 convolution to eliminate some insignificant
channels. Then, the refined difference features are added with
the previous rough feature difference map Dr

i to compensate for
the lost difference information, and finally, the refined difference
features are extracted by 3 × 3 convolution. This process can be
represented as follows:

F̂i = Cat
(
F̂ 1
i , F̂

2
i

)
(7)

Di = Conv3×3

(
Conv3×3

(
CAM

(
F̂i

)
⊗ F̂i

)
⊕Dr

i

)
(8)

where Cat(·) denotes concatenation operation, Di represents
the acquired fine temporal change features. The FDE module
is employed on four different scales of bitemporal features to
concurrently extract and merge the bitemporal image feature
information, generating fine multiscale difference features.

C. Adjacent-Level Feature Progressive Fusion (AFPF)
Module

In CNN, low-level features offer rich spatial detail informa-
tion, and high-level features offer abundant semantic informa-
tion. However, low-level and high-level features have semantic
gap, and fusing them directly will cause information loss or
semantic confusion. Therefore, it is important to capture the
complementary information among the low-level and high-level
features effectively and recognize the features with conflicting
parts. So, the AFPF module aims to utilize the complementary
information between cross-layer features to refine semantic
information and spatial details of change features. Fig. 2(e)
shows the detailed design of the AFPF. Temporal difference
features Di are used as input of AFPF, i � {1, 2, 3}. Owing to
the input of AFPF are temporal difference features of adjacent
layers, low-level features are denoted by Di, and high-level
features are represented by Di+1, thus i maximizes to 3. Then,
the multibranching structure with boundary compensating and
knowledge review is used to extract the complementary infor-
mation among Di and Di+1.

Specifically, in AFPF, Du
i+1 is obtained by using an upsam-

pling operation on Di+1. Du
i+1 has the same spatial dimensions

as Di. α and ε are the predicted change maps obtained by Mask
for the temporal difference features Du

i+1 and Di, respectively.
Conflicting attention can represent the part where conflict occurs
between α and ε. This process can be represented as follows:

Du
i+1 = up (Di+1) (9)
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α = Mask
(
Du

i+1

)
(10)

ε = Mask (Di) (11)

θ = ε · (1− α) + α · (1− ε) (12)

where θ denotes the conflict attention map between Di and
Du

i+1. We also bring in boundary compensating attention to
obtain boundary information. Boundary information is weaker
in high-level features and can be used to locate changing ob-
jects. Therefore, boundary compensating attention is guided
by utilizing low-level features to make up for the high-level
feature deficiency of detailed information. Specifically, bound-
ary compensating attention masks change areas generated from
high-level features; thus, AFPF-Net is forced to allocate greater
attention to unchanged boundary areas. This process can be
represented as follows:

β = 1− α (13)

where β denotes the boundary compensating attention map.
After Di and Du

i+1 are concatenated by using AFPF, the feature
transition is performed by two 1 × 1 convolutions to ensure the
network captures the change region from different angles. This
process can be represented as follows:

Df
k = Conv1×1

(
Cat

(
Di, D

u
i+1

))
(14)

Df
f = Conv1×1

(
Cat

(
Di, D

u
i+1

))
(15)

where Cat(·) denotes feature concatenation operation, Conv1×1

(·) denotes a 1 × 1 convolutional layer, a BN, and a ReLu
function, Df

k and Df
f represents the input features of the two

branches of the AFPF, and Di represents the input feature of
the boundary compensating branch. Conflict attention maps and
boundary compensating attention maps are inserted into both
branches to enable the network to extract boundary information
as well as change regions after refinement. In addition, CAM
and 3 × 3 convolution are also injected into the two branches of
AFPF to enhance the feature representation capability and re-
move some irrelevant channels. This process can be represented
as follows:

D̂r
k = Df

k ⊗ θ ⊕Df
k (16)

Dr
k = Conv3×3

(
CAM

(
D̂r

k

)
⊗ D̂r

k

)
(17)

Dr
f = Conv3×3

(
CAM

(
Df

f

)
⊗Df

f

)
(18)

Dr
b = Di ⊗ β (19)

where ⊕ denotes an element-wise addition operation, ⊗ denotes
an element-wise multiply operation, Dr

k, Dr
f , and Dr

b are the
knowledge review branch, the feature fusion branch, and the
enhanced features from the boundary compensating branch,
respectively. Finally, Dr

k, Dr
f , and Dr

b are concatenated to gen-
erate the final refined temporal difference features by 3 × 3
convolution. This process can be represented as follows:

Dc
i = Conv3×3

(
Cat

(
Dr

k, D
r
f , D

r
b

))
(20)

where Dc
i denotes the final refined difference features. Through

the gradual fusion of neighboring features, not only the com-
plementary information between multiscale temporal difference
features is fully captured, which enhances the network’s capacity
to detect real changes, but also the low-level features are utilized
to further refine the boundaries of the change area, eventually
generating a complete change object.

D. Loss Function

In the CD tasks, the unchanged regions are generally much
more numerous than the changed regions, leading to the problem
of category weight imbalance in the network training process.
To alleviate the effect of sample imbalance, a hybrid loss is
adopted, involving dice loss and binary cross-entropy loss [47].
The binary cross-entropy loss can be expressed as follows:

Lbce = − 1

N

N∑
n = 1

[ynlogŷn + (1− yn) log (1− ŷn)] (21)

where N is the number of samples, yn denotes the ground truth
value of pixel n. If yn = 1, it means that a change has occurred,
otherwise, yn = 0. ŷn denotes the probability that a change has
occurred, and 1− ŷn denotes the probability that no change has
occurred. The dice loss can be expressed as follows:

Ldice = 1− 2
∑N

n = 1 ynŷn∑N
n = 1 yn +

∑N
n = 1 ŷn

. (22)

Eventually, the hybrid loss of AFPF-Net can be expressed as
follows:

L = Lbce + Ldice. (23)

IV. EXPERIMENTS

A. Experiment Preparation

1) Datasets: The performance of AFPF-Net and current
SOTA networks is validated on two popular high-resolution re-
mote sensing building CD datasets, namely LEVIR-CD [48] and
WHU-CD [49]. LEVIR-CD consists of 637 pairs of images with
a spatial resolution of 0.5 m and a spatial size of 1024 × 1024.
The dataset LEVIR-CD was sliced into 256 × 256 pixels, and
7120, 1024, and 2048 pairs of images were obtained, which
were used in the training set, the evaluation set, and the test set,
respectively. WHU-CD consists of a pair image with a spatial
resolution of 0.075 m and a spatial size of 32507×15354. This
dataset is used for the training set, evaluation set, and test set.
After cropping it to a size of 256 × 256 pixels, the dataset
was randomly divided into three subsets of 5947, 744, and 743
images, which were used in the training set, evaluation set, and
test set, respectively.

2) Evaluation Metrics: To accurately evaluate the perfor-
mance of CD networks, four more common evaluation metrics
[50], [51], intersection over union (IoU), F1-score (F1), recall
(Rec), and precision (Pre) are used to evaluate the network
performance. The detailed definition of the above evaluation
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TABLE I
DETAILED DESCRIPTION OF ALL COMPARISON EXPERIMENTS

metrics can be expressed as follows:

Pre =
TP

TP + FP
(24)

Rec =
TP

TP + FN
(25)

F1 =
2Pre · Rec
Pre + Rec

(26)

IoU =
TP

TP + FN + FP
(27)

where TP, FP, TN, FN denote the numbers of true positive, false
positive, true negative, and false negative, respectively.

B. Experimental Environment

The AFPF-Net is implemented in the Pytorch architec-
ture, and all experiments are tested on the Intel Xeon Gold
5315Y (CPU), and NVIDIA A800 (GPU). Data augmenta-
tion is performed on the input training images using flip-
ping and cropping. The Adam optimizer is used to optimize
the AFPF-Net with momentum, weight decay, β1 and β2

initially set to 0.9, 0.0001, 0.9, and 0.99, respectively. The
learning rate is adjusted using the poly learning scheme as
(1− (cur_iteration/max_iteration))power × lr, where power and
max_ iteration are set to 0.9 and 20 000, respectively, batch size
and learning rate are initialized to 32 and 0.0001, respectively.

C. Comparison With SOTA Methods

To confirm the effectiveness of AFPF-Net, several representa-
tive change detection networks from recent years have been se-
lected for comparative experiments. FC-EF [15], FC-Siam-Conc
[15], and FC-Siam-Diff [15] are fully convolutional-based net-
works. AFCF3D-Net [7] is based on 3-D convolution, attention
mechanisms, and multiscale. DMINet [8] is network based on
convolution, attentional mechanism, and transformer. SNUNet
[28] is a network based on convolution, attentional mechanism,
and multiscale. BITNet [43] and ICIF-Net [44] are networks
based on convolution and transformers. ChangeFormer [52] is
based on multiscale, MLP, and transformer. Table I provides
a detailed the description of the comparative experiments. To
ensure the fairness of the comparisons, they were reproduced
using their released source code and under their default hyper-
parameters.

1) Experimental Results Analysis: To validate the effective-
ness of AFPF-Net, experimental evaluations were conducted on
two different datasets. Table II shows the experimental outcomes
for all comparison networks and AFPF-Net. To enhance read-
ability, the optimal and second-optimal outcomes are denoted
as red and blue, respectively. ChangeFormer, BITNet, ICIF-Net,
and DMINet are based on a concatenation of transformer and
CNN, or pure transformer. From Table II, it can be seen that the
pure CNN-based AFPF-Net outperforms the next best network
on the LEVIR-CD dataset and the WHU-CD dataset in terms
of IoU and F1 by 0.56%/0.33% and 3.07%/1.74%, respectively.
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TABLE II
COMPARISON RESULTS OF TWO CD DATASETS

The reason is that pure transformer-based methods focus more
on global information and are not very good at detecting the
overall detailed information of the change region and small
object changes. However, in change detection, although it is
important to utilize global information to locate the change
region, it is also important to control the detailed information.
Although BITNet, ICIF-Net, and DMINet focus on both global
and detailed information by combining transformer and CNN,
they do not emphasize the generation of feature difference
maps. The AFPF-Net extracts multiscale bitemporal features
through the Backbone shown in Fig. 2(a). Features captured at
higher levels contain more semantic information and pay more
attention to global information, while features captured at lower
levels contain more detailed information. Then the FDE module
generates a fine multiscale change map, and finally, it is input
to the AFPF module through a progressive fusion method, in
which the low-level features are guided by high-level features to
learn the real changes from a global perspective, and the detailed
information lacking in the high-level features is compensated
by the low-level features. So, the generated change regions have
smoother boundaries and more complete content. It should be
noted that although AFPF-Net obtains the optimal scores in
IoU and F1 on both datasets, its accuracy on LEVIR-CD is
not the highest, and some pseudochanges are still not detected.
Based on the above analysis, it can be concluded that AFPF-Net
relies solely on attention mechanisms and CNNs, and its per-
formance is significantly better than other networks on the two
datasets.

2) Visualization of Results: Figs. 3 and 4 show the results of
the visualization of all methods on both datasets. To highlight
the performance gap between AFPF-Net and other networks,
some samples are selected for local feature magnification com-
parisons. As can be seen in Fig. 5, the outline shapes, edge
locations, and completeness of the detected change regions in
our results are clearer than those generated by the other methods,
especially the areas marked by the red boxes. To effectively
demonstrate the disparities between network predictions and
labels, four distinct colors are utilized to highlight the detection
outcomes. White, black, red, and blue are used for TP, TN, FP,
and FN, respectively.

a) Visualization on LEVIR-CD: The visualization results
for the LEVIR-CD dataset are shown in Fig. 3, which shows

that the AFPF-Net has fewer blue parts compared to the other
methods. As can be seen from the first four rows of Fig. 3, most
methods have FP zones (red zones) affected by “nonsemantic
changes,” while AFPF-Net recognizes a very low percentage of
false variations, especially in the fourth row, where AFPF-Net
not only eliminates most of the interferences of “nonsemantic
changes” but also accurately identifies other networks that fail
to check the building changes. In the second and last three rows
of Fig. 3, when only small buildings change or the changed
objects are relatively numerous, most methods have the problem
of losing small changing objects, but AFPF-Net is more accurate
in detecting small object changes. Especially in the second and
sixth rows, most methods tend to focus on the changes of in
large or medium-sized buildings and easily ignore the changes of
small buildings. In contrast, the AFPF-Net can take care of all the
changing objects, even the changes of small buildings occurring
in the upper-left corner of the figure in the sixth row can be
detected. This confirms that AFPF-Net has better performance
than other comparison networks.

b) Visualization on WHU-CD: Fig. 4 illustrates the visu-
alization of the WHU-CD dataset, where most CD approaches
fail to recognize all the details of the changing objects, but
the AFPF-Net can obtain more complete changing objects. In
the top five rows of Fig. 4, most approaches filter out some
“nonsemantic changes” regions to some extent, such as shadows
and road coverage, and are successful at locating real change
zones, but the ability to recognize whole details of change objects
remains inadequate, whereas the AFPF-Net is able to obtain
more complete change buildings. From the last two rows of
Fig. 4, it can be seen that most methods are limited capability in
handling the boundaries of change areas, causing the bound-
aries of change objects irregular or adjacent change regions
connected, while AFPF-Net can better handle the boundary
details and obtain sharper boundary. Especially in the sixth row
of Fig. 4, AFPF-Net successfully identifies the building changes
and ensures the integrity of the change region edges.

From the above analysis of the visualization, although
transformer-based methods, such as ChangeFormer, BITNet,
and ICIF-Net can accurately locate the changed regions in more
cases, the full convolution-based AFPF-Net can also locate these
regions and is more effective for the detection of completeness
than other networks.
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Fig. 3. Visualization of the results on the LEVIR-CD dataset. (a) T1 image. (b) T2 image. (c) Label. (d) FC-EF. (e) FC-Siam-Diff. (f) FC-Siam-Conc.
(g) ChangeFormer. (h) BITNet. (i) ICIF-Net. (j) SNUNet. (k) AFCF3D-Net. (m) DMINet. (n) AFPF-Net. TP, TN, FN, and FP are denoted as white, black,
blue, and red.

Fig. 4. Visualization of the results on the WHU-CD dataset. (a) T1 image. (b) T2 image. (c) Label. (d) FC-EF. (e) FC-Siam-Diff. (f) FC-Siam-Conc.
(g) ChangeFormer. (h) BITNet. (i) ICIF-Net. (j) SNUNet. (k) AFCF3D-Net. (m) DMINet. (n) AFPF-Net. TP, TN, FN, and FP are denoted as white, black,
blue, and red.
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TABLE III
ABLATION STUDY ON FDE AND AFPF MODULES

Fig. 5. Detailed comparison of visualization results.

3) Performance Analysis: As shown in Fig. 6, the tradeoffs
between the IoU of the other methods and AFPF-Net with the
number of floating-point operations (FLOPs) and the number
of parameters (Params) are analyzed on the LEVIR-CD and
WHU-CD datasets. As can be seen in Fig. 6, FC-EF, FC-Siam-
Conc, and FC-Siam-Diff obtain poor results owing to a lack of
complex feature extraction structures, but Params and FLOPs are
relatively low. The other methods, due to use of transformers or
3-D convolution, achieve good results but with relatively high
complexity. At relatively low Params and FLOPs, AFPF-Net
achieves better results than other networks.

D. Ablation Experiments

The effectiveness of the modules within the AFPF-Net is
evaluated by combining or removing the AFPF-Net modules,
ablation experiments were conducted on the WHU-CD and
LEVIR-CD datasets. To enhance the readability of the results,
it is preferred that the results be labeled in red.

1) Effectiveness of FDE and AFPF: To evaluate the effec-
tiveness of FDE and AFPF, ablation experiments are conducted.
From Table III, it can be observed that the detection results
on both datasets are worse when any one module is removed
than when both modules exist simultaneously, which reflects
the synergistic effect of the two modules. FDE is responsible
for extracting the fine feature difference maps, and AFPF is
responsible for extracting the complementary information in
the fine difference maps of different scales, which makes the
detected changed objects more complete.

2) Effectiveness of Different Backbone Networks: Abla-
tion experiments are conducted using ResNet18, ResNet34,
ResNet50, and ResNet101 as the backbone networks, respec-
tively, as shown in Table IV. Specifically, the number of residual
blocks in the other backbones carries on increasing compared
to ResNet18, so the quantity of floating-point operations and
parameters increases greatly. Except for ResNet34, the other
backbones trade computational load for improved network per-
formance. However, although the parameters of ResNet34 are
increased, the overall network performance does not exceed
ResNet18. Therefore, ResNet18 is selected as the backbone of
AFPF-Net.

3) Effectiveness of Different Channel Reductions: The ab-
lation experiments focus on the impact of channel numbers,
with channel numbers set to 64, 96, and 128, respectively. From
Table V, it can be seen that the channel number reduced to 64
performs the best. Interestingly, when the number of multi-scale
feature channels is 96 or 128, the detection performance is worse.
We believe that the reason is that too many channels can easily
lead to overfitting of the network. Therefore, a rise in the quantity
of channels does not inherently result in enhanced performance.

4) Effectiveness of Connectivity Between FDEs: To verify
the effectiveness of skip connections between FDEs, we con-
ducted comparative experiments using dense connections. The
results are shown in Table VI, and there is little difference in
the number of parameters between the two connection methods.
A dense connection fuses the difference features after each
previous layer FDE refinement with the current layer feature dif-
ference map, which enhances the change features but also causes
feature redundancy, leading to an overfitting phenomenon.

5) Effectiveness of FDE: To verify the effectiveness of FDE,
four variants of the FDE module, which are module without
previous layer of difference features (Pldf) and skip connections,
module without Pldf, module without skip connections, and the
complete FDE module, are set to go for the ablation experiments.
From Table VII, it can be noticed that the effect of module
without both Pldf and skip connections is worse than modules
only using Pldf or skip connections, proving that these two
branches are effective. Using only Pldf or skip connections has
worse performance than the complete FDE, which is especially
evident on WHU-CD, where the IoU metric is worse by 1.8%.
Therefore, an FDE using both Pldf and skip connections is the
best choice.

6) Effectiveness of AFPF: To verify the effectiveness of
AFPF, four variants of the AFPF module, which are module
without conflict attention (conflict_att) and boundary compen-
sating attention (boundary_att), module without conflict_att
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Fig. 6. All method Params. and FLOPs results on both CD datasets. (a) IoU versus Params. (b) IoU versus FLOPs.

TABLE IV
ABLATION STUDY ON AFPF-NET WITH DIFFERENT BACKBONES

TABLE V
ABLATION STUDY ON DIFFERENT CHANNEL REDUCTIONS

TABLE VI
ABLATION STUDY ON CONNECTIVITY BETWEEN FDES

TABLE VII
ABLATION STUDY ON FDE

module without boundary_att and the complete module, are
set to go for the ablation experiments. From Table VIII, it can
be viewed that the effect of modules without both conflict_att
and boundary_att is worse than those only using conflict_att
or boundary_att, proving that these two branches are effective.

Modules using only conflict_att or boundary_att have worse
performance than the full AFPF.

Based on the results obtained from the previous six ablation
experiments, it can be concluded that the network architecture
depicted in Fig. 2 is optimal.
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TABLE VIII
ABLATION STUDY ON AFPF

V. CONCLUSION

In this article, a novel network called the AFPF-Net for
the task of remote sensing image CD is proposed. To fully
extract reliable variation information and augmented detail in the
change region, the FDE module is proposed to extract and fuse
the temporal features, using residual connections to aggregate
the difference information of the previous layer to optimize the
difference of the current layer’s bitemporal features. To address
the incompleteness of change objects and the noise interference
caused by the direct fusion of various scale features, the AFPF
module is proposed to improve the change features, utilizing
complementary information among adjacent layers. Using two
publicly accessible datasets (LEVIR-CD and WHU-CD), the
efficacy of the proposed model is confirmed. Moreover, the
ability of the proposed method to detect small targets needs to be
improved, so our future research will be devoted to increasing
the model’s efficiency while accurately detecting small targets.
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