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Abstract—Keypoint matching plays a vital role in the realm of
synthetic aperture radar (SAR) image processing, serving as a
crucial component within this domain. Another key fact to remem-
ber keypoint matching is a crucial step in change detection and
image stitching. In the context of SAR images, a scale-invariant
feature transformation (SIFT)-based approach, known as SAR–
SIFT, presents a notable advantage by mitigating the impact of
speckle noise; however, it cannot yield accurate edge information,
and the resulting keypoints are nonuniformly distributed. We pro-
pose an edge enhancement and homogeneous spatial key point
improved SAR–SIFT framework based on an unbiased difference-
ratio (UDR) edge detector (called EEKHI–SAR–SIFT) to solve the
above problems. The algorithm relies on the characteristics of edge
unbiased localization and constant false alarm rate of UDR edge
extraction to reduce the extracted wrong corner information as
well as enhance the extraction exactness of keypoints. In addition,
adaptive nonmaximum suppression (ANMS) method is applied to
homogenize the dense keypoints with a large initial number that are
gained by means of the EEKHI–SAR–SIFT algorithm and reduce
their local clustering. Finally, a descriptor construction strategy
that retains multiscale information is adopted to improve the de-
scriptor uniqueness. Tests using multiple sets of SAR image data
from different satellites (Gaofen-3, RADARSAT, and Sentinel-1A)
demonstrate that the efficacy of the proposed EEKHI–SAR–SIFT
algorithm reduces the root mean square error is about 1–2 pixel
lower than the final result of the original SAR–SIFT algorithm.

Index Terms—Nonmaximal suppression point detection, ratio
of exponentially weighted average (ROEWA) detector, SAR–SIFT,
synthetic aperture radar imagery, unbiased difference-ratio (UDR)
detector.
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I. INTRODUCTION

IMAGE registration of synthetic aperture radar (SAR) images
is extensively used in change detection [1], image stitching

[2], image retrieval [3] and interferometric SAR technology,
and SAR image keypoint extraction is an important basis for
these applications. Therefore, to ensure the accuracy of the
above image processing results, it is crucial to design a high-
precision image matching process [4]. Currently, it is hard to
extract unique, robust, and uniformly dispensed features from
SAR images because of their remarkable intensity variations
and geometric differences and the unique multiplicative speckle
noise problem [5].

Depending on the matching method, image registration can be
divided into two categories, feature-based matching (FBM) [6]
and area-based matching (ABM) [7]. An ABM method directly
matches the keypoints in a search area based on the grayscale
feature of the image [8]. The most representative ABM method
is the normalized cross-correlation (NCC) method [9], which
matches by calculating the correlation of the image window to
be matched. The NCC method is commonly used because of its
robustness to linear radiation transformation while effectively
diminishing the influence of illumination on the matching ac-
curacy. Although NCC is extensively used in image matching,
it cannot deal with nonlinear image relationships [10]. Other
region-based matching methods include the sequential similarity
detection algorithm [11] and the mutual information [12].

The FBM algorithm obtains the correspondence between
images by extracting and describing the keypoints with a cer-
tain texture. The most classic FBM algorithm is scale-invariant
feature transformation (SIFT) [13]. The SIFT algorithm extracts
key point features based on the local gradient direction histogram
[14], which is widely used in image registration due to its char-
acteristics of rotation, illumination, and scale invariance [15].

In the past research, it was found that the SIFT matching
algorithm has problems such as large image size, aggregation
of matching points and large mismatch ratio [16]. SAR-SIFT
used the ratio of exponentially weighted averag (ROEWA) [17]
filtering for each scale-space in the constructed scale-space to
ensure that the obtained scale-space images have CFAR prop-
erties. In terms of descriptor construction, a gradient location
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and orientation histogram (GLOH) [18] is used to improve the
robustness and uniqueness of feature descriptors.

The SAR–SIFT algorithm leads to corresponding improve-
ments in the above three aspects and successfully applies the
SIFT algorithm to SAR image data. Bangsong et al. [19] pro-
posed the USAR-SIFT method, using the triangulation model
of the traditional data model to optimize the spatial distribution
of the keypoints in SAR images. On the contrary, this algorithm
also has the problems of insensitivity to image edge information.
Paul and Patti [20] proposed the I–SAR–SIFT algorithm, in
the process of SAR–SIFT feature description, the multiscale
feature descriptor construction method is adopted, which not
only improves the uniqueness of feature descriptors, but also
improves the accuracy of matching points. However, this method
has a drawback, the matching points are mainly concentrated
in the clearly textured areas [21]. Fan et al. [22] proposed the
use of sparse representation technology and designed a new
feature descriptor for matching, which can significantly improve
matching performance and accuracy. According to the inherent
characteristics of optical and SAR images, Xiang et al. [23]
improved the key point detection, direction allocation, and other
aspects of scale space to improve the registration accuracy. Hong
et al. [24] proposed the ROEWA–Blocks algorithm by intro-
ducing the ROEWA operator in the SAR–SIFT algorithm. The
ROEWA–Blocks algorithm has been used to solve the problem
of abrupt dark blocks in SAR images, and concentric circles
have been used to save multiscale image features. Xiang et al.
[25] estimate scaling and rotation differences of SAR imagery
from metadata and use a novel matching framework to speed
up the flow of matching. However, none of these concepts can
deal with the barrier of inaccurate edge localization in an SAR
image feature extraction algorithm. Xiang et al. [26] proposed
a stable keypoint detector based on feature intersection, and
designed cross-stage partial Siamese network to enhance the
uniqueness of descriptors. Finally, an instance mining algorithm
was employed to improve matching efficiency, resulting in sat-
isfactory matching outcomes. However, the method is unable to
capture high-resolution texture details, leading to some deviation
in the localization of the obtained matching points. Xiang et al.
[27] employed a joint filter of refined-lee filtering and polar-
ization whitening filtering, which, while limiting the impact of
speckle noise, preserves the details of high-resolution imagery.
A novel Siamese multiscale attention network was designed for
constructing multiscale descriptors, ultimately achieving precise
SAR image registration. However, the distribution of the match-
ing points obtained by this method is not uniform, with some
local areas lacking matching points in the experimental results.
In contrast, the algorithm presented in this article achieves a
matching point accuracy in Gaofen-3 satellite imagery that is
comparable to the aforementioned algorithms. However, the
adaptive nonmaximum suppression (NMS) method employed
in this study yields a uniformly distributed set of matching
points, and the adaptive NMS method chosen in this article
can yield a uniformly distributed set of matching points. In the
aforementioned methods, only the acquisition of feature points
unaffected by image noise and illumination variations can be
ensured. However, the edge texture information in the filtered

image becomes blurred, leading to some feature points obtained
by the SAR–SIFT algorithm deviating from the texture edges of
the image. These feature points do not fall within the scope
of true feature points. We have chosen to improve with the
unbiased difference-ratio (UDR) edge detector, which maintains
high-resolution texture details while significantly reducing the
impact of speckle noise. Compared to other algorithms, the
feature points obtained in this article are closer to the image
edges and can effectively reduce the number of such feature
points.

This approach is innovative in the following respects.
1) This article employs UDR filtering in the scale space,

replacing the ROEWA filtering used by SAR–SIFT. The
UDR filtering, which combines differential and ratio op-
erations, not only mitigates the speckle noise in SAR
imagery but also more accurately preserves image details,
thereby capturing superior textural and structural features
of the images.

2) The feature points obtained in the SAR–SIFT algorithm
exhibit spatial clustering and redundancy. Traditional
NMS algorithms can reduce local aggregation but do
not ensure the acquisition of globally distributed feature
points. Therefore, this article opts for a fast adaptive NMS
algorithm, which adjusts dynamic thresholds to ensure that
the selected feature points are distributed across the entire
image. Furthermore, to enhance algorithmic efficiency,
CPU multithreading is utilized for accelerated processing.

3) Building upon the descriptor construction of SAR-SIFT,
this article adopts a 45° bin partitioning strategy and
combines it with multiscale concentric circular support
regions to construct descriptors, significantly enhancing
the uniqueness of the descriptors.

The rest of this article is set as follows. In Section II we in-
troduce some improvements to the algorithm. In Section III, we
present qualitative and quantitative comparison results between
our algorithm and other algorithms. Ultimately, in Section IV, a
summary of the algorithm in this article is made.

II. IMPROVED PROPOSALS

The high-precision and uniform keypoint extraction method
exhibited in Fig. 1. The specific explanation is as follows:
the stage A replaces the ROEWA operator in the SAR–SIFT
algorithm with UDR detector to obtain high-quality SAR image
gradient maps. The stage B uses an adaptive NMS method to
optimize the keypoints in different regions. The stage C saves
multiscale information in concentric circles and subsequently
constructs feature descriptors.

A. UDR Edge Detector for Constructing Multiscale Space

The ROEWA operator used in the SAR–SIFT algorithm only
considers ensuring the CFAR of the image, without taking into
account the precise localization of edge information within
the image. This article introduces an UDR detector that com-
bines ratio and difference operations. This detector possesses
the characteristic of CFAR in the ratio operation and precise
edge localization in the difference operation. In this article, the
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Fig. 1. Algorithm flowchart of this article (NNDR: nearest neighbor distance ratio and RANSAC: random sample consensus).

ROEWA operator used in the SAR–SIFT algorithm is replaced
with the aforementioned UDR detector in the scale space. This
replacement effectively reduces the number of false keypoints
in the SAR–SIFT algorithm, thereby achieving the extraction of
high-precision keypoints.

The EEKHI–SAR–SIFT algorithm proposed in this article
improves the UDR detector to adapt to the SAR–SIFT scale
space and uses detection filters, which are represented by
hname(x, y). Superscripts “||” and “�” represent parallel and ver-
tical detection filters, respectively. The one-dimensional (1-D)
vertical filter can be expressed as follows:

h⊥
UDR (x) = |x|α−1exp

(
−|x|

β

)
ε (x)

= h⊥
UDR (x) + h⊥

UDR (−x)

h⊥
UDR (x) = |x|α−1exp

(
−|x|

β

)
ε (x) /ρηi

h⊥
UDR (−x) = |x|α−1exp

(
−|x|

β

)
ε (−x) /ρηi. (1)

In (1), parametersα > 1 andβ > 0 control the peak value and
vertical filter, ε(·) respectively represents unit step function, ρ
the initial layer scale in the SAR–SIFT feature extraction (default
is 2), η the adjacent two-layer scale ratio (default 3

√
2), and i the

scale space layer number of the SAR–SIFT algorithm (default
is 5). The 1-D parallel filter can be expressed as follows:

hUDR (y) =

⎧⎨
⎩
1/ρηi |y| � l‖

exp

(
−(|y|−l‖)

2

2σ2

‖2

)
/ρηi |y| � l‖

(2)

where parameters l|| and σ|| represent the flatness and decay
degree of the bell-shaped function, respectively. A 2-D edge
detector with UDR detector is written as follows:

hUDR (x) = h⊥
UDR (|x|)h‖ (y)

= hUDR (+x, y) + hUDR (−x, y). (3)

Parameter+x represents the left sides of the UDR detector and
parameter –x represents the right sides. In this study, this UDR
detector replaces the original ROEWA operator in the SAR–
SIFT algorithm. The objectives are to adapt to the multi-scale
space requirements of SIFT, decrease the influence of speckle
noise in SAR images, and obtain unbiased image edge location
information.

To match an edge with the direction of the UDR detector,
the latter needs to be rotated. The UDR detector direction is
expressed as follows:

hθ
UDR (x) = hθ

UDR (+x, y) + hθ
UDR (−x, y)
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hUDR (+x, y) = h ((+x) cosθ − ysinθ, (+x) sinθ + ycosθ)

hUDR (−x, y)=h ((−x) cos θ−y sin θ, (−x) sin θ+y cos θ) .
(4)

In (4), parameter θ is the angle of the desired rotation.
Many different kinds of feature detectors have been proposed

in optical images, such as Harris–Laplace [29] and Harris-affine
[30]. When these feature detectors in optical images are directly
used for SAR image matching, the effect is not satisfactory.
Therefore, ROEWA filtering is used to process the image in
SAR–SIFT to reduce the influence of speckle noise, and the
gradient by ratio (GR) method is used to calculate the gradient
magnitude and gradient direction of an image. This method is
robust to speckle noise, particularly for SAR imagery. Specif-
ically, the logarithm of the area-weighting ratios of the left
and right areas in the horizontal direction and the upper and
lower areas in the vertical direction of the ROEWA operator are
employed to try to solve the gradient magnitude and direction
of a pixel point. Moreover, (6) is used to calculate the horizontal
and vertical gradients. Therefore, according to the principle of
GR calculation, horizontal and vertical rotation angles are input
in the UDR detector. In addition, the horizontal and vertical
gradients are calculated using the GR algorithm formula as
follows:

Uhorizontal =
h0◦

UDR (+x, y)

h0◦
UDR (−x, y)

, Uvertical =
h90◦

UDR (+x, y)

h90◦
UDR (−x, y)

Gx,α = log (Uhorizontal , σ)

Gy, α = log (Uvertical , σ) . (5)

Moreover, the gradient magnitude and direction are calculated
using the following:

Gm,σ =

√
(Gx, σ)2 + (Gy, σ)2

Go, σ = arctan

(
Gx, σ

Gy, σ

)
(6)

where Gm,σ is used to describe the gradient magnitude and
Go, σ is used to describe the gradient direction. And α in (5) is
the weight parameter used to calculate the local mean, whereasσ
in (6) refers to the scale space where the UDR detector is located.
Because the SARHarris method cannot effectively determine the
feature scale parameters, it cannot yield the feature positions in
the scale space

Because the SAR–Harris method cannot effectively deter-
mine the feature scale parameters, it cannot yield the feature
positions in the scale space. Yu et al. [2] combined the Harris–
Laplace and ROEWA methods to obtain accurate positions and
corresponding scale information of keypoints. Therefore, this
article proposes to use the Harris–Laplace algorithm to achieve
features in SAR images. The next two formulas are the Harris–
Laplace matrix and a corner detector based on the UDR detector
are formulated as follows:

M (x, y, σn)

Fig. 2. Spatial domain expansion map of candidate keypoints.

= σ2
n · g

(√
2σn

)
∗
[

(Gx,α)2 (Gx,α) (Gy, α)

(Gx,α) (Gy, α) (Gy, α)2

R (x, y, σn)

= det (M (x, y, σn))− d · tr(M (x, y, σn))
2 (7)

where σn denotes the nth scale space, g(
√
2σn) represents a 2-D

Gaussian function with a standard deviation of
√
2σn, and d is

an arbitrary parameter (default is 0.04).

B. Keypoint Detection and Homogenization

Because the SAR–Harris method cannot effectively deter-
mine the feature scale parameters, it cannot yield the feature
positions in the scale space.

In the SAR–SIFT algorithm, detection of a candidate keypoint
only compares the 3 × 3 spatial neighborhood of the current
layer to determine if it is an extreme point. When applying
the SAR–SIFT algorithm to extract keypoints, the majority of
keypoints cluster in areas with large pixel grey values, and the
keypoints are spaced within two pixels. These keypoints with
relatively close spatial positions may lead to more mismatched
points with the subsequent nearest neighbor algorithm. This
study solves the above problems by expanding the comparison
range of candidate keypoints. As shown in Fig. 2, the comparison
is performed between 5 × 5 and 7 × 7 spatial neighborhoods in
the same scale space. If a candidate keypoint is an extreme point,
it is retained; otherwise, it is removed. By expanding the range
of the domain comparison, extraction of the keypoints that are
extremely close in space can be limited and the phenomenon
of keypoint clustering in grey areas can be reduced. Moreover,
the recognizability of corner points can be increased, and im-
proved keypoint information can be provided for the subsequent
keypoint matching.

After the above operations, although keypoints with a more
uniform spatial distribution can be obtained compared with the
SAR–SIFT algorithm, numerous calculated keypoints are still
clustered and redundant. Therefore, it is necessary to eliminate
a portion of the redundant and locally clustered initial feature
points. The elimination process typically employs the NMS
algorithm. Traditional NMS algorithms retain only the feature
points with the highest response within each neighboring region,
discarding all others. The size of the neighboring region is
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Fig. 3. SSC algorithm flow. (a1) is original image. (a2) is keypoint image. (b) is initialization of entire process. (c) represents obtaining of strong response points
throughout image with square suppression. (d) represents binary search to determine square side length d. (e) represents final uniform keypoints.

usually manually set. This article opts to improve the aforemen-
tioned algorithm by employing a square suppression technique.

Fig. 3 shows the general flow of the ANMS algorithm, com-
pared to the traditional NMS algorithm, the fast adaptive NMS
algorithm employed in this article introduces a dynamic thresh-
old mechanism instead of relying on a fixed threshold. This dy-
namic thresholding allows for a more uniform distribution of the
selected feature points across the image, enhancing the detection
performance by ensuring a balanced representation of features
throughout the scene. a1 is the premier image and a2 is the initial
keypoints after keypoint extraction from the initial image. In the
b process, sorting is performed according to the intensities of the
keypoints, and the side length of the square area is initialized,
NMS algorithm simply initiates from the point with the highest
response, discards feature points within its 8-neighbor vicinity,
and then sequentially examines the remaining points, in this
article, steps c and d are employed to ensure that the selected
feature points are uniformly distributed across the entire image.
Steps c1 to c2 denote the search range estimation (depicted as red
boxes) through a binary search process, which iterates until the
number of global points is achieved. Step d represents the iter-
ative adjustment of the search range estimation (illustrated with
red boxes) to ultimately achieve the required number of feature
points, wherein the formula for the search range estimation is
dl =

1
2

√
n
m and dh = H+W+2m−√

Δ
2(m−1) (where m is the required

quantity of keypoints after homogenization, n is the initial value
of keypoints, H and W are the height and width of the im-
age, respectively, and Δ = 4w + 4m+ 4Hm+H2 + w2 −
2WH + 4WHm). The c process is repeated until the number of

homogenized keypoints becomes equal to the required number
of keypoints.

C. Multiscale Feature Descriptor Construction

Keypoint descriptor constructed from a single-scale support
region cannot achieve good results for SAR image keypoint
matching. To increase the accuracy of feature matching, in [5]
and [20], multiscale spatial information was used to construct
descriptors. This approach was aimed at solving the problem
that two noncorresponding points may have similar feature in-
formation with a keypoint descriptor constructed in single-scale
space in case of noisy images. Based on the construction of
multiscale descriptors in [5], this study uses more scale space
information to construct feature descriptors to further improve
their uniqueness and increase the accuracy of feature matching.

In this study, four concentric circle support regions are used
to build a feature GLOH descriptor. The four different regions
generated by the four concentric circles record different scale
space information. The scale space information is calculated us-
ing (7). As depicted in Fig. 4(a), the SAR–SIFT method utilizes
the GLOH approach for the construction of descriptors, where
the radii of the outer, middle, and inner circles are in the ratio of
1:0.73:0.25. Fig. 4(b) illustrates that PSO-SIFT builds upon the
SAR–SIFT descriptors, dividing the SAR–SIFT descriptor into
17 positional bins according to a 45° rule, thereby enhancing the
distinctiveness of the descriptor. Considering that a single-scale
support region may occasionally lead to mismatched feature
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Fig. 4. Descriptor structure diagram. (a) Multiscale spatial information descriptor construction map. (b) Descriptor internal division.

TABLE I
DESCRIPTOR EXPERIMENT

points exhibiting similar local features, as shown in Fig. 4(c), I-
SAR-SIFT employs multiple concentric circular support regions
at different scales to address this issue. However, this method
still divides the positional regions at 90°, which can result in
decreased matching accuracy when matching similar terrain
areas in the image. Fig. 4(d) demonstrates that the descriptor
construction in this article combines the aforementioned meth-
ods, adopting both the 45° division scheme to reduce matching

accuracy in similar terrain regions and multiscale concentric cir-
cular regions to further enhance the uniqueness of the descriptor.
This article continues to use the ratio of concentric circle radii
as adopted in SAR–SIFT. For the newly added concentric circle
areas, this study has determined the optimal radius ratio through
experiments. The experimental results are shown in Table I. The
experiment utilized the Test-2 data provided in Table III for
the study. It can be observed that the ratios exhibit an extremum
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TABLE II
TEST ENVIRONMENT

when set at 1:0.73:0.5:0.25 for both quantitative indicators. Con-
sequently, this article selects this ratio as the ratio for the GLOH
descriptor.

D. Matching and Outlier Detection

After the keypoints are obtained, an outlier elimination
method combining the nearest neighbor distance ratio (NNDR)
and the random sample consensus (RANSAC) [30] is used for
feature matching. Based on the Euclidean distance, the NNDR
selects the closest distance and the next closest distance by
sorting. If a keypoint satisfies

dn < dsn × dratio (8)

it is considered as a preliminary matching point. In (8), dn rep-
resents the nearest neighbor distance, dsn represents the second
nearest neighbor distance, and dratio represents the matching
threshold. In this study, dratio = 0.8.

III. EXPERIMENTS AND ANALYSIS

In this part, we propose the testing and analysis of the method
issued in this article conducted on five sets of SAR image data
(four different satellites are selected). The images are compared,
and the final keypoint matching results on the five sets are tested
and analyzed using three quantitative evaluation criteria: RMSE,
keypoint repeatability, correct matching ratio (CMR), number
of matches (NCM), mutual information (MI), and distribution
quality. The specific test environment is detailed in Table II, and
the quantitative metrics are as follows:

A. Transformation Model

1) RMSE: To facilitate a more quantitative assessment, it is
necessary to obtain the ground truth geometric transformation
between each pair of images. However, due to various interfer-
ences, real datasets often lack true geometric transformations,
and approximate ground truth geometric transformations are
commonly used for evaluation. The determination of an affine
transformation matrix requires at least three pairs of correspond-
ing points. Li et al. [32] utilize five pairs of points that are
evenly distributed and essentially cover the entire global area
to solve for the affine transformation matrix. The test image
selected in this article is slightly larger than the test image in
the above method, so this study selects ten pairs of points that
are evenly distributed and essentially cover the entire global
area to solve for the affine transformation matrix, serving as
an approximation of the ground truth. Moreover, the residual

was calculated according to the estimated affine transformation
model, and the RMSE was defined as follows:

RMSE =

√
1

N

∑N

i=1

[
(xi − xi

′)2 +
(
yi − y

′
i

)2]
(x′

i, yi
′, 1) = H · (xi, yi, 1) . (9)

The parameter N represents all the keypoints extracted by
the feature extraction algorithm, and (xi, yi) represents the
keypoints obtained after RANSAC. (x′

i, y
′
i) represents the lo-

cation of (xi, yi) after being transformed by the estimated affine
transformation model.

2) CMR: The CMR is defined as CMR = Ncorr

Nnndr
, where

Ncorr depends on manually selecting ten uniformly distributed
matching point pairs, to evaluate the affine model for the image
pairs of each test. We utilize this affine model to determine the
location errors of the matches received, when the matching point
obtained by the matching algorithm is within 2 pixels of the
point obtained by the homography matrix transformation, the
matching point is considered to be the correct point. Nnndr

represents an initial matching point pair that is not screened by
RANSAC.

3) Repeatability: It is the ratio of the correct pairing rate to
the minimum number of features detected in two images. The
repetition rate is defined as follows:

R =
Nrepeat

min (N1, N2)
=

| {‖ xi −Hx′
i|| < 3}N1

i |
min (N1, N2)

(10)

where Nrepeat represents the number of duplicate points in the
two images, N1, N2 express the number of keypoints initially
detected in the two images, and H is the estimated ground truth
transformation between the two images.

4) NCM: Li et al. [32] employed the NCM as an evalua-
tion metric for the number of matched points. In this article,
we continue to use this metric as the basis for evaluating the
quantity of matched points. The NCM is determined by the
following strategy: The affine transformation matrix obtained
through (9) is used to calculate the residual value for each pair
of corresponding points. Pairs with residuals less than two pixels
are considered to be correctly matched.

5) MI: MI method utilized by Nabatchian et al. [33] is adept
at assessing the similarity of matched points. Hence, this article
continues to employ this method for evaluating the similarity
of matched points. The MI calculation process is as follows:
Based on the coordinates of the feature points in the left and
right images, a 4x4 neighborhood is constructed around each
pair of matching points. The grayscale values within these
neighborhoods, which range from 0 to 255, are considered as
two variables. The information entropy of the feature points
is calculated using (11). Subsequently, the joint entropy of the
matching points is determined using (13). Finally, the mutual
information of the matching points is computed using (12),with
detailed computational specifics available in [34]

MI (A,B) = H (A) +H (B)−H (A,B) (11)

H (x) = −
∑
x∈X

p (x) log (p (x)) (12)
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TABLE III
DETAILED INFORMATION OF ALL TEST CASES

H (A,B) = −
∑
x,y

p (x, y) log (p (x, y)) (13)

where MI represents mutual information value, H(A) represents
information entropy of Figure A, H(B) represents information
entropy of Figure B, H(A, B) represents joint entropy, x repre-
sents gray value, p(.) represents the probability that the grayscale
value is x in grayscale information.

6) Local and Global Distributions of Matches: The distri-
bution quality of the matched point pairs is assessed using two
well-known measures. The first is the criterion introduced in
[34]. The area descriptor is a measure of the dispersion or
variability of the triangular areas formed by the matching points.
A smaller area descriptor indicates a better distribution of match-
ing points. The calculation method is illustrated in (14), with
detailed computational specifics provided in [34]. The second
evaluation metric is the comprehensive metric φ, as adopted by
Zhu et al. [35]. As the second measure, the statistical distribution
quality factor φ, developed in paper [35], a smaller φ indicates
a better distribution of matching points. The calculation method
for this metric is shown in (15), with detailed computational
specifics available in [36]

D = DA × DS =

√∑n
i=1

(
Ai

A − 1
)

n− 1
×
√∑n

i = 1 (Si − 1)

n− 1
,

Ā =

∑n
i=1 Ai

n
; Si =

3max (Ji)
π

. (14)

φ =

2× (1/Nred + rmsLOO + BPP (1.0) + Scat)
+ rmsall + 1.5× (pquad + Skew )

(2 + 2 + 2 + 2 + 1 + 1.5)
. (15)

In this equation, n is the total number of Delaunay triangles, Ai
and max(Ji) indicate the area and maximum angle (in radians)
of the ith triangle, and A is the mean area of all triangles. Lower D
values show the geometrical homogeneity of the obtained Delau-
nay triangles, which is a measure of the uniform distribution of
the matched points.Nred refers to the number of matching pairs,
rmsall refers to the root-mean-square error for detected matching
pairs, rmsLOO is a measure combining the leave one-out method
with rmsall, BPP(1.0) means the percentage of bad points whose
residual distances greater than 1 pixels, pquad is used to detect
whether the reserved keypoints are equally distributed across the
quadrants,Skew is a statistical evaluation regarding the presence
of a preference axis on the residual scatter plot, and Scat is

a statistical evaluation regarding the feature point distribution
across the whole image.

B. Data Sources and Parameter Settings

The data used in this study are images of different regions
acquired at different times from four different satellites. The
satellite image data of these different times show significant
radiative changes and geometric differences, and the image
details can be found in Table III. We conduct experiments using
different feature extraction algorithms on five sets of image
data. The parameter settings for the SAR–SIFT algorithm are as
follows: To limit the computational load and prevent excessive
consumption of computational resources, this article restricts the
number of image keypoints to 4000. Following the scale-space
parameter recommendations provided by the SIFT algorithm,
the first layer of the scale space in this article is set to ρ1 = 2,
the constants of two adjacent scale spaces are 3

√
2, the number of

scale spaces is set as 8, and arbitrary parameter d is set as 0.04.
The parameter settings of the UDR detector are adjusted based
on the image. The selection of UDR parameters is based on the
parameter setting requirements proposed in the literature [28],
with specific parameter adjustment requirements as described in
the following formula:⎧⎪⎪⎨

⎪⎪⎩
α = {2, 3, 4, 5}
β = 0.5 + 0.5k1, k1 = 0, 1, . . . , 9
l‖ = 1 + k2, k2 = 0, 1, . . . , 4
σ‖ = 1.5 + 0.5k3, k3 = 0, 1, . . . , 13.

(16)

In SAR–SIFT, a threshold of 0.8 is adopted for the NNDR
method. This is an empirically determined value that is consid-
ered to yield good results. It balances false matches and missed
matches, providing reasonable matching quality. Therefore, this
article adheres to the threshold selection used in SAR–SIFT.

C. Comparison of Results of the Proposed Algorithm

In this section, the convolutional, multiscale gradient mag-
nitude, and Harris–Laplace scale space images obtained by
applying the UDR detector and the ROEWA operator are shown.
Based on the qualitative analysis of the advantages of the UDR
detector compared to the ROEWA operator, the method pro-
posed in this article and the SAR–SIFT algorithm respectively
extract keypoints from simulated SAR images. Accordingly, the
difference in the distributions of the keypoints is obtained.
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Fig. 5. Convolutional image comparison. (a) Original image. (b) Convolutional image obtained with ROEWA detector. (c) Convolutional image obtained with
UDR detector.

Fig. 6. Gradient images at different scale spaces. (a)–(e) Gradient images obtained by ROEWA operator at different scales and (f)–(j) gradient images obtained
by UDR detector at different scales. The scale values from left to right are 4.00, 5.04, 6.35, 8.00, and 10.08, respectively.

1) Convolving Images With Different Detectors

Fig. 5 shows the convolutional images obtained with different
operators in the same scale space. After the ROEWA operator
convolves the original image, the image is subject to a large
noise, and good texture information cannot be derived from the
entire image. However, the convolutional image after application
of the UDR detector to the original image is highly refined.

2) Image Gradients Obtained By Different Detectors: Fig. 6
presents the image gradients obtained using the GR computation
method with different detectors across various spatial scales.
At lower scales, compared to the SAR-SIFT algorithm, our
algorithm captures image gradients that retain texture informa-
tion more closely and preserve edge information of the image
effectively. As the spatial scale increases, the image gradient
information preserved by both our algorithm and the SAR-SIFT
algorithm begins to blur gradually. However, at higher scales,
the image gradients retained by the SAR-SIFT images are less
clear and contain less rich texture information compared to our
algorithm.

3) Multiscale Harris–Laplace Images Constructed By Differ-
ent Detectors: Fig. 7 shows the Harris–Laplace scale space im-
ages constructed by applying the ROEWA and UDR detector in
different scale spaces on SAR images. In this study, a five-layer

scale space was built for the experiments. With the increase in
the scale factor, scale images can be obtained, and the feature in-
formation gradually decreases. Compared to the Harris–Laplace
scale space image constructed by the ROEWA operator, those
constructed by the UDR detector have fewer bright patches;
therefore, the obtained image information is also clearer.

4) Keypoint Detection in Simulated Images By Different De-
tectors: Fig. 8 shows the results of two different corner detection
methods are given. The one on the left is the corner points
obtained by Harris–Laplace–Roewa. Although there are many
corner points, they are not evenly distributed in or around the
rectangle, and some of them deviate from the corner points. The
one on the right is the corner points obtained by the method
in this article, although there are fewer corner points compared
with the one on the left, they are concentrated in the four corner
points. In contrast, the detector of our method performs better.

5) Keypoint Detection in Local and Global Image: Fig. 9
shows the distribution of local keypoints. The left image illus-
trates the local distribution of keypoints obtained by SAR-SIFT.
It can be clearly observed that there is a bias in the localization
of keypoints in the lower left and lower right areas. In contrast,
the proposed algorithm can accurately locate keypoints on the
edges of the image.
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Fig. 7. Gradient Harris–Laplace scale space images by different detectors. (a)–(e) Harris–Laplace scale space images by ROEWA operator. (f)–(j) Harris–Laplace
scale space images by UDR detector. The scale values from left to right are 4.00, 5.04, 6.35, 8.00, and 10.08, respectively.

Fig. 8. Corner detection in simulated SAR image. (a) Harris–Laplace ROEWA operator. (b) Harris–Laplace UDR detector. (c) Harris–Laplace ROEWA operator
and enlarged corner. (d) Harris–Laplace UDR detector and enlarged corner.

6) Feature Point Screening Results and Efficient Comparison
Results: Upon examination of Fig. 10, it is evident that there
is a significant concentration of closely overlapping feature
points within certain regions of the image. This high density
of feature points not only results in redundant information but
also poses a high risk of erroneous matches during subsequent
feature matching processes due to their high degree of similarity.
After processing with the algorithm presented in this article, the
distribution of feature points has been significantly optimized. In
areas of high density, the algorithm effectively prevents exces-
sive suppression, ensuring a suitable retention of feature points.
Conversely, in regions of low density, the algorithm preserves
a greater number of feature points to maintain the integrity and
richness of the feature point distribution. This approach not only

mitigates the clustering of feature points in local areas but also
enhances their distinctiveness.

7) Experimental Results and Evaluation: To verify that the
SAR image matching framework proposed in this article has
better feature matching accuracy, we use multiple sets of
different satellite image data to conduct comparative exper-
iments with SIFT, SAR–SIFT, speeded up robust features
(SURF) algorithms, Affine-SIFT (ASIFT) and KAZE-SAR
[31], OS-SIFT [23], and EEKHI–SAR–SIFT retained 40% of the
original keypoints using SSC. The matching consequences of the
different algorithms on the test data (Gaofen-3, RADARSAT,
and Sentinel-1A) are shown in Figs. 11–14, where the red
line represents the final correct matching result, and the green
line represents the wrong matching result (based on visual
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Fig. 9. Position of keypoints of SAR–SIFT and the method in this article. (a) SAR—SIFT. (b) This article.

Fig. 10. Feature point distribution comparison diagram. (a) Initial feature point. (b) TopM. (c) This article.

Fig. 11. Matching points obtained by methods used in experiments for Test-1. (a) EEKHI-SAR-SIFT, (b) SARSIFT, (c) SIFT, (d) SURF, (e) KAZE-SAR, (f)
OS-SIFT.
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Fig. 12. Matching points obtained by methods used in experiments for Test-2. (a) EEKHI-SAR-SIFT, (b) SARSIFT, (c) SIFT, (d) SURF, (e) KAZE-SAR, (f)
OS-SIFT.

Fig. 13. Matching points obtained by methods used in experiments for Test-3. (a) EEKHI-SAR-SIFT, (b) SARSIFT, (c) SIFT, (d) SURF, (e) KAZE-SAR, (f)
OS-SIFT.

Fig. 14. Matching points obtained by methods used in experiments for Test-4. (a) EEKHI-SAR-SIFT, (b) SARSIFT, (c) SIFT, (d) SURF, (e) KAZE-SAR, (f)
OS-SIFT.
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TABLE IV
QUANTITATIVE COMPARISON OF MATCHING RESULTS TEST

judgment). The quantitative evaluation results are presented in
Table IV, the algorithm presented in this article has achieved
the best quantitative metrics in the aforementioned evaluation
criteria. MI quantitative results of our algorithm are consistently
around 0.8, indicating that the matched points obtained by our
algorithm exhibit a good degree of similarity. In contrast, the MI
results of other algorithms are inferior to those of our algorithm,
and they are unable to provide quantitative analysis results for
all test images, demonstrating a poorer general applicability.
The D and φ indices of our algorithm, as observed in the Test-1
and Test-2 experimental data, are maintained within the range of
0.45 to 0.55. Due to the lower image quality in Test-3 and Test-4,
the quantitative assessment results are not as favorable as those
in Test-1 and Test-2. Nonetheless, even in these conditions, the
distribution of matched points by our algorithm still outperforms
other algorithms.

Fig. 11 presents the final matched point pairs obtained using
GF-3 imagery, which has regions with rich texture information.
Compared to other algorithms, Fig. 11(a) exhibits a more favor-
able distribution of matched points and lacks obvious erroneous
matches. As shown in Table IV, Fig. 11(a) achieves the highest
accuracy. In contrast, although Fig. 11(b) appears to have no
apparent errors, Table IV indicates lower accuracy compared
to the methods in Fig. 11(a) and (e). This limitation arises
from the poor noise-filtering capability of its own filter, and
the uneven distribution of matched points in Fig. 11(b) with no
matches at the top may lead to reduced accuracy in subsequent
adjustment or 3-D reconstruction, which is critically detrimental.
Fig. 11(c) and (d) fail to produce correct results due to limitations
in their respective algorithms, preventing effective handling of
highly noisy imagery. Fig. 11(e) yields more matched points

but also contains noticeable erroneous matches. This is because
the method employs nonlinear diffusion filtering to reduce noise
influence, which can mitigate noise to a certain extent. However,
due to the similarity between speckle noise and image details, the
remaining unfiltered noise significantly affects the final results.
Moreover, the loss of image details and blurring caused by the
smoothing process of nonlinear diffusion filtering negatively
impact the accuracy. Quantitative evaluations in Table III reveal a
slight disparity in accuracy between Fig. 11(e) and (a). Although
Fig. 11(f) lacks obvious erroneous points, the method improves
on scale space and corner points. However, when corner lo-
calization is imprecise, it fails to achieve higher accuracy, as
reflected in the lower quantitative evaluation metrics in Table IV.
The situations depicted in Figs. 12 and 13 resemble Fig. 11,
where SIFT and SURF methods in Fig. 13 do not exhibit appar-
ent errors but still show significant positional deviations upon
closer inspection, as demonstrated by the quantitative metrics in
Table IV.

Fig. 14 illustrates the results obtained from Sentinel data,
characterized by poor image quality and high noise levels. The
actual overlapping area is only a small portion on the right
side, contributing to the overall lower accuracy of all methods.
Fig. 14(f) fails to produce correct results despite utilizing the
stability of corner points and modifying the DOG scale space
of SIFT to Harris scale space. This modification does not ef-
fectively address noise influence, leading to incorrect results
when corner points are severely disrupted by noise. Addition-
ally, due to the small overlapping area in the Sentinel imagery,
numerous useless feature points are generated, further affecting
the matching process. Consequently, Fig. 14(f) does not yield
any correct matches. Fig. 14(e) contains 2–3 obvious erroneous
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matches, similar to the issues observed in Figs. 12–14. Fig. 14(c)
and (d) do not yield correct results due to their limited noise
resistance capability. Although no apparent erroneous points
are observed in Fig. 14(b), the method’s weak edge localization
ability results in lower accuracy of the final results. The method
in Fig. 14(a) achieves the highest accuracy as its results exhibit
a uniform distribution. Furthermore, it demonstrates superior
noise resistance and preserves image details, as depicted in
Table IV’s quantitative evaluation results.

IV. CONCLUSION

A novel SAR image keypoint extraction algorithm based
on SAR–SIFT, called EEKHI–SAR–SIFT, is developed, which
improves the keypoint extraction accuracy of SAR images and
yields uniformly distributed matching point pairs. With a UDR
edge detector used, more accurate image edge information is
obtained than the ROEWA detector, and subsequently a non-
maximum suppression algorithm is employed to homogenize the
keypoints. Thus, we can consider the quantity of keypoints and
the repetition rate simultaneously, and a multiscale descriptor
construction method is used to increase the distinctiveness of
the feature descriptor. The outcomes of experiment indicate
the repetition rate of the keypoints extracted by the EEKHI–
SAR–SIFT method is increased by approximately 5% compared
to that by the SAR–SIFT algorithm. Moreover, the RMSE is
decreased by approximately 1 pixel, whereas the quantity of
matching points is not significantly decreased with the above
improvements. Tests using multiple sets of SAR image data from
different satellites (Gaofen-3, RADARSAT, and Sentinel-1A)
prove the universality of the EEKHI–SAR–SIFT method. The
performance of the UDR edge detector employed in this article
is highly sensitive to parameter selection. Improper parameter
settings may adversely affect the filtering outcomes. Therefore,
to achieve optimal results, it is necessary to adjust parameters
according to the specific characteristics of different image data.
However, this requirement limits the practical applicability of
the method. Designing adaptive parameter adjustment strategies
will be the main focus of our subsequent research efforts.
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