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Abstract—Recent advancements in remote sensing technology
have significantly expanded the exploration of natural resources
and enabled the detection of materials in inaccessible areas. Hy-
perspectral images (HSIs) are a valuable data source due to their
distinctive properties in various applications. However, several
problems, including noise, band correlation, ineffectively extracted
features, and most notably, a lack of sufficient labeled samples,
reduce the accuracy of HSI classification. To improve the perfor-
mance of such a system, we propose an effective method with the
capability of paying attention to spectral and spatial features. The
raw HSI data are first preprocessed using a principal component
analysis (PCA) operation because of the redundancy and corre-
lation between HSI bands. Then, the entropy base informative
module is designed to add entropy information to the selected
spectral features by PCA. We also use spectral and spatial attention
modules in the proposed model. Moreover, a hybrid neural network
that uses both 3-D convolutional neural networks (CNNs) and 2-D
CNNs with skip connections is exploited to reduce the complexity of
the network compared to 3-D CNNs. The spatial attention module
called depthwise spatial attention block can inherently highlight
spatial information. The spectral attention module named re-
shape softmax attention can capture useful spectral regions of fea-
ture maps. Meticulous HSI classification tests are conducted over
the University of Pavia, Indian Pines, Salinas, and Houston 2013 to
evaluate the effectiveness of our approach. Our experiments show
higher accuracy compared to other deep learning methods.

Index Terms—Deep learning, depth-wise convolutional neural
network (CNN), entropy filter, hyperspectral image (HSI)
classification, remote sensing, reshape softmax attention (RSA),
spatial-spectral features.

I. INTRODUCTION

ONE type of remote sensing image is hyperspectral im-
ages (HSIs), which give valuable information about the

Manuscript received 2 April 2024; revised 26 May 2024, 17 June 2024, and
12 July 2024; accepted 1 August 2024. Date of publication 6 August 2024; date
of current version 26 August 2024. (Corresponding authors: Alireza Sharifi;
Dariush Abbasi-Moghadam.)

Javad Mahmoodi is with the Department of Electrical Engineering, Ker-
man Branch, Islamic Azad University, Kerman 76351-68111, Iran (e-mail:
javad.mahmoodi@iauk.ac.ir).

Dariush Abbasi-Moghadam, Hossein Nezamabadi-Pour, and Mohammad
Esmaeili are with the Electrical Engineering Department, Shahid Bahonar
University of Kerman, Kerman 76169-14111, Iran (e-mail: abbasimoghadam@
uk.ac.ir; nezam@uk.ac.ir; m-esmaeili@eng.uk.ac.ir).

Alireza Sharifi and Alireza Vafaeinejad are with the Department of Sur-
veying Engineering, Faculty of Civil, Water and Environmental Engineering,
Shahid Beheshti University, Tehran 16589-53571, Iran (e-mail: asharifi.sbu.
ir@gmail.com; a_vafaei@sbu.ac.ir).

Digital Object Identifier 10.1109/JSTARS.2024.3439592

spatial distribution and composition of materials within a
scene [1]. These images are captured by imaging spectrom-
eters on various space platforms. HSIs have high spectral
resolution and can contain hundreds of continuous bands or
channels in the nanometer range [2], [3]. HSIs have many
applications in various domains, including environmental mon-
itoring [4], [5], [6], detecting anomalies in HSIs [7], HSI
classification [8], and others. HSI classification has various
applications, such as agriculture [9], exploring geological fea-
tures [10], and other purposes [11], [12]. There are two main
approaches for HSI classification: manually extracting fea-
tures and automatically extracting features using deep learning
techniques.

In the past, HSI classification systems employed traditional
machine learning methods to analyze spatial-spectral features.
A new method called multiscale joint representation with lo-
cal adaptation was proposed in [13], which reduced the nega-
tive effects of irrelevant pixels on classification accuracy. An-
other significant method was the refined diffusion model and
discontinuity-preserving relaxation [14], which preprocessed
each pixel, computed related statistical measures, and effec-
tively combined spatial texture and spectral signatures. Gao et
al. [15] selected important bands through optimization-based
sparse self-representation to improve the classification proce-
dure. In [16], a technique combined the correlation coefficient
with sparse representation to enhance classification accuracy.
Moreover, Tu. et al. [17] examined the applications of multiscale
superpixels and guided filtering for efficient feature extraction
and classification. In [18], an unsupervised band selection tech-
nique based on Boltzmann and entropy was proposed to im-
prove the classification performance. Moreover, the complexity
of high-dimensional HSI makes it difficult to achieve optimal
classification results using the earlier-mentioned methods [19].
Despite the rich spectral data in the HSI domain, the lack of
labeled samples posed challenges for learning better feature
representations and increased the risk of overfitting. To address
these issues, several schemes have been proposed, including
feature extraction [20], [21], reducing dimensionality [22], [23],
[24], and augmenting data [25].

Although the previous approaches have yielded appropriate
results in some cases, they relied on manual feature extrac-
tion. The classification results of these techniques rely on the
reliability of the hand-crafted features. Furthermore, there is
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often significant spectral variability in HSI, resulting in large
differences within the same class and strong similarities across
different classes. Thus, manually designed patterns are not suit-
able for addressing these challenges [26].

Deep learning methods, especially convolutional neural net-
works (CNNs), have obtained remarkable results in computer
vision tasks, such as image classification [27], action recognition
[28], and violence detection [29], [30]. The CNN architecture
has two main stages: feature extraction and classification. The
feature extraction network uses convolutional and pooling layers
to extract hierarchical representations of input data, which are
then utilized in the subsequent classification stage. The con-
volutional layer efficiently captures local patterns by applying
kernels to the input features. Convolutional networks include
local or global pooling layers to reduce feature map resolution.
In addition, convolution layers utilize activation functions to
extract nonlinear features. Finally, fully connected layers and a
Softmax operator are used in the classification stage.

The capability of CNNs to process spatial HSI patches as
input motivated researchers to propose complicated CNN-based
techniques for HSI classifications. For example, the authors in
[31] and [32] proposed a CNN-based model for classifying HSIs.
Makantasis et al. [33] utilized a CNN to capture both spectral
and spatial information of pixels, and a multilayer perceptron to
perform the classification task. Ben Hamida et al. [34] proposed
a model based on 3-D CNN and 1-D CNN and they achieved
successful results in HSI classification. CNNs are increasingly
used in HSI classification for capturing spatial-spectral features.
However, their ability to model sample relations is limited. To
address this, graph convolutional networks have been success-
fully applied to irregular data representation and analysis [35].

Two or multibranch architectures process input data through
different pathways, capturing a wider range of features, such
as spatial or spectral aspects. These architectures have been
exploited for HIS classification. In [36], two branches of CNN
models were introduced. One branch was utilized to extract
spectral information, while the other was specifically designed
for the extraction of spatial features. However, using multibranch
architectures may result in longer training times and require
more computational resources compared to single-branch net-
works.

Although CNN-based methods have made significant ad-
vancements, they still face challenges in efficiently utilizing
spectral and spatial association information. Therefore, Yang et
al. [37] introduced a multiscale wavelet 3D-CNN to exploit the
correlation in the spectral and spatial domains. Another method
exploited the 3D–2D hierarchical CNN model [38], in which
3D-CNN layers were employed to analyze spectral information,
and 2D-CNN layers were exploited to focus on texture and con-
textual spatial information. In [39], a combination of CNN mod-
els and spatial-spectral morphological attention mechanisms
was proposed to enhance feature extraction in HSI. Another
method was the spatial-spectral residual network (ResNet) [40].
The authors suggested using two consecutive residual blocks to
separately learn spectral and spatial representations, enabling
the extraction of more discriminative features.

The deep learning-based approaches usually exploit 2-D and
3-D convolutional layers to process the spatial and spectral fea-
tures. Although 2-D convolutional layers are designed to process
spatial data, they miss spectral features of HSIs. The spectral
dimension of HSIs contains distinct wavelengths that correspond
to different material properties. When 2-D convolutional layers
are applied to HSIs, they treat the spectral dimension as spatial,
applying the same filters across the spectral bands. This ap-
proach can lead to a loss of critical spectral information because
the filters are not specifically tuned to recognize the unique
spectral signatures of different materials. The 3-D convolutional
layers are also able to capture spectral-spatial information to
some extent, but they have drawbacks in modeling complex
spectral-spatial relationships. These challenges primarily stem
from the high dimensionality of hyperspectral data and the
complex interband relationships that are not fully captured by
CNN architectures.

In the pursuit of advancing HSI classification, we introduce
the entropy base informative module (EBIM), a novel compo-
nent that infuses entropy information into input images. Unlike
conventional methods, the EBIM augments the local complexity
and diversity of the image and highlights spatial features that are
often overlooked. This module is particularly adept at enhancing
the local discriminative features, which is crucial for accurate
classification. The innovation lies in the integration of entropy
filtering with attention mechanisms, tailored to enhance feature
extraction in the presence of noisy data, band correlation, and
ineffective feature representation, which are common challenges
in the HSI analysis. Moreover, we utilize a combined deep
learning structure to leverage the strengths of both 2-D CNNs
and 3-D CNNs. In addition, we introduce spatial and spectral
attention mechanisms to enhance the features extracted by 3-D
and 2-D CNNs and to address the concerns raised.

1) Noise reduction: DESSA-Net employs an entropy filter
and a spatial attention module that effectively mitigates
noise by emphasizing informative features while sup-
pressing random variations. Entropy filters are a powerful
tool for noise reduction because they can differentiate
between the structured information of the images and the
unstructured randomness of noise. Spatial attention is a
sophisticated process that can focus on the most relevant
features for given tasks. It can concentrate on certain areas
of images when making decisions.

2) Band correlation: HSIs contain hundreds of spectral
bands, many of which are highly correlated. By focusing
on the appropriate bands, deep learning models can focus
on the most relevant features for the classification task.
The spectral attention module is designed to capture the
interband relationships, thus enhancing the discriminative
power of correlated spectral bands.

3) Feature extraction: By leveraging deep learning architec-
tures, DESSA-Net efficiently extracts features that are
crucial for accurate classification, even from complex
hyperspectral data. By focusing on the most informative
regions and bands, spatial and spectral mechanisms can
enhance the feature extraction process, leading to better
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performance of the deep model. Once the bands have been
weighted appropriately, the deep model can be trained
with the refined data. This leads to improved accuracy
and robustness in the model’s prediction.

II. RELATED WORK

New deep learning models efficiently utilize both spectral and
spatial characteristics to overcome the limitations of traditional
machine learning algorithms, significantly enhancing the effec-
tiveness of HSI classification. Several advanced models have
utilized two- or multibranch networks for HSI classification.
In [41], a two-branch residual neural network (ResNet) was
introduced to incorporate spectral and spatial information. This
method had two branches: one for obtaining spectral charac-
teristics and the other for extracting spatial features. Ge et al.
[42] utilized 2-D and 3-D CNNs in a multibranch architecture.
Methods based on two- or multibranch increase the number
of parameters and the overall complexity of the model. This
complexity can lead to longer training time, increased memory
requirements, and higher computational costs.

Some other methods used generative adversarial networks
(GANs) to tackle the class imbalance difficulty. However,
GANs have difficulties in modeling long- and mid-term
dependencies and extracting discriminative spectral features
between classes with similar spectral signatures [43], [44]. To
address the issue of small samples in HSI classification, adver-
sarial representation learning based on generative adversarial
networks (ARL-GAN) was introduced in [45]. An HSI block
generator was developed to extract more distinct features from
the input feature vector. To measure errors between the actual
image and the generated image, the class probability distance
was measured instead of the mean square error. Moreover, the
combination of GAN and conditional entropy was exploited to
alleviate the challenge of small sample sizes in HSI classifi-
cation. GAN-based methods might not work well on different
hyperspectral datasets, thereby reducing their usefulness in prac-
tical applications.

Learning long-term relationships is enabled by the band-by-
band accumulation of spectral features in HSIs. Recurrent neural
networks (RNNs) are commonly used to achieve this task. For
example, the attention-based long short-term memory (LSTM)
model improved HSI classification performance by effectively
capturing spatial-spectral dependencies [46]. However, RNNs
are not appropriate for learning spectral and spatial characteris-
tics simultaneously. Combining attention strategies with RNNs
has been used to tackle this challenge. Attention-based models
have demonstrated good performance by effectively exploring
both spatial and spectral features [47], [48]. In such models,
hyperparameters can significantly impact model performance,
requiring extensive experiments and computational resources to
find the optimal configuration.

The usage of transformers in computer vision [49] has led to
the development of numerous novel transformer types in recent
years [50]. Transformer models are advanced models designed to
process and analyze sequential (or time series) data. Transform-
ers exploit self-attention techniques to do this task [51]. In [52],

a spatial-spectral feature labeling transformer (SSFLT) method
was proposed to learn spectral-spatial features and high-level
semantic ones. In this structure, a unique module extracted
low-level and shallow features. SSFLT had a Gaussian weighted
feature marker to transform extracted features to a transform
encoder. At last, the sample labels were identified through a
linear layer. Ahmad et al. [53] introduced WaveFormer, a new
transformer-based approach that integrates wavelet transforms
for invertible downsampling. This method maintains data in-
tegrity while allowing for attention learning. The WaveFormer
effectively combines downsampling with wavelet transforms to
decompress feature maps without loss. However, integrating
wavelet transforms increases the complexity of the model and
may require additional computational resources. Zhao et al. [54]
proposed a group-separable convolutional vision transformer
network. This approach utilized a group separable convolution
(GSC) module to significantly reduce the number of convolu-
tional kernel parameters. In addition, it incorporated a simple
point layer with an advanced skip connection mechanism instead
of a multilayer perceptron layer, which facilitated better feature
fusion. However, the limited training samples posed a risk of
overfitting, increased the complexity of the model, and led to
higher computational costs. Transformers are indeed effective
at capturing spectral information, which is sequential data in
nature. However, traditional transformer models may not fully
exploit the spatial information present in HIS. To address this,
researchers have developed specialized frameworks such as the
spatial-spectral transformer (SST) [55]. In addition, the mul-
tiscale SST has been proposed to handle global dependencies
among multiscale features and better utilize the spatial-spectral
information inherent in HSIs [56]. While the self-attention
mechanism in the transformer architecture enables the model
to capture long-range dependencies and model complex rela-
tionships between pixels for more accurate predictions, these
models have a large number of parameters and require large
training samples.

In addition to previous methods, some techniques combined
the input data with samples extracted from specific filters or
mathematical operations, such as morphology and entropy.
Among the recently proposed models, we can mention the
work by the authors in [57] and [58], which combines HSI
data with extracted samples from morphological operations in a
multibranch structure with an attention mechanism. Moreover,
Esmaeili et al. [59] proposed a method that extracted mor-
phological features using morphological mathematics by four
morphological operators. Then, they extracted environmental
features, edges, and structures of shapes and regions in HSI and
injected them between the layers of a deep network. This method
improved representation and classification by injecting morpho-
logical features into the model layers and enabling end-to-end
learning in deep networks. Integrating morphological operations
with deep learning networks enhances feature extraction in HSI
classification. However, this approach increases computational
complexity. In addition, morphological operations are generally
applied in a predefined manner, which may not be optimal for
all types of HSI data. This lack of adaptability can result in
the loss of important information that is crucial for accurate
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TABLE I
COMPARISON RESULTS OF OTHER METHODS IN TERMS OF ACCURACY, BENEFITS, AND DRAWBACKS

classification. Therefore, while morphological operations can
improve the feature extraction process, they need to be carefully
designed and integrated into deep learning models to avoid
potential drawbacks.

Some researchers have proposed models to reduce training
time and parameters while also improving accuracy. In [60],
convolution kernels of 1 × 1 and 3 × 3 were employed to effec-
tively classify data by extracting spectral and spatial properties
through dense connections. Others suggested the SC-FR feature
multiplexing module with 1 × 1 convolution kernels and two
coupled cross layers [61]. The coupled cross layer improved the
flow and utilization of feature information. However, it increased
the depth of the model. Han et al. [62] proposed a ResNet and
exploited pyramidal bottleneck residual units [63]. Moreover,
Dang et al. [64] designed a classification model based on the
suggested techniques in [62] and [63]. Their model improved
the proposed method [55] by exploiting depthwise separable
convolution instead of simple convolutions in the residual block
[65]. Moreover, a lightweight hybrid convolutional neural net-
work (Lite-HCNet) was proposed to minimize the number of
parameters and decrease computational complexity [66]. In this
model, a new attention module was combined with a strategy
to design a lightweight network. In [67], a method based on
a three-branch CNN was proposed to reduce the number of
parameters. They used three different branches for their net-
work: the first one employed a compression and stimulation
network (SENet), the second one combined three-dimensional
CNN and two-dimensional DSC, and the third one used only
DSC. The main purpose of using this structure was to enhance
the extracted features from HSIs. However, a lightweight ar-
chitecture may have difficulty capturing fine details and sub-
tle changes, potentially leading to suboptimal classification
performance. Furthermore, lightweight architectures typically
aim to strike a balance between the size of the model and its
performance. Although a reduction in model size can lead to
improved memory and computational efficiency, it may also
result in decreased classification accuracy. The tradeoff between

model size and performance must be carefully considered based
on the specific requirements and limitations of HSI classifi-
cation. Table I summarizes a comparative analysis of other
methods, including the overall accuracy (OA), their benefits,
and drawbacks.

Motivated by the above successful methods, we have also
proposed ideas related to HSI classification, which we will
discuss further in these contributions. Our contribution can be
summarized as follows.

1) We propose an EBIM to add entropy information to input
images. The EBIM enhances the local complexity and
diversity of the image, which can help to detect suitable
variations in the spectral and spatial features. DESSA-Net
employs an entropy filter that effectively mitigates noise
by emphasizing informative features while suppressing
random variations.

2) The depthwise spatial attention (DSA) block, a spatial
attention module, is introduced. It utilizes the softmax
function along with 2-D depthwise convolutions. The
softmax function adds probability information to the fea-
ture maps and 2-D depthwise convolutions preserve the
spatial information and the channelwise correlations of
the input image, which can improve the feature extraction
and representation.

3) The reshape softmax attention (RSA) block is a spectral
attention module that employs reshape layers and the
softmax function in its architecture. It also adds probability
information to the important bands by exploiting the soft-
max function. The spectral attention modules are designed
to capture the interband relationships, thus enhancing the
discriminative power of correlated spectral bands.

4) Our deep neural network (DNN) has a hybrid architecture
with a single branch and three residual connections. A 2-D
global average pooling (2-D GAP) and a hybrid structure
are also used in place of a flattened layer to decrease
the number of trainable parameters and the computa-
tional complexity of the network. In addition, residual
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Fig. 1. Architecture of the proposed methodology.

TABLE II
PSEUDOCODE: PROPOSED METHOD (DESSA-NET)

connections are also employed to overcome overfitting.
We also exploit 2-D and 3-D convolutional layers in the
deep network. The 2-D CNNs efficiently extract spatial
features from images, while 3-D CNNs can provide con-
text by analyzing different bands. While 3-D CNNs are
computationally more intensive, integrating them with
2-D CNNs can help reduce computational complexity by
strategically applying 3-D convolutions only where neces-
sary. By leveraging deep learning architectures, DESSA-
Net efficiently extracts features that are crucial for accurate
classification, even from complex hyperspectral data.

III. DESCRIPTION OF THE METHODOLOGY

Our proposed HSI classification system consists of four parts:
EBIM, hybrid DNN, DSA block, and RSA block. Fig. 1 depicts
the architecture of the proposed methodology. Moreover, the
pseudocode of the proposed methodology is given in Table II.

At first, the raw HSI data are preprocessed using the PCA
operation. Analyzing hyperspectral data can be time-consuming
because of the extensive number of bands, their significant
intercorrelation, and the presence of redundant information.
To alleviate these problems, the dimension of HSIs should be

reduced. In this study, we employ the PCA to reduce the dimen-
sionality of the input data. This decision is driven by the need
to find a low-dimensional representation that maintains as much
information as possible. Furthermore, many researchers utilized
this technique to decrease the dimensionality of the input data
[42], [59], [68], [69]. Fırat et al. [70] presented a comprehensive
discussion on different dimension reduction techniques for HSI
classification.

We suggest using the EBIM to enhance the HSIs with entropy
information. To do this, we apply an entropy filter to the selected
bands by PCA. Then, we add this information to the HSIs to
provide more information to them. Indeed, entropy is the term
used in information theory to quantify how much information
is contained in data or how uncertain an event is. In image
processing, the image entropy measures how complex or random
the image is, and it is often used as an indicator of its texture.

Our proposed DNN consists of skip connections and a hybrid
architecture using 2-D and 3-D convolutional layers. By using
3-D CNNs only on a subset of spectral bands and then applying
2-D CNNs on the output, hybrid CNNs can balance efficiency
and accuracy [38]. The 2-D CNN alone is not sufficient to extract
highly discriminative features from the spectral dimensions.
Comparably, the computational complexity of a 3-D CNN is
higher. Furthermore, 3-D CNNs often exhibit unsatisfactory
performance when dealing with classes with similar textures
across multiple spectral bands [38]. Skip connections are in-
corporated into the network architecture to create a residual
network. This helps DNN s to learn features more effectively
and avoid the problem of vanishing or exploding gradients [71].
These connections connect the input of a layer to the output of
a further layer, bypassing some layers in between. This way, the
network can learn the residual function, which is the difference
between the input and the output, rather than the direct mapping.
Indeed, there are two ways of using a skip connection. The
first one uses adding layers in the architecture such as ResNet
[71]. While the second one exploits concatenate layers such
as DenseNet [72]. We can point to the fact that concatenative
skip connections are a popular alternative for ensuring feature
reusability of the same dimensions from the earlier layers.
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HSIs often exhibit spectral variability, which means that the
same class may have different spectral signatures in distinct
images due to variations in illumination, viewing angle, atmo-
spheric conditions, or sensor characteristics [73], [74], [75].
This makes the classification of such images challenging as
the spectral features may not be consistent or discriminative
across different images. Therefore, spectral attention modules
are often needed to find the most relevant and robust spectral
features for classification. The RSA block is our attention block
that learns the importance of each spectral feature. This block
consists of reshape layers and a softmax function. We exploit
the softmax function to add probability information to the most
important spectral features. The output of the RSA block is a
spectral attention maps, which assign a weight to each spectral
feature according to its relevance for the classification task.

The spatial attention module is applied to the HSI data to
learn the importance of each spatial location. Our spatial at-
tention module is named the DSA block. This block consists
of 2-D depthwise convolutions and softmax functions. We use
depthwise to pay attention to spatial regions and exploit the
softmax activation function to add the probability information to
the important spatial feature. The output of the spatial attention
module is a spatial attention map, which assigns a weight to each
spatial location according to its relevance for the classification
task.

Our classification system consists of four parts: EBIM, DSA,
RSA, and hybrid CNNs with skip connections. The performance
of the system is boosted by the interaction of these modules.
Specifically, the EBIM adds entropy information to the HSIs.
The DSA and RSA blocks are used to make spatial and spectral
attention mechanisms. Our spatial and spectral attentions are
based on the softmax function, which is a mathematical function
to convert a vector of real numbers into a probability distribution.
We add the probability information to the spectral and spatial in-
formation. In the spatial attention module, we utilize depthwise
convolution to emphasize spatial information. Unlike traditional
2-D convolution, 2-D depthwise convolution conducts the con-
volution operation independently for each input channel. This
method preserves the distinctiveness of each channel and pre-
vents the mixing of information during the convolution process.
As a result, it is more effective in capturing spatial features. In
addition, the proposed DNN architecture with residual blocks
and the combination of 2-D CNNs with 3-D CNNs enhances
the overall performance of the system. We go into more detail
about the proposed technique in this section.

A. Entropy Base Information Module

The architecture of the EBIM is shown in Fig. 2. The HSI is
denoted as G ∈ RW×H×S , withW ×H denoting the spatial di-
mensions, and S representing the number of spectral dimensions.
The HSIs are often characterized by their large and complex data
due to the presence of hundreds or even thousands of spectral
bands. This poses challenges for data storage, processing, and
analysis. It also leads to the curse of dimensionality meaning that
the data become sparse and noisy in high-dimensional spaces,
and the distance between data points becomes less meaningful

Fig. 2. Architecture of the EBIM.

[76], [77]. To mitigate the challenges associated with the size
and complexity of HSI data, it is often necessary to employ
dimensionality reduction techniques. These techniques aim to
reduce the data size and complexity while ensuring that the rel-
evant information is preserved. The initial data asG ∈ RW×H×S

are processed by eliminating the redundancy of spectral bands.
Here, we have P ∈ RW×H×C , which is the output of the PCA
block. After applying PCA, P is sent to the entropy filter block
for further processing.

The entropy provides quantitative information about the struc-
ture and complexity of images, which can be useful in image
processing. The Shannon entropy formula, which is based on
the probability distribution of the pixel intensities throughout the
image, is used to compute it. A higher global entropy indicates
higher disorder or complexity in the image. In the context of
grayscale images, higher entropy might suggest a more textured
or complex scene. The Shannon entropy can be written as
follows:

Y = −
255∑

i=0

pilog2 (pi) . (1)

In image processing, pi is equal to hist(Li). Therefore, the
global entropy of an image can be written as follows:

Y = −
255∑

i=0

hist (Li) log (hist (Li)) (2)

where Li represents the intensity levels of the input image and
hist(Li) is the normalized histogram of the image. Therefore,
the following equation can be written for hist(Li):

255∑

i=0

hist (Li) = 1. (3)

The local entropy is calculated independently for each local
region, typically using a sliding window or kernel. It provides a
map of entropy values across the image and highlights regions
of interest that have varying levels of complexity or texture.
High local entropy in a region might indicate the presence of
edges, textures, or other patterns. We use an entropy filter with
the kernel size of 3 × 3 to generate an output that each pixel
contains the local entropy value of the 3-by-3 neighborhood
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around the corresponding pixel in P ∈ RW×H×C . Let EF be
the output of the entropy filter. The last step of the EBIM is the
summation of P ∈ RW×H×C and EF. Therefore, the output of
the entropy filter can be expressed as follows:

EBIM = EF + P. (4)

Fig. 3 shows the output of the EBIM that highlights regions
in the HSIs.

B. Deep Neural Network

Our proposed DNN is shown in Fig. 4. It comprises four 3-D
convolutional layers, each of which is subsequently followed
by batch normalization layers. The first convolutional layer
utilizes a kernel size of (3× 3× 9), while the second and third
convolutional layers employ a kernel size of (3× 3× 7) and
(3× 3× 5), respectively. The last one has a kernel size of
(3× 3× 3). In addition, all the activation functions of convo-
lutional layers are RELU. From the first 3-D convolution to the
final convolution layer, we reduce the kernel size. It is a widely
used approach in which the kernel size gradually reduces from
the first layer to the last. This reduction in the kernel size has
multiple purposes within the network architecture. In the initial
layers of a deep network, larger kernel sizes are often employed.
These larger kernels enable the extraction of low-level features
and local patterns from the input data [78]. By using larger
receptive fields, these early layers can capture broad spatial
information, such as edges, corners, and textures. However,
as the network progresses deeper into subsequent layers, the
focus shifts toward higher level feature extraction. Therefore,
smaller kernel sizes are preferred in these later layers because
they allow for the capture of fine-grained details and localized
features. By reducing the kernel size, the network can concen-
trate on extracting intricate patterns, complex relationships, and
global semantics. These smaller kernels enable the network to
learn higher level representations of the input data. In addition,
decreasing the kernel size in deeper layers can help manage
computational complexity and alleviate the risk of overfitting.
The utilization of smaller kernels in each layer helps in reducing
the number of parameters. Moreover, reducing the number of
parameters prevents the network from excessively memorizing
the training data, promoting generalization and increasing the
model’s ability to generalize effectively to unseen examples.

The proposed architecture incorporates two 2-D convolu-
tional layers with a kernel size of (3× 3). To address the issue of
gradient vanishing, the architecture also includes three residual
connections. These residual connections are utilized to mitigate
the problem of gradients vanishing. The input and output of the
residual connection can be formulated as follows:

ROutput = F (Rinput) +Rinput (5)

where ROutput and Rinput show the residual output and input,
respectively. F denotes the residual function.

After four 3-D convolution layers, we exploit a reshaped
layer to make the 3-D CNN output compatible with the 2-D
convolutional layer input so that the 2-D convolutional layer
can receive the 3-D CNN output We consider the input tensor

of the reshape layer as IReshape ∈ Ra×b×c×d, where the reshape
layer transfers it into the output tensor OReshape ∈ Ra×b×e. Here,
e is the multiplication of c and d. In addition, our network
architecture incorporates spectral and spatial attention modules,
which are designed to enhance the model’s focus on important
spectral and spatial features within the input data. After the
attention modules, we apply a 2-D GAP to transform the output
of a convolutional layer before applying a softmax layer. This
pooling operation aggregates spatial information across each
channel, resulting in a compressed representation that captures
the overall context of the features. It decreases the number of
trainable parameters and the computational complexity of the
network, thereby improving efficiency and preventing overfit-
ting. In addition, it enhances the feature representation and
discrimination power of the network by obtaining the global
average of each feature map [79]. This reveals the importance
of each feature for the classification task. Furthermore, the
architecture employs a concatenate layer to merge the output
of spatial and spectral attention modules. The concatenate layer
combines information from different pathways or branches in
the network, enabling the model to capture and utilize diverse
features or representations from multiple sources.

Our proposed network also incorporates a dropout, which is a
regularization technique in deep learning to mitigate overfitting
and improve the generalization ability of neural networks. This
technique involves randomly dropping out a fraction of the neu-
rons or during training. Our architecture incorporates a dropout
rate of 40%. In the final two layers of the architecture, there are
dense layers. The first dense layer consists of 128 neurons using
the RELU activation function. The output classes of each dataset
determine the number of neurons in the second dense layer. In
addition, the activation function of the second dense layer is the
softmax.

C. Reshape SoftMax Attention

Spectral attention is a useful technique that enhances the
robustness and accuracy of HSI classification by selectively
focusing on the spectral information present in the input image.
In our model, we incorporate a reshape layer and a softmax
layer to implement the spectral attention. Fig. 5 shows the
architecture of the RSA block. As shown in this figure, the
input of the RSA block, RSAinput ∈ Ra×b×c, is transformed into
two matrices using two separate branches and reshaped layers.
The reshape layer processes RSAinput, resulting in two outputs:
Re1output ∈ Rd×c and Re2output ∈ Rd×c. The reshape function
is applied to preserve the spectral features and merge the spatial
information. To further emphasize high values and de-emphasize
low values, we perform matrix multiplication between these two
matrices. This multiplication serves to enhance the importance
of higher values while diminishing the significance of lower val-
ues. The multiplication of these two matrices can be summarized
as follows:

ReOutput = Re1output �Re2output (6)

where � is the elementwise multiplication and ReOutput ∈ Rd×c

indicates the output of the elementwise multiplication. Then, we
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Fig. 3. Three selected bands by PCA: the three selected bands and their relative outputs for the different datasets (first row: IP; second row: PU; third row: SA;
fourth row: HT). (a) First band selected by PCA. (b) Output of the EBIM for the first band. (c) Second band selected by PCA. (d) Output of the EBIM for the
second band. (e) Third band selected by PCA. (f) Output of the EBIM for the third band, respectively.
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Fig. 4. Architecture of the DNN.

use a softmax layer to normalize its weights. SRSA represents
the output of the softmax function. The output of the softmax
function can be formulated as follows:

SRSA = softmax(ReOutput) . (7)

The equation mentioned above calculates the exponential of
the input value and the sum of the exponential values of all the
input values. The output of the softmax function corresponds to
the ratio between the exponential of the input value and the sum
of the exponentials of all the input values. Let us consider Ri

as each element of ReOutput, then the softmax function can be
summarized as follows:

softmax (Ri) =
eRi

∑k
i=1 e

Ri

. (8)

The output of the softmax layer is subsequently multiplied by
the output of the second reshape layer. It can be formulated as
follows:

Re3input = SRSA �Re2output (9)

where Re3input denotes the input of the third reshape layer.
Finally, the output of the RSA block can be summarized as
follows:

RSAoutput = Re3output + RSAinput. (10)

In the above-mentioned formula, Re3output ∈ Ra×b×c shows
the output of the third reshape layer and RSAoutput denotes the
RSA output.
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Fig. 5. Architecture of the RSA block.

Fig. 6. Architecture of the DSA block.

D. Depthwise Spatial Attention

A spatial attention module is a technique that improves the
performance of HSI classification by focusing on the most
relevant spatial features and regions of the input image. Fig. 6
shows the architecture of the DSA block. In our spatial attention
module, we employ 2-D depthwise convolutions along with a
softmax layer. The depthwise convolution is applied to the output
of the 2-D CNN. This operation performs separate convolutions
for each input channel, effectively reducing the number of
parameters and computational complexity of the network [80].
Simultaneously, it preserves the spatial information of the input
image, which can improve the feature extraction and representa-
tion. We also use a softmax layer to normalize the weights of the

spatial attention module. The considerations for the arguments
of depthwise convolutions are determined as follows: the depth
multiplier parameter is set to one, indicating that the number
of output channels remains the same as the number of input
channels. The kernel size is set to three, implying that a 3 × 3
convolutional filter is applied. In addition, a stride value of one
is employed, indicating that the filter moves one pixel at a time
during the convolution operation.

The input of the DSA block is from the last 2-D CNN.
It is considered as DSAinput ∈ Ra×b×c. The outputs of 2-D
depthwise convolutions have the same size as the DSA input.
Two depthwise convolutions are applied to the DSAinput, re-
sulting in two outputs Dwc1output ∈ Ra×b×c and Dwc2output ∈
Ra×b×c. To further emphasize high values and de-emphasize
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Fig. 7. Class distribution of the IP dataset.

low values, we perform multiplication between these two ten-
sors. The multiplication of these tensors can be summarized as
follows:

DwcOutput = Dwc1output �Dwc2output (11)

where DwcOutput ∈ Ra×b×c indicates the output of elementwise
multiplication. The product of this multiplication is then passed
through a softmax function. The softmax normalizes the values,
typically to highlight the most significant spatial features by
assigning them higher probabilities. SDSA represents the output
of the softmax function. It can be formulated as follows:

SDSA = softmax (DwcOutput) . (12)

The output of the softmax layer is then multiplied by the out-
put of the second depthwise convolution. In fact, this operation
is done to emphasize the element of the Dwc1output tensor based
on the probability information. It can be formulated as follows:

S = SDSA �Dwc2output (13)

where S denotes the input of the add operation in this figure.
Finally, the output of the DSA block, DSAoutput, can be summa-
rized as follows:

DSAoutput = S + DSAinput. (14)

IV. EXPERIMENT AND ANALYSIS

In this section, we present a comparative analysis of our
approach with methods employing different techniques. The
proposed method has been assessed and evaluated on four bench-
mark datasets, namely Pavia University (PU), Salinas (SA),
Houston 2013 (HT), and Indian Pines (IP). These datasets were
selected to provide a diverse range of scenarios and contexts
for testing and validating the effectiveness and performance of
our approach. The methods are evaluated by three main metrics
that measure the classification performance: Average accuracy
(AA), OA, and kappa coefficient. Our proposed method has been

implemented on Python-Keras. The Google Collab Plus with
V100 GPU is used to implement the proposed method.

A. Hyperspectral Datasets Description

We evaluated our classification system by utilizing four
benchmark datasets of remote sensing. These datasets were
thoughtfully chosen to cover a suitable range of classes and
samples. To facilitate an accurate evaluation of our method
and highlight the key characteristics of these datasets, we have
explained comprehensive information about these datasets.

1) Indian Pines Dataset: IP contains HSIs of a landscape in
Indiana, U.S., with 145× 145 pixels and 200 spectral bands. The
images cover different types of land cover, such as agriculture,
forest, and water. The dataset has 16 classes of labels, such as
corn, soybean, and alfalfa. Moreover, the spatial resolution is
20 m per pixel. Fig. 7 describes the class distribution of the IP
dataset.

2) Salinas Dataset: The SA dataset is an image of agricul-
tural crops and natural vegetation in Salinas Valley, California.
The dataset contains a real ground image, sample class informa-
tion, and a false color image. The image has a spatial resolution
of 3.7 m per pixel and a size of 512 × 217 pixels. The dataset
has 16 classes of land cover and 224 bands, such as vineyards,
crops, and arid soils. The dataset was prepared by excluding 20
water absorption bands. Therefore, this dataset has 204 bands.
The class distribution of the SA dataset is shown in Fig. 8.

3) Houston Dataset: Fig. 9 illustrates the class information
of the HT dataset. The data were collected from the University
of Houston (HT) campus and the surrounding metropolitan area.
It contains 144 spectral bands with a spatial resolution of 2.5 m.
The Houston dataset encompasses 16 classes and has an image
resolution of 349 × 1905 pixels.

4) Pavia University Dataset: Fig. 10. shows the class distri-
bution of the University of Pavia (PU). The dataset was collected
from the University of Pavia in northern Italy. The dataset has
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Fig. 8. Class distribution of the SA dataset.

Fig. 9. Class distribution of the HT dataset.

nine urban land cover classes. The dataset comprises 115 spectral
bands with a spatial resolution of 1.3 m per pixel. The image
dimensions are 610 × 340 pixels. As part of the preprocessing
stage, 12 noisy bands were eliminated from the dataset, resulting
in a final set of 103 usable bands for subsequent research.

B. Experiment With Other Methods

We conduct experiments with other methods to compare and
assess the performance of our proposed approach. By employing
this comparative analysis, we aim to evaluate the weaknesses
and strengths of our method and demonstrate its competitive
results against methods, such as MCHN [58], SSLDBR [41],
SSFLT [52], ARL-GAN [45], DSC-MMF [66], Lite-HCNet
[67], WaveFormer [53], and GSC-ViT [54].

The 2D-CNN technique utilizes 2-D convolution kernels to
capture spatial features from input images. However, the de-
velopment of 3D-CNN allows for the simultaneous learning
of both spectral and spatial features. Some researchers use
morphological operations to boost the performance of the 3-D
CNNs [58]. There is a dual-branch residual neural network on
SSLDBR [41]. A GAN is exploited in ARL-GAN [45]. In SSFLT
[52], a transformer framework is utilized to extract spectral and
spatial information. In DSC-MMF [66], a new model based
on CNNs is proposed. Three branches are exploited to build
this proposed architecture. Lite-HCNet [67] is a technique that
uses depthwise separable convolution. WaveFormer [53] is a
technique based on the wavelet and transformer. GSC-ViT [54]
presents a group-separable convolutional vision transformer
network.
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Fig. 10. Class distribution of the PU dataset.

Fig. 11. Effect of the PCA value on the IP dataset (spatial size = 15).

C. Experimental Setup and Comparison

This section is dedicated to conducting experiments to de-
termine the parameters that influence the performance of the
proposed method. In particular, our analysis is focused on the
number of PCA and the spatial size of the patches for the input
of the network. In the training procedure, we employ the Adam
optimization algorithm [81], with a learning rate of 0.001. The
batch size of datasets is set to 256. The number of samples
for training is different for each dataset. For SA and PU, it
is set to 1% of samples. For IP and HT, it is set to 5% of
data.

To obtain the effect of principal components on classifi-
cation accuracy, different runs are conducted on four bench-
mark datasets. The datasets have a window size of 15 and
the results for different numbers of principal components are
shown in Figs. 11–14. These figures indicate that the best
performance for IP is achieved with 30 principal components,
while for the other datasets, it is 15. Appropriate choice of
PCA value has a strong impact on the classification perfor-
mance. In all the experiments, the model performance and

Fig. 12. Effect of the PCA value on the SA dataset (spatial size = 15).

Fig. 13. Effect of the PCA value on the HT dataset (spatial size = 15).

its stability are satisfactory according to the selected PCA
value.

The classifier of the HSI classification systems takes patches
as inputs. We examine the impact of different spatial sizes
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Fig. 14. Effect of the PCA value on the PU dataset (spatial size = 15).

Fig. 15. Effect of spatial size on the IP dataset (PCA = 30).

Fig. 16. Effect of spatial size on the HT dataset (PCA = 15).

on our suggested model. The comparison results for different
datasets are reported in Figs. 15–18. The results indicate that
the classification accuracy is influenced by the spatial size. A
smaller spatial size leads to a reduced amount of information
being captured from the object, resulting in lower accuracy.
When the spatial size is large, the network gets more infor-
mation from the object but also gets more noise and inter-
ference from other objects, which can reduce the accuracy

Fig. 17. Effect of spatial size on the HT dataset (PCA = 15).

Fig. 18. Effect of spatial size on the PU dataset (PCA = 15).

[68]. Therefore, there is an optimal range of spatial size that
can improve the classification accuracy significantly for four
datasets.

In conclusion, the selection of setup parameters plays a vital
role in evaluating the classification performance effectively. Fac-
tors, such as the optimization algorithm, appropriate train/test
ratio as well as the spatial size of patches, and the selection of
appropriate PCA values, are all important and can affect the effi-
ciency and accuracy of the proposed model. Through meticulous
parameter selection, we can obtain enhanced performance and
accuracy in HSI classification.

We evaluate the proposed method with deep learning methods.
To assess the performance of our model, we adopted AA, kappa
coefficient, and OA. The OA is the percentage of correctly
classified pixels. The AA is the mean value of the OAs measured
over each category and the kappa coefficient is the statistical
measurement of the interrater agreement among qualitative
items. The AA is calculated as

AA =
1

n

n∑

i=1

TPi

TPi + FNi
(15)

where
n number of classes;
TPi number of true positives for class i;
FNi number of false negatives for class i.
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TABLE III
COMPARISON RESULTS FOR THE IP DATASET (PCA = 30, SPATIAL SIZE =15)

The kappa coefficient is calculated as

Kappa coefficint =
po − pe
1− pe

where
po observed accuracy (OA);
pe expected accuracy by chance, calculated as

pe =

n∑

i=1

(TPi + FNi)× (TPi + FPi)

N2
.

In the aforementioned expression
1) FPi is the number of false positives for class i.
2) N is the total number of observations.
The OA is calculated as

OA =

∑n
i=1 TPi

N
.

These metrics are essential for evaluating the performance of
classification models, particularly in multiclass scenarios. We
repeated the training process ten times to ensure the reliability
and robustness of the reported results. Then, we reported the
mean and standard deviation (SD) of AA, kappa, and OA.
Tables III and IV list the comparison results of IP and SA
datasets, respectively. Similarly, the comparison results of HT
and PU datasets are presented in Tables V and VI, respec-
tively. The results demonstrate the superior performance of our
suggested method compared to others. On the IP dataset, we
achieved an OA of 97.66% with an SD of 0.08%. Its Kappa

and AA were 97.33%, 97.17% with 0.1%, and 0.26% SD,
respectively. MCHN had an inferior result. It had 85.93% OA,
84.68% Kappa, and 85.73% AA, respectively. Our approach
achieved high performance on the SA dataset, with 98.39% OA,
98.21% Kappa, and 98.38% AA. The SD of these metrics was
0.53%, 0.6%, and 0.83%, respectively. SSFLT had the lowest OA
among other methods on the SA dataset. Its OA was 95.24%.
The MCHN with 94.61% Kappa and SSFLT with 95.12% AA
had the lowest Kappa and AA. For the HT dataset, we obtained
97.77% OA, 97.59% Kappa, and 97.81% AA with an SD of
0.5%, 0.54%, and 0.43%, respectively. For the HT dataset,
MCHN had the lowest accuracy compared to others. It had
91.13% OA, 89.98% Kappa, and 90.73% AA. Notably, the PU
dataset was 97.81% OA, 97.1% Kappa, and 95.58% AA. The
SD of these metrics was 0.12%, 0.16%, and 0.09%, respectively.
Lite-HCNet has the worst results with 93.27% OA, 92.75%
Kappa, and 93.03% AA. Figs. 19–22 display the visualization
results of different datasets, including the ground truth and the
corresponding classification outcomes and Fig. 23 shows the
class color for ground truth and visualization results of different
datasets.

Although hybrid DNNs are capable of capturing global spec-
tral and spatial information, their ability to classify HSIs boosts
when we add and exploit three proposed modules. Our method
surpasses others in terms of OA, Kappa, and AA. Our method
primarily utilizes the EBIM that adds entropy information to the
input data. Specifically, the entropy filter identifies areas with
high entropy, which typically contain more detail or texture,
and areas with low entropy, which are more uniform or smooth.
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TABLE IV
COMPARISON RESULTS FOR THE SA DATASET (PCA = 15, SPATIAL SIZE =15)

TABLE V
COMPARISON RESULTS FOR THE HT DATASET (PCA = 15, SPATIAL SIZE =15)
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Fig. 19. Ground truth and visualization results of the IP dataset. (a) GT. (b) MCHN. (c) SSLDBR. (d) SSFLT. (e) ARL-GAN. (f) DSC_MFF. (g) Lite_HCNet.
(h) WaveFormer. (i) GSC-ViT. (j) Proposed method.

Fig. 20. Ground truth and visualization results of the SA dataset. (a) GT. (b) MCHN. (c) SSLDBR. (d) SSFLT. (e) ARL-GAN. (f) DSC_MFF. (g) Lite_HCNet.
(h) WaveFormer. (i) GSC-ViT. (j) Proposed method.
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Fig. 21. Ground truth and visualization results of the HT dataset. (a) GT. (b) MCHN. (c) SSLDBR. (d) SSFLT. (e) ARL-GAN. (f) DSC_MFF. (g) Lite_HCNet.
(h) WaveFormer. (i) GSC-ViT. (j) Proposed method.

Fig. 22. Ground truth and visualization results of the PU dataset. (a) GT. (b) MCHN. (c) SSLDBR. (d) SSFLT. (e) ARL-GAN. (f) DSC_MFF. (g) Lite_HCNet.
(h) WaveFormer. (i) GSC-ViT. (j) Proposed method.
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TABLE VI
COMPARISON RESULTS FOR THE PU DATASET (PCA = 15, SPATIAL SIZE =15)

TABLE VII
CLASSIFICATION ACCURACY ON IP DATASET (ADDING GAUSSIAN NOISE WITH ZERO MEAN

AND DIFFERENT VARIANCE)

TABLE VIII
COMPUTATIONAL COMPLEXITY OF THE PROPOSED METHOD AND STATE-OF-THE-ART METHODS

We also use an efficient DNN with residual connection and
spatial and spectral attention modules. In addition, the spectral
attention module (RSA) in our approach is designed to make
attention to informative bands. The spatial attention module
(DSA) is based on employing 2-D depthwise convolution and
can make attention to spatial regions with effective information.
By combining both spectral and spatial attention, our approach
can effectively capture this information in HSIs, leading to
superior performance compared to methods that only use one
type of attention.

D. Performance of the Proposed Method Under
Noise Condition

In another experiment, we add Gaussian noise with different
variances and zero mean to HSIs to assess the robustness of

our classification model. By varying the variance of the noise,
we simulated different levels of image quality degradation, akin
to real-world scenarios where data may be affected by various
noise factors. Table VII lists the results of this experiment.
Our findings indicate that as the variance of the Gaussian
noise increases, there is an expected decrease in classification
accuracy.

E. Computational Complexity

Computational complexity is an important aspect to evaluate
the efficiency and scalability of deep learning methods for
HSI data processing. This can help to understand the tradeoff
between model performance and resource consumption and
to design and optimize models that are suitable for different
applications and scenarios. The complexity of deep learning
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Fig. 23. Class color for ground truth and visualization results of different datasets.

models is important for understanding model generalization,
model optimization, model selection, and design. It is also
essential to the computational requirements of deep learning
models [82], [83], [84].

The computational complexity reflects the amount of time
and space resources required by the algorithm to perform
the feature extraction and integration tasks. In this section,
we compare the computational complexity of our proposed
method with other methods that use CNN layers, attention
mechanisms, and specific blocks to classify HSI data. We use two
metrics to measure the computational complexity of different
methods: the number of parameters and floating-point operations
per second (FLOPS). The number of parameters indicates the
memory consumption of the model, while FLOPS indicates the
computational cost of the model. Table VIII lists the comparison
of the number of parameters and FLOPS of the competing
methods. In this table, the highest value of FLOPS, the number of
parameters, a formula for a better understanding of the computa-
tional complexity of each model, and finally the evaluation of the
quality of the calculation complexity of each model are shown.

By considering the dimensions of the input image and the
structure of the classifier model, according to the type of layer
used and their arrangement, a formula can be obtained for the
computational complexity of any method. We have done this by
considering the dimensions of the input and the operation per-
formed by each layer on the input data, as well as by considering
the number of layers and the series and parallel structure of the
blocks and branches of each model. The coefficients used in the
presented formulas indicate the final operations of the layers,
including the multiplication of the number of filters and kernels
and addition with the output of the blocks or multiplication in
parallel branches. M, N, and K coefficients will be different
according to the structure of each model. The M coefficient is
the result of multiplying the input dimensions with each other
and the size and depth of each layer, and the N coefficient is the
product of the layers and parallel branches in the models. The
operation of each layer alone is also considered as N. Also, in
the output of each model, the K coefficient has been considered
in proportion to the number of flattened and fully connected
layers.
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TABLE IX
EFFECT OF REMOVING THE EBIM

From Table VIII, it can be seen that our proposed method has
the average number of parameters and FLOPS among all the
compared methods. This is because our method uses a hybrid
3D–2D CNN structure to reduce the number of parameters as
well as spatial and spectral attention modules with low parame-
ters.

F. Ablation Studies

In this section, we conducted ablation studies on four datasets
to thoroughly evaluate the effectiveness of the proposed mod-
ules. The purpose of these studies was to systematically remove
the proposed modules, namely EBIM, RSA, and DSA, to exam-
ine their contributions and impact on the overall performance
of the system. By carefully analyzing the results obtained from
these ablation studies, we gain valuable insights into the sig-
nificance and effectiveness of each module in improving the
classification accuracy and robustness of the system.

1) Effect of Removing the EBIM: The EBIM adds entropy
information to the HSIs. It enhances the local complexity and
diversity of the image, which can help to detect suitable varia-
tions in the spectral and spatial features. Moreover, it improves
the efficiency and accuracy of the subsequent processing steps.

Table IX illustrates the effect of removing the EBIM. The
EBIM is important for the accuracy of the IP dataset, and remov-
ing it leads to a significant drop in AA, Kappa, and OA, which
fall from 97.17%, 97.33%, and 97.66% to 95.91%, 96.74%, and
97.15%, respectively. Moreover, Removing the EBIM causes
a significant decrease in the accuracy of the SA dataset, as
the values of AA, Kappa, and OA fall from 98.38%, 98.21%,
and 98.39% to 95.91%, 96.74%, and 97.15%, respectively. In
fact, removing the EBIM has a strong effect on datasets with
low spatial resolution. The spatial resolution is the size of the
smallest feature that can be detected by the image sensor. The
spatial resolution of IP is 20 m per pixel. This means that each
pixel in the image represents an area of 20 × 20 m on the
ground. The IP dataset has a low spatial resolution compared
to some other hyperspectral datasets, such as PU, SA, and HT,
which have spatial resolutions of 1.3, 3.7, and 2.5 m per pixel,
respectively. After IP, the SA has the lowest spatial resolution
than other datasets. Therefore, removing the EBIM reduces the
accuracy of the IP and SA datasets considerably.

2) Effect of Removing the RSA Block: The RSA block is
used to pay attention to spectral information. This module can
enhance the performance of HSI classification by learning the
spectral dependencies and discriminating the spectral signatures
of different classes. The softmax function in the RSA block
converts a vector of values into a probability distribution. It
adds this information to the data and enhances the classification
performance.

Table X lists the results of removing the RSA block and its
effect on the classification performance. The effect of spectral
attention on different hyperspectral datasets may vary depending
on the characteristics of the datasets. The RSA block is essential
for the accuracy of the IP and PU datasets, and removing it causes
a large decrease. The IP dataset, which has a low spatial resolu-
tion and high spectral variability, may also benefit from spectral
attention because it can help exploit the unlabeled data and select
the most informative samples for labeling. The spectral attention
can help learn the spectral correlations and mutual information
of the pixels, and then classify them based on the principle of
relevant information. The PU dataset can capture more details
and features of the urban land cover than the other datasets but it
also has a low contrast and a high noise level, which makes
the texture features more blurred and noisier. Therefore, the
accuracy of the IP and PU datasets drops significantly when the
RSA block is removed. Without the RSA block, the IP dataset
suffers a large loss in accuracy metrics, as AA, Kappa, and OA
drop from 97.17%, 97.33%, and 97.66% to 94.25%, 95.99%,
and 96.49%, respectively. Moreover, removing the RSA block
causes a considerable decrease in the accuracy of the PU dataset,
as the values of AA, Kappa, and OA fall from 95.58%, 97.1%,
and 97.81% to 92.32%, 95.18%, and 96.36%, respectively

3) Effect of Removing the DSA Module: The DSA block is
used to pay attention to spatial information. It combines 2-D
depthwise convolution and softmax function in its architecture. It
can significantly improve the performance of HSI classification
by learning the spatial dependencies and discriminating the
spatial patterns of different classes.

The SA, PU, IP, and HT datasets are four different HSIs
that have different spatial resolutions and challenges for classi-
fication. As given in Table XI, removing the DSA block has a
strong effect on the accuracy of the IP and PU. The IP dataset
has the lowest spatial resolution among the four datasets, which
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TABLE X
EFFECT OF REMOVING THE RSA MODULE

TABLE XI
EFFECT OF REMOVING THE SPATIAL ATTENTION MODULE (DSA)

means that the IP dataset has the least details and features of
the surface. The IP dataset also has a high spectral variability
and a low number of labeled samples, which means that the
classification models need to deal with the noise and uncertainty
of the data. Therefore, removing the DSA module from the
proposed architecture decreases the AA from 97.17% to 94.8%,
OA from 97.66% to 96.43%, and Kappa coefficient from 97.33%
to 95.92%. For the PU dataset, it has a high spatial resolution,
which means that the spatial information is more important for
classification. The PU dataset also has a low contrast and a high
noise level, which makes the texture features more blurred and
noisier. Therefore, removing the DSA block decreases the AA,
Kappa, and OA from 95.58%, 97.1%, and 97.81% to 93.25%,
95.24%, and 96.42%, respectively.

V. DISCUSSION

In this article, we presented an effective approach for clas-
sifying HSI using deep learning techniques. Specifically, we
proposed a hybrid CNN that incorporated different modules,
such as EBIM, RSA, and DSA. Our proposed model utilizes an
entropy filter to bring a significant performance improvement by
adding entropy information to HSIs. In addition, we use the spa-
tial attention module (DSA), which is based on 2-D depthwise
convolutions and a softmax activation function. The spectral at-
tention module (RSA) exploits reshaped layers and softmax acti-
vation functions in its architecture. These two modules improve
the classification performance and add probability information

to feature maps. Through experimental results on benchmark
datasets, our model has demonstrated superior performance
compared to others. We evaluate the effect of removing different
modules in the proposed model through Tables IX and X. There
are four popular datasets to evaluate the performance of HSI
classification systems. Each of these datasets has its characteris-
tics and challenges for HSI classification. For example, the SA
dataset has a high spectral resolution and a low spatial resolution,
while the PU dataset has a high spatial resolution and a low
spectral resolution. The HT dataset has a large image size and
a high number of classes, which means that the classification
models need to handle the scalability and complexity of the data.
The IP dataset has a high spectral variability and a low number
of labeled samples, which means that the classification models
need to deal with the noise and uncertainty of the data. According
to the characteristics of these datasets, different modules are
exploited in the proposed architecture to increase the accuracy.
The EBIM has a strong effect on the accuracy of the SA and
IP, which have the lowest spatial resolution compared to others.
This is done by enhancing the spatial information by adding
entropy information to the HSIs through the EBIM. The IP and
PU datasets need the RSA block for accurate results. Without the
RSA block, the performance drops significantly. The IP dataset
has high spectral variability. The RSA block learns the spectral
correlations and mutual information of the pixels and classifies
the IP dataset efficiently. The PU dataset has a low contrast
and a high noise level, which makes the texture more blurred
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and noisier. The RSA block efficiently pays attention to spectral
bands. Therefore, removing the RSA block has a strong effect
on the accuracy of these two datasets.

The DSA pays attention to spatial features. It has more
effect on the accuracy of the IP and PU. The IP dataset has
the lowest spatial resolution among the four datasets, which
means that the IP dataset has the least details and features of
the surface. Therefore, the DSA block can effectively notice
informative regions. The PU dataset has a low contrast and a high
noise level, which makes the texture more blurred and noisier.
The DSA block has a strong effect on the accuracy of this dataset
by effectively highlighting spatial regions.

VI. CONCLUSION

In this article, we proposed a novel method to classify HSIs
using spatial and spectral attention mechanisms as well as the
EBIM technique. Our method aims to enhance the performance
and efficiency of HSI classification by exploiting the EBIM and
attention modules. For spatial attention, we introduced the DSA
module, which was a combination of 2-D depthwise convolution
and the softmax function. It learned to generate spatial attention
maps for each spectral band of the input HSI. It also highlighted
the regions of interest and suppressed the background noise in
the HSI. For spectral attention, we introduced the RSA module,
which was a combination of reshape layers and the softmax
function. It learned to generate spectral attention weights for
each spectral band of the input HSI. The spectral attention
weights were used to emphasize the important spectral bands
and reduce the redundancy and correlation among the bands. In
addition to the spatial and spectral attention modules, we also
proposed the EBIM module, which was a preprocessing step
that applied the entropy filter to the input HSI. The entropy filter
is a function that calculates the local entropy of an image, which
is a measure of the randomness or complexity of the image. The
EBIM technique enhanced the quality and contrast of the HSI.
We evaluated our proposed method on several benchmark HSI
datasets and compared it with several state-of-the-art methods.
We used an effective DNN backbone based on a hybrid struc-
ture of 2-D CNNs, 3-D CNNs, and residual connections. The
experimental results showed that our method achieved superior
performance in terms of OA, AA, and Kappa. We also conducted
ablation studies to demonstrate the effectiveness and necessity
of each component of our method. In summary, we proposed a
novel method to classify HSIs using spatial and spectral attention
mechanisms as well as the EBIM module. In the future, we will
continue to explore new architectures and techniques to train a
more reliable and compact model for HSI classification.
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