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Abstract—Urban renewal has led to the proliferation of informal
urban habitats, such as slums, shanty towns, and urban villages
(UVs). As an important component of urban renewal, UVs influ-
ence urban spatial structure and land use patterns. Therefore,
the fine extraction of UV is of great theoretical and practical
significance. Existing UV classification techniques mostly employ
machine learning and convolutional neural network based models,
which struggle to perceive long-range global semantic information.
In this article, based on high-resolution remote sensing images, we
propose a multiscale mask transformer model for UV (MaskUV).
It can extract both local texture features and global features.
The multiscale mask transformer module with mask attention can
aggregate different levels of pixel and object features, enhancing
the model’s recognition and generalization abilities. We extracted
UV in seven cities in the Pearl River Delta (PRD) using MaskUV
and analyzed the spatial pattern and accessibility of UV. Due to
the scarcity of fine-grained UV detection datasets, we also pro-
vide a novel dataset (UVSet) containing 3415 pairs of 512 × 512
high-resolution UV images and labels, with a spatial resolution of
1 m. Comparative experiments with several UV extraction models
demonstrate the effectiveness of MaskUV, achieving an F1 score of
84.39% and an IoU of 73.00% on UVSet. Besides, MaskUV achieves
highly accurate detection results in seven cities in the PRD, with
average F1 and IoU values of 84.41% and 72.44%, respectively.

Index Terms—Deep learning, Pearl River Delta (PRD), remote
sensing, urban villages (UVs), urbanization.

I. INTRODUCTION

URBANIZATION reshapes the physical, social, and ecolog-
ical landscapes of cities globally, with significant effects

on biodiversity, ecosystem functions, and service provisions [1],
[2], [3]. Accelerated urban renewal, while propelling regional
economic expansion, concurrently leads to the proliferation
of unofficial urban habitats, such as slums, shantytowns, and
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urban villages (UVs) [4], [5], [6]. The UN-habitat defines UV
as densely populated, informal urban areas marked by poverty
and subpar standards [7]. These communities often fail to keep
pace with the swift advancement of city development, leading to
poor living conditions and insufficient infrastructure. According
to UN-habitat statistics, nearly 1.1 billion individuals currently
live in slums or similar impoverished urban conditions, with
projections suggesting an increase to 2 billion over the next three
decades [8]. Regularly falling outside conventional urban ad-
ministrative structures, these locales are typically characterized
by inadequate public spaces, uncontrolled land use, overpop-
ulated substandard buildings, and lack of essential amenities,
leading to unsanitary conditions [9], [10], [11], [12]. With the
transformation of China’s urbanization development, the prime
focus is high-quality and sustainable development [13], [14],
[15]. Timely and accurate data on these informal settlements
are crucial for improving urban spaces and living standards
[16], [17].

UVs, a prevalent type of informal residential area in China, of-
ten emerge when the government circumvents rural settlements
to mitigate costs during urban expansion, exemplifying China’s
localized informal residential spaces [18], [19], [20]. In the Pearl
River Delta (PRD), UVs are dense, informal settlements that
evolved from rural villages and have been incrementally en-
gulfed by urbanization [21], [22], [23]. Despite their informality,
they offer affordable housing for migrant workers, bolstering
local economies [24]. Yet, they face issues including poor living
conditions, insufficient infrastructure, and high pollution levels.
In recent decades, numerous UVs in seven cities of PRD (see
Section II-A) have been drastically transformed through urban
renewal projects, causing substantial shifts in land use, socioe-
conomic statuses, and urban ecosystems.

On-site surveys or government statistic data can offer funda-
mental information on UV, from land and building areas to build-
ing density and average floors. However, these labor-intensive
and inefficient methods struggle with large-scale implementa-
tion, failing to meet current application demands for accessi-
bility and openness. High spatial resolution satellite imagery,
with its broad observation range, rich surface data, and ready
availability, has become a crucial data source for urban planning
and management [25], [26], [27]. Researchers worldwide have
utilized high-resolution imagery and associated technologies for
extensive identification in UV and slums [7], [11], [28].
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Numerous studies have leveraged spectral and textural fea-
tures from imagery, object segmentation, and machine learning
to identify and analyze UV, given their distinct differences
from conventional urban areas in terms of building density, roof
materials, and living conditions. Specific methods include [29]’s
semiautomatic identification of informal residences from Quick-
Bird high-resolution imagery in Delhi, India, using multiresolu-
tion segmentation and object-oriented classification methods.
Zhu et al. [30] identified informal settlements in developing
countries using a decision tree model based on extracted fea-
tures of buildings, roads, and spatial patterns. In China, Huang
et al. [11] studied the spatiotemporal distribution of UV in
Shenzhen and Wuhan using machine learning and multi-index
scene models. Nevertheless, the unplanned growth of UV results
in complicated spectral and spatiotemporal building patterns,
exposing issues in traditional feature extraction methods, such
as inadequate feature representation, complex extraction pro-
cesses, and challenges in adapting to dynamic environments.

Relying on the robust automatic feature learning capabilities,
deep learning has progressively become a focal method for
fine-grained building scene classification and mapping in remote
sensing imagery [31], [32], [33], [34], [35]. Deep learning offers
an accurate, automated, and scalable method for extracting fine-
scale architectural features from high-resolution imagery [36],
[37], [38], which reduces manual labor and time consumption
by learning complex patterns from extensive data. Furthermore,
deep-learning models can be trained to perform in various urban
contexts and landscapes, enabling efficient large-scale mapping
of UV. Shi et al. [39] employed deep fully convolutional net-
works (FCNs) to automatically learn a hierarchy of informative
features for detecting informal urban settlements. Vaswani et
al. [40] explored the potential of FCNs for UV semantic seg-
mentation in QuickBird high-resolution and Sentinel2 imagery
via transfer learning. Wang et al. [41] tackled the data domain
shift issue in large-scale UV identification through adversarial
learning, achieving finer large-scale UV mapping.

Transformer [42] has been broadly applied in image classi-
fication, semantic segmentation, object detection, image gener-
ation, image captioning, and super-resolution tasks [43], [44],
[45]. Current research on UV classification using deep learning
primarily focuses on convolutional neural networks (CNNs) [7],
[46], [47], with few studies employing vision transformer (ViT)
for end-to-end semantic segmentation of UV. While CNNs excel
at capturing local patterns within their receptive fields, trans-
formers are designed to model long-range, global dependencies
in the data, which is particularly beneficial for high-resolution re-
mote sensing images where contextual information from a larger
area can be crucial for semantic understanding. Moreover, unlike
CNNs, transformers do not rely on spatially local, shift-invariant
filters, and therefore, can learn to accommodate the diverse
and complex spatial patterns of UV in remote sensing imagery
[44], [45].

To better recognize the fine-grained features of UV and
break through the constraints of a single sensor, high-resolution
imagery, and multisource data fusion methods are employed to
acquire granular socioeconomic attribute information. Chen et
al. [17] combined remote sensing imagery with social sensing

data, such as nighttime lights, points of interest (POI), and taxi
trajectories to generate a fine-grained map of UV in Shenzhen.
Fan et al. [7] validated the robustness of their fusion method in
both custom and public datasets by extracting multiscale spatial
fusion features from satellite and street view images based on a
CNN. Hu et al. [48] designed network branches for satellite and
street view images, using a gating module for multimodal feature
fusion, effectively detecting UV in the Beijing–Tianjin–Hebei
region. Although the effectiveness of multimodal data has
been proven by multiple studies, it is challenging to acquire
sufficient multimodal data for large-scale mapping in the
PRD region. Therefore, we plan to use high-resolution remote
sensing imagery exclusively to develop an end-to-end urban
village extraction framework based on CNN-Transformer
architecture.

This article aims to leverage the power of deep-learning
and high-resolution remote sensing to identify the accurate
spatial distribution of UV in the PRD region. Traditional se-
mantic segmentation methods designed primarily for natural
images, often fall short in UV extraction due to their reliance
on large, labeled datasets, and their general-purpose feature
extraction approaches. These models typically struggle with the
fine-grained differentiation required to distinguish UVs from
other high-density urban areas, leading to reduced accuracy
and higher misclassification rates. Specifically, we propose the
mask transformer for UV extraction (MaskUV) to address these
challenges by incorporating a novel multiscale mask transformer
module (MMTM). This module enhances the model’s ability to
accurately capture the unique instance-level features of UVs,
and leverages multiscale feature fusion to integrate both local
and global contextual information, thereby improving segmenta-
tion performance in complex urban environments. Additionally,
a high-resolution UV dataset (UVSet) is made available for
model training and validation. Our findings could enrich existing
single-building datasets, bolster data support for studies on
building management and heat island effects, and offer valuable
insights into the sustainable development of the PRD region. The
contributions of this article can be summarized in three points
as follows.

1) A multiscale MaskUV is proposed for UV, in which an
MMTM is designed to encode multiscale semantic infor-
mation, and the mask attention is integrated to capture
local context and improve model efficiency.

2) A high-resolution UVSet in PRD is provided for relevant
studies, which contains 3415 pairs of 512 × 512 images
with spatial resolutions of 1.1 m.

3) The first UV map of seven cities in PRD with a 1-m
spatial resolution for the year 2021 is produced. The spatial
pattern of UV in the PRD and the potential application of
the UV map are also analyzed.

The rest of this article is organized as follows. Section II
introduces the study area and our UVSet. Section III presents
the methodology. Section IV presents the experimental settings.
Section V demonstrates and analyzes the accuracy results. Com-
parative experiments, ablation studies, and model efficiency are
discussed in Section VI. Finally, Section VII concludes this
article.
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Fig. 1. Study area and study objects. (a) Study area of seven cities in Pearl River
Delta, China, including Guangzhou, Shenzhen, Foshan, Dongguan, Zhongshan,
Zhuhai, and Huizhou. (b) Examples of apartment complexes and villas. (c)
Examples of UVs.

II. STUDY AREA AND MATERIALS

A. Study Area

The PRD is located in the south-central part of Guangdong
Province in China, which is now one of the pivotal megacity
regions in the world. Over the past three decades, expeditious
urbanization in the PRD has aroused the expansion and ag-
glomeration of UV [49]. As UVs are formed in the process
of rapid urban development, there is no unified planning and
management and low living standards as residential areas [50].
Therefore, in order to explore and analyze the housing inequality
phenomenon in China, the seven cities in PRD are selected as
the study area (21°27′–23°56′N,111°59’–115°26’E), covering a
total land area of 54770.21 km2 (Fig. 1) and with a population
of approximately 64.47 million in 2019 [51].

B. Data and Preprocessing

1) Google Earth Imagery: To obtain the distribution of infor-
mal housing space, a total number of 329 Google Earth imageries
in 2020, covering the whole study area of the seven cities in
the PRD, are downloaded for UV mapping. Each image has
a 1:25 000 map size and a spatial resolution of about 1 m.
All images are clear and cloud-free images obtained through
artificial inspection, as demonstrated in Fig. 1.

2) Urban Village Dataset (UVSet): Considering that the spe-
cific distribution of informal housing space is difficult to obtain
directly, a DL-based approach is introduced to obtain the distri-
bution of UV of the seven studied cities. Nevertheless, while the
performance of a DL model relies heavily on adequate datasets,
there is no large-scale, publicly available dataset of UV based on
HRIs. Therefore, a UVSet of HRIs is constructed to support DL
model training and validation, which will also be open source
for future scientific research.

The process of constructing the UVSet can be summarized as
follows: first, 16 training images and 10 testing images are evenly
and randomly selected from the 329 Google Earth images as
sample area, as shown in Fig. 2; next, the 26 selected images are
annotated through manual visual interpretation to obtain UV in

Fig. 2. Introduction of UVSet. (a) Distribution of UVSet training and testing
data. (b) Example samples in the UVSet of size 512× 512. Each sample contains
an image and a corresponding label, in which “1” (the white pixels) denotes urban
village area, and “0” (the black pixels) denotes nonurban village area.

vector, as shown in Fig. 1(b); finally, all vectors of UV annotated
in the above steps will be rasterized into pixelwise annotations,
where the non-UV area and the UV area are denoted by 0 and
255, respectively.

After obtaining labeled image–sample pairs by the above
steps, we need to crop them into patches to meet the requirements
of model training on GPU. Therefore, 2102 pairs of 512 × 512
size samples are obtained through nonoverlapping sampling,
which are separated into the training set, validation set, and
test set in the ratio of 3:1:1. For the sake of making the trained
model more robust for large-scale mapping, data augmentation
strategies are applied to the training set. Specifically, random
rotations of 90°, 180°, and 270° are performed at first to double
the size of the training set, after which random left and right flips
are made to expand the training set by three times. In addition,
random gamma transformation (with a probability of 0.6) and
a blurring (with a probability of 0.1) are also utilized in the
above two steps. The distribution of samples and some example
samples in the UVSet are provided in Fig. 2.

3) Global Urban Boundary: The global urban boundary
(GUB) data [52] are multitemporal GUB data for 7 years (1990,
1995, 2000, 2005, 2010, 2015, and 2018) constructed based
on the global high resolution (30 m) artificial impervious area
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Fig. 3. Overview of the proposed mask transformer network.

data. The GUB dataset delineates the boundaries of all cities
and surrounding settlements with an area of more than 1 square
kilometer in the world, which can well capture the complicated
shapes and boundary features of urban fringe areas. In this arti-
cle, the GUB dataset is used to remove the aggregated villages
outside the city to obtain the UV in the study area.

III. METHODOLOGY

A. Overview

As shown in Fig. 3, the proposed MaskUV mainly comprises
two components: a swin transformer feature backbone and an
MMTM. The backbone, made up of four swin transformer
blocks, is designed to extract multiscale spatial and textural
features. To address the complex architectural structures and
multiscale characteristics of UV, we propose an MMTM that
learns multilevel local and global contextual semantic features
from satellite imagery, where a novel mask classification mech-
anism is utilized. The MMTM is composed of three mask
transformer blocks, each consisting of a pixel-level module, a
transformer module, and a segmentation module that handles
features at different scales and semantic levels.

B. Feature Backbone

The backbone of the MaskUV initially uses the tiny version
model of the swin transformer [53] as a feature backbone to seize
multiscale image features effectively. To be specific, the back-
bone comprises a patch partition process and four stages of swin
transformer modules. The swin transformer architecture adopts
a patch-based approach similar to the ViT, dividing the input
RGB image into nonoverlapping patches and projecting their
raw pixel RGB values into an embedding space. These patches
are then processed by multiple swin transformer blocks, fea-
turing a unique shifted window-based multihead self-attention

module followed by a two-layer multilayer perceptron (MLP)
with GELU [54] nonlinearity. Hierarchical representation is
achieved through patch merging layers, downsampling the token
count by a factor of 2 × 2, and preserving the resolutions of the
feature maps across successive stages. LayerNorm [55] layers
and residual connections ensure stable training and information
flow within each swin transformer block.

The hierarchical structure of swin transformer enables our
backbone to capture multiscale information while maintaining
computational efficiency, making it well-suited for semantic
segmentation tasks.

C. Multiscale Mask Transformer Module

The MMTM is designed to effectively capture multilevel
contextual semantic features for UV extraction. Comprising
three mask transformer blocks, MMTM leverages a novel mask
classification mechanism within each block to handle features at
various scales and semantic levels. Each block within MMTM
consists of three interconnected modules: a pixel-level module,
a transformer module, and a segmentation module.

Fig. 4 illustrates the structure of the mask transformer block.
The pixel-level module serves as the foundation of MaskFormer,
extracting per-pixel embeddings to facilitate binary mask predic-
tions. Initially, an image of size H×W is inputted into the model.
A backbone network generates a low-resolution image feature
mapF ∈ RCF×H/S×W/S , where CF represents the number of
channels and Sdenotes the stride of the feature map. Subse-
quently, a pixel decoder gradually upsamples the features to gen-
erate per-pixel embeddings εpixel ∈ RCε×H×W ,where Cε repre-
sents the embedding dimension. This module accommodates
various per-pixel classification-based segmentation models in-
cluding recent transformer-based architectures. In our module,
the pixel decoder is seamlessly composed of 3 × 3 convolutions.
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Fig. 4. Structure of the mask transformer block.

The transformer module leverages a stack of transformer
decoder layers to compute Nper-segment embeddings. By pro-
cessing the image features F and learnable positional embed-
dings, the module outputs Nper-segment embeddings Q ∈
RCQ×N . These embeddings encode global information about
each segment. The decoder yields all predictions in parallel
[56], enabling efficient and simultaneous processing of multiple
segments.

While context features are crucial for image segmentation,
recent findings [57], [58] suggest that the slow convergence of
transformer-based models may result from the global context
in the cross-attention layer. This is because it often requires
extensive training epochs for cross-attention to effectively focus
on localized object regions. To address this, we replace the
standard cross-attention with the mask attention, a modification
of cross-attention, which exclusively attends to the foreground
regions of the predicted mask for each query. This approach
aims to leverage local features for updating query features,
while relying on self-attention mechanisms to gather contextual
information efficiently. The structure of the mask attention block
is depicted in Fig. 5.

The masked attention mechanism updates the attention matrix
as

Xl = softmax(Ml−1 +QlK
T
l )Vl +Xl−1. (1)

Here, lis the layer index. Xl ∈ RN×Crepresents query fea-
tures at layer l, and Ql = fQ(Xl−1) ∈ RN×C is the linear
transformation of input query features. X0denotes the input
query features to the transformer decoder. Kl, Vl ∈ RHlWl×C

are query and value from image features, respectively. Hland
Wl represent the spatial resolution of the image features.

The attention mask Ml−1(x, y) at feature location (x, y) is
defined as

Ml−1(x, y) =

{
0 ifMl−1(x, y) = 1
−∞ otherwise.

(2)

Here, Ml−1 ∈ 0, 1N×HlWl is the binarized output (thresh-
olded at 0.5) of the resized mask prediction from the previous
(l − 1)thtransformer decoder layer, resized to match the resolu-
tion of Kl. M0 represents the binary mask prediction obtained

Fig. 5. Structure of the mask attention block.

from X0, prior to feeding the query features into the transformer
decoder.

Finally, the segmentation module synthesizes the per-segment
embeddings to generate class probability predictions for each
segment. A linear classifier followed by a softmax activation is
applied to the per-segment embeddings Q to yield class proba-
bility predictions {pi ∈ ΔK+1}Ni=1 for each segment. Utilizing
a novel mask classification mechanism, the module produces
binary mask predictions by applying an MLP to the embeddings.
These predictions are then assembled into the final segmenta-
tion output, providing comprehensive insights into the spatial
distribution and semantic characteristics of UVs in the satellite
imagery.

To train the mask classification model, we require a match-
ing σ between the set of predictions z and the set of
Ngt truth segments zgt = {(cgti ,mgt

i )|cgti ∈ {1, . . . ,K},mgt
i ∈

{0, 1}H×W }Ngt

i=1 . Here, cgti represents the ground truth class
of theith ground truth segment. Given that the sizes of the
prediction set |z| = N and the ground truth set |zgt| = Ngt

are typically unequal, it is assumed N ≥ N gt and the ground
truth labels are padded with “no object” tokens ∅ to facilitate
one-to-one matching. For extraction of UV, the ith prediction is
matched to a ground truth region with class label i, and to ∅ if a
region with class label i is not present in the ground truth. Recent
research has shown that a bipartite matching-based assignment
outperforms fixed matching. The approach involves utilizing
class and mask predictions directly, whereLmask denotes a binary
mask loss.

During training, MaskUV minimizes the combination of a
cross-entropy classification loss and a binary mask loss for each
predicted segment. The mask loss is a linear combination of focal
loss and dice loss. This combined loss function ensures effec-
tive training of the model parameters, enhancing segmentation
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accuracy and robustness

Lmask−cls(z, zgt) =
N∑
j=1

[
− log pσ(j)(c

gt
j )

+1cgtj �=∅
Lmask(mσ(j),m

j
gt)

]
. (3)

D. Semantic Inference

The semantic inference adopted by MaskUV involves a sim-
ple matrix multiplication to compute the per-pixel class probabil-
ities for UV and non-UV. Specifically, the most likely semantic
label for each pixel is computed from the argmax over the sum of
class probabilities weighted by their corresponding mask values

Y [h,w] = argmaxc∈{1,...,K}
N∑
i=1

pi(c) ·mi[h,w]. (4)

This effectively considers the contributions of multiple masks
in determining the final semantic label for each pixel. It is
important to note that the argmax operation does not include
the “no object” category �, as standard semantic segmentation
requires each output pixel to be assigned a label.

IV. EXPERIMENTAL SETTINGS

A. Model Training Settings

All experiments are configured using PyTorch and trained on
NVIDIA GeForce 2080ti. The model is trained with a batch size
of 8, the initial learning rate is set to 0.0001, and the Adam
optimizer is used to optimize the model parameters. The total
number of epochs for model training is 150. After training
of 100 epochs, the learning rate will be linearly decreased to
help the model better reach the optimum. During training, data
augmentation on the training set, including random rotation and
random flipping, will also be applied.

B. Comparative Methods

To further test the validity of the MaskUV model, we intro-
duce eight advanced semantic segmentation models for com-
parative experiments, including UNet, ENet, BiSeNet, Deeplab
v3+, SegFormer, Segmenter, DDRNet, and PIDNet. A concise
overview of the distinct features of each method is as follows.

1) UNet [59] is a CNN that was specifically designed for
biomedical image segmentation, known for its symmetric
expansive path that recovers the spatial information lost
in the contracting path, enabling precise localization.

2) ENet [60] is an efficient CNN proposed by Adam Paszke
et al. It is used for real-time semantic segmentation tasks,
characterized by its lightweight architecture that carefully
balances model complexity and accuracy.

3) BiSeNet [61] is designed for high-resolution image seg-
mentation, featuring a unique architecture that simultane-
ously processes multiscale features through two parallel
paths.

4) DeeplabV3+ [62] is an innovative encoder–decoder struc-
tured CNN that excels in semantic image segmentation. It

utilizes an enhanced Xception-41 encoder, atrous spatial
pyramid pooling, and a decoder module to encode multi-
scale context information and capture sharper boundaries.

5) SegFormer [63] is a state-of-the-art (SOTA) transformer-
based architecture proposed for semantic segmentation
tasks. It integrates transformers with lightweight MLP
decoders, featuring a hierarchically structured transformer
encoder for multiscale feature extraction and simplified
MLP decoders combining local and global attention.

6) Segmenter [64] is an SOTA transformer model to acquire
global context throughout the network, enabling global
context modeling from the initial layer throughout the net-
work and leveraging ViT to extend semantic segmentation
with output embeddings of image patches.

7) DDRNet [65] is an efficient network designed for real-time
semantic segmentation, featuring deep dual-resolution
networks with multiple bilateral fusions and the deep ag-
gregation pyramid pooling module for enhanced receptive
fields and multiscale context integration.

8) PIDNet [66] is a novel three-branch network architec-
ture inspired by the proportional–integral–derivative con-
trollers, designed to parse detailed, context, and bound-
ary information separately and mitigate overshoot issues
through boundary attention-guided fusion.

C. Evaluation Metrics

The predicted results of the UV will be compared to the
ground truth labels, and the accuracy will be measured by four
indicators: precision, recall, F1, and IoU. Precision assesses
the detection rate of predicted positive pixels, Recall assesses
the detection rate of true positive pixels, and the F1 score is the
summed average of precision and recall, aiming to consider the
effects of both. The IoU is the intersection of the “UV” class in
this article. They can be expressed by the following formula:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 = 2 · Precision · Recall
Precision + Recall

(7)

IoU =
TP

TP + FP + FN
(8)

where TP, FP, FN, and TN indicate true positive, false positive,
false negative, and true negative of the predicted results.

V. ANALYSIS OF RESULTS

A. Accuracy Evaluation on UV Results

After obtaining the UV results of the study area using the
well-trained MaskUV model on UVSet, an accuracy evaluation
should be conducted to verify the results. Several test images
from each city in the study area are evenly and randomly selected
for validation. All test images will be annotated by expert visual
interpretation to obtain corresponding reference maps. Fig. 6
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Fig. 6. Comparisons between the reference maps (the second column) and predicted results (the third column) of UVs, cases from (a) Shenzhen City; (b) Foshan
City; and (c) Dongguan City.

TABLE I
ACCURACY EVALUATION OF UV IN PRD

shows the comparison between the reference maps and the
extracted UV results from Shenzhen, Dongguan, and Foshan.

The accuracy evaluation of UV in PRD is shown in Table I.
It can be seen that the UV extraction results for the whole
study area are generally satisfactory, with the average F1 and
IoU of 84.41% and 72.44%, respectively. Specifically, Foshan
has the highest extraction accuracy, with the highest F1 and
IoU of 87.71% and 78.11%, respectively. Following closely,
Dongguan achieves an F1 score of 86.04% and an IoU of
75.50%. Guangzhou also yields notably high results, with an
F1 score of 84.95% and the highest precision among all cities
at 86.93%. Moreover, Shenzhen, Zhongshan, and Huizhou all
exhibit F1 scores and IoU values surpassing 80% and 70%,
respectively. However, Zhuhai presents the lowest verification

accuracy, recording an F1 score of 77.68%. Overall, these ac-
curacy evaluations underscore the effectiveness and practicality
of the proposed MaskUV and UVSet for large-scale UV map-
ping, affirming the precision of the derived UV delineations for
subsequent applications and analyses.

B. Comparative Experiments With DL Models

Fig. 7 illustrates the UV recognition results of several test
images using different deep-learning models. Compared with
other methods, MaskUV visually achieves more accurate clas-
sification results. The multiscale mask transformer architecture
of MaskUV facilitates the model to recognize and localize
multiscale buildings more accurately while maintaining high
precision across different scenarios. In contrast, Deeplab v3+
and BiSeNet perform poorly in UV with low building density,
leading to inaccurate boundary predictions of small buildings.
Among the SOTA methods, SegFormer and Segmenter yield UV
predictions with numerous holes, overlooking the local features
of intricate contours of UV buildings and roads. Unet, DDRNet,
and PIDNet suffer from many false negative predictions for
roads with similar texture and color to UV buildings, indicating
that their building extraction results are not robust enough to
handle buildings in different complex scenes. Deeplab v3+
also performs poorly in generating predictions with smooth
boundaries, suggesting that the pyramid pooling module is
not suitable for building extraction from VHR remote sensing
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Fig. 7. Visualization of experimental results on UVSet dataset: (a) image; (b) label; (c) UNet; (d) ENet; (e) BiSeNet; (f) deeplab v3+; (g) SegFormer; (h)
segmenter; (i) DDRNet; (j) PIDNet; and (k) MaskUV.

TABLE II
PERFORMANCE OF DIFFERENT MODELS ON UVSET

images, mainly because the pyramid pooling module aggregates
contextual information at various scales, which usually leads to
smoother prediction. BiSeNet performs well among the seven
compared methods and achieves high accuracy in extracting UV
and low-density buildings.

Four indicators including precision, recall, F1, and IoU are
used for comparisons. As shown in Table II, MaskUV achieves
the best performance among the comparative methods, with an
F1 score and an IoU of 83.68% and 71.94%, respectively. The
second-rank model is the SegFormer with an F1 of 83.56%
and an IoU of 71.77%, which are 0.83% and 1.23% lower than
those of MaskUV. The following are BiSeNet and Deeplab v3+,
which obtain the F1 of 83.28% and 83.14%, respectively. While
ENet achieves the highest recall rate of 86.40%, its F1 score and
mIoU are not as competitive, standing at 82.51% and 70.23%,
respectively. It can be seen from the quantitative results that,
compared with the existing models, MaskUV has advantages in
the extraction of UV.

C. Spatial Pattern of UVs in Seven Cities of PRD

Fig. 8 shows the spatial distribution of UV in the seven cities
of PRD in 2020. The rapid urbanization of PRD has led to the

Fig. 8. Distribution and areal statistics of urban villages of PRD in 2020: (a)
presents the spatial distribution of urban villages, and (b) shows urban village
area statistics for different regions.

widespread distribution of UV, with significant spatial hetero-
geneity. The total area of UV in the study area was estimated
to be 827.64 km2, with Guangzhou and Foshan having the
largest proportions (28.04% and 21.64%, respectively), followed
by Huizhou (14.56%), Dongguan (14.53%), and Zhongshan
(10.85%), while Zhuhai had the smallest proportion (3.28%).
From the kernel density map [67] of UV in Fig. 9, UVs exhibit
distinct spatial patterns in different cities, which are related
to the cities’ own development history and spatial planning.
Guangzhou’s UVs are mainly concentrated in the west, while
Foshan’s are concentrated in the east, adjacent to Guangzhou. In
contrast, Dongguan and Zhongshan have more UV in the north.
The distribution of UV in Shenzhen, Zhuhai, and Huizhou is
relatively dispersed, without an obvious center of concentration.

Compared with formal residential areas, most UVs still have
significant deficiencies in the supply and quality of public ser-
vices, such as sewage treatment and sanitation facilities. Since
UVs are informal residential areas surrounded by built-up urban
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Fig. 9. Kernel density map of urban villages of PRD in 2020.

TABLE III
ABLATION STUDY OF THE PROPOSED MODEL ON UVSET

areas, the accessibility of their public transportation systems,
commercial services, and parks becomes an important indicator
of the convenience of living for UV residents. We collected
POI data in 2020 for the study area using the Amap API and
calculated the Euclidean distance from the center of each UV
to the nearest commercial center, park, and trunk road using
nearest neighbor analysis. The nearest distances are shown in
Fig. 10. Except for a few UVs in Guangzhou, Foshan, and
Zhuhai, most UVs are conveniently located within 2 km of a
trunk road, making it easy for residents to travel. The distance
from UV to parks and commercial centers varies, with com-
mercial centers generally being farther away. In Huizhou, the
scattered distribution of commercial centers results in relatively
long distances from UVs to these centers.

VI. DISCUSSION

A. Ablation Study

In this section, we conduct an ablation study on MaskUV
to further validate the efficacy of the mask transformer block
(MTB) and the multiscale transformer module (MTM) inte-
grated into the MaskUV. The “base” model serves as the ref-
erence for comparison with the standard transformer and single
branch configurations. The models denoted as “+MTB” and
“MTM” represent the “base” model augmented with the MTB
and MMTM components, respectively. The ablation study re-
sults are summarized in Table III.

Compared against the “base” model, which achieves an F1
score of 81.77%, the “+MTB” model and the “+MTM” model
exhibit improvements of 1.03% and 2.01% in F1 score, respec-
tively. This indicates the beneficial impact of integrating these
modules into the base architecture. Furthermore, the MaskUV
achieves the most favorable results in the ablation experiments,

Fig. 10. Relationships between the distances to the nearest public facilities of
UVs in (a) Guangzhou, (b) Foshan, (c) Dongguan, (d) Shenzhen, (e) Zhongshan,
(f) Huizhou, and (g) Zhuhai.

with a precision of 82.84%, recall of 86.01%, F1 score of
84.39%, and IoU of 73.00%. These findings strongly support the
feasibility and efficacy of integrating MMTM into the MaskUV
architecture for UV mapping.

B. Model Complexity

To compare the computational complexity of different mod-
els, three metrics, including floating points of operations
(FLOPs) and a number of parameters (Params). The FLOPs can
denote the temporal computational complexity of the model,
with a unit of 109 (G), and the Params represent the spatialwise
complexity of the model, with a unit of 106 (M). Given two
bitemporal inputs of size 1 × 3 × 512 × 512, the FLOPs and
Params of all methods are shown in Table IV. The proposed
MaskUV can achieve optimal performance under relatively
lower FLOPs of 49.81G and Params of 41.63M, demonstrating
its advantages in fast and large-scale UV extraction applications.

C. Limitations and Future Work

The above experiments and analysis have proved the usability
of the proposed method in multiscale housing inequality evalu-
ation. However, due to limited open access data, there are still
limitations of this article which can be explored in the future.
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TABLE IV
MODEL EFFICIENCY OF DIFFERENT METHODS

Specifically, though the experiment has been conducted based on
the PRD in China, the usability of the method in other regions has
not been tested for the time being. However, since the proposed
method only relies on public data, the model is cheap enough to
rebuild, validate, and apply for different regions. In addition, due
to the poor availability of high-resolution satellite imagery and
social media data of long time series, it is still hard to explore
the spatial distribution of UV over time. Therefore, future article
can be attempted from the following aspects.

1) Applying the UV model to a wider range of regions for
better generalizability. In the future, a larger UV dataset
could be created to provide ample training data for the UV
classification model.

2) Designing a multimodal fusion model to combine high-
resolution imagery, street view imagery, and POI data,
thereby harnessing the fine-grained visual details from
multiple perspectives and socioeconomic attributes of UV.

3) Combining long-time series images with medium spatial
resolution to comprehensively investigate the spatiotem-
poral patterns of UV.

VII. CONCLUSION

This article identifies the UV of seven cities in the PRD
in 2020 using high-resolution remote sensing images and an-
alyzes the spatial pattern and accessibility of UV. To address
the challenges of UV detection in the rapidly urbanized PRD,
this article proposes MaskUV and a new high-resolution dataset
(UVSet). The MaskUV integrates the strengths of the mask
transformer, enabling the extraction of local texture features and
global features. The MTM with mask attention is designed to
aggregate features from different levels, and the mask classi-
fication enhances feature learning by introducing object-level
features through the prediction of different masks.

The experimental results on seven cities in PRD and UVSet
manifest that the proposed MaskUV achieves promising perfor-
mance in UV classification. The ablation study further verifies
the effectiveness of the random token masking strategy. In terms
of model complexity and computational efficiency, the MaskUV
exhibits advantages in memory and computational complexity
while maintaining performance, as evidenced by the comparison
of FLOPs and Params. Overall, this article suggests that the
proposed MaskUV can fully exploit multiscale features from
high-resolution remote sensing images to achieve fine-grained
UV classification.
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