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Abstract—This study introduces a novel approach to improve
crop classification accuracy in airborne synthetic aperture radar
(SAR) time-series imagery, focusing on overcoming the challenges
posed by the incidence angle effect. The approach aims to in-
novate the integration of transfer learning and variational mode
decomposition techniques. Transfer learning effectively addresses
disparities in data distribution caused by varying incidence angles
encountered in airborne SAR. Variational mode decomposition
extracts robust temporal features, significantly reducing sensitivity
to incidence angle variations. The approach is further enhanced
by incorporating incidence angle information into the transfer
learning model’s training phase. The experimental results demon-
strate the effectiveness of the method, which, under comparable
sample conditions, achieves a remarkable improvement in accuracy
(Kappa +25.05%) compared with the conventional methods. This
improvement is particularly notable for crops, such as oats and
soybeans, which are considerably influenced by the incidence angle
effect, with Kappa increases of 27.92% and 39.30%, respectively.
This study not only develops an effective strategy for crop classi-
fication in the context of airborne SAR imagery but also provides
references for the effective use of new technologies from various
fields in the field of remote sensing application.

Index Terms—Airborne synthetic aperture radar (SAR), crop
classification, incidence angle effect, time-series imagery, transfer
learning, variational mode decomposition (VMD).
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I. INTRODUCTION

IN THE context of global change, securing food has become
increasingly critical [1]. Precise agricultural monitoring is

an indispensable tool in achieving this goal, with the accurate
crop distribution mapping being an important component of
this endeavor [2]. The accurate mapping does not only involve
obtaining a granular view of the agricultural landscape but
also significantly contributes to strategies for maintaining food
security [3], [4]. Policymakers and agricultural stakeholders are
better equipped to make decisions that strengthen the resilience
of food systems in the face of emerging challenges by providing
crucial data [5], [6].

In recent years, synthetic aperture radar (SAR) technology
has garnered considerable attention as an important tool in
agricultural remote sensing [7], [8], [9]. Airborne SAR, in
particular, with its high-frequency, flexible imaging capabilities,
and superior spatial resolution has established itself as an invalu-
able supplementary asset for crop monitoring [10]. Its ability
to provide timely data crucial for crop growth models, yield
predictions, and disaster assessments is unparalleled, largely
due to the sensitivity of the microwave signal to the dielectric
and geometrical properties of crops. It captures backscattering
coefficients, which serve as the composite reflection of land-
cover type, terrain slope, surface roughness, local incidence
angle, and dielectric constant, offering a multifaceted view of the
agricultural landscape [11], [12]. However, despite its immense
potential, airborne SAR faces significant challenges in crop dis-
tribution mapping, most notably the incidence angle effect. This
effect is evident not only in airborne SAR but also in other SAR
platforms, such as spaceborne systems. The incidence angle
effect primarily stems from the side-looking imaging geometry
of SAR systems and the spatial variation of target scattering
properties. Therefore, it is closely related to radar operating
parameters (such as frequency and polarization) and imaging
modes. This phenomenon, exacerbated by the lower flying alti-
tude of airborne platforms and the side-looking nature of SAR
sensors, results in a wide range of incidence angle variations,
thereby affecting the consistency of backscatter information
[13], [14]. Such an effect complicates the analysis and accurate
interpretation of land-cover types in SAR imagery, particularly
in the fine classification of crops, where it can substantially
impact classification accuracy.
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Fig. 1. Overview of the study area. (a) Location of the study area. (b) Overview
of the study area in ArcGIS online map. (c) Reference map of crop distribution
in the study area.

In response to the incidence angle effect, researchers have
adopted various strategies to mitigate its influence. A common
tactic is to exclude image areas with excessively large incidence
angles to reduce their overall impact by simply ignoring the most
affected areas [15], [16], [17]. Alternatively, some studies have
focused on specific incidence angle correction techniques [13],
[14], [18], [19], often based on intricate SAR backscatter mod-
els, to mathematically compensate for the effect of incidence
angles. These methods are often proposed based on the phys-
ical scattering characteristics of specific research objects. For
example, excluding large incidence angle regions is conducive
to obtaining stable scattering information for rice (short) and
corn (tall). Therefore, these methods have clear physical-driven
characteristics, but with certain limitations. Excluding areas
with large incidence angles can effectively avoid the incidence
angle effect. However, it results in a significant loss of image
information, a tradeoff that is often untenable. Moreover, cor-
rection techniques, although potentially effective under certain
conditions, generally lack universality because of the complex
and diverse nature of agricultural environments. Factors, such
as crop type, growth stage, and soil conditions, can introduce
variations in SAR backscatter, complicating the development of
a one-size-fits-all correction approach.

To address these challenges and fully utilize the potential
of airborne SAR data, an innovative approach is introduced.
Contrary to previous studies that focus on the physical properties
of research objects, the traditional methods have difficulties in
dealing with the varying scattering behavior under complex
agricultural landscapes; thus, data-driven classification strate-
gies are explored. We acknowledge the limitations of standard
classification methods, which face difficulties with data recorded
at varying incidence angles. Therefore, we have incorporated
transfer learning [20], [21], a machine learning strategy that

effectively bridges disparities in data distributions between
source and target domains. By using transfer learning, our model
can apply knowledge gained from one incidence angle to data
from another, reducing the variability caused by the incidence
angle effect. Furthermore, we have incorporated innovative vari-
ational mode decomposition (VMD) methods [22], [23] from the
field of signal processing for feature extraction. We can derive
robust features that are less susceptible to changes in incidence
angles by capturing the dynamic growth patterns and cyclical
shifts of crops.

Our research is dedicated to the integration of advanced
technologies, such as transfer learning and VMD, to develop
a robust and accurate framework for crop classification using
airborne SAR data, specifically addressing the incidence angle
effect in airborne SAR crop classification. The main innovations
of this study include the following:

1) Introducing transfer learning into airborne SAR crop clas-
sification and exploring strategies for guiding the transfer
learning process by incorporating incidence angle infor-
mation;

2) Innovatively applying VMD in the field of crop classifi-
cation to extract robust temporal features;

3) Investigating the mechanism of polarization information
in mitigating the incidence angle effect and improving
classification performance.

The rest of this article is organized as follows. In Section II,
we present the data used in our study and analyze the impact of
incidence angle effects on the data. Then, in Section III, the pro-
posed method is introduced in detail. The experimental results
are analyzed in Section IV. The effectiveness of our method in
mitigating the impact of incidence angle effects and the ability of
VMD to extract robust features are comprehensively discussed
in Section V. Finally, Section VI concludes this article.

II. DATA

A. Overview of Study Area and Experimental Data

The study area is located near the city of Winnipeg in Mani-
toba, Canada, as shown in Fig. 1(a). Its location on the ArcGIS
online map is depicted in Fig. 1(b). Four types of crops were
selected for the crop classification experiment, including oats,
corn, canola, and soybean. The distribution reference map of the
crops is presented in Fig. 1(c); it was established in accordance
with the land-cover classification map produced by the NASA
National Snow and Ice Data Center Distributed Active Archive
Center [24].

The data used in this study were sourced from the uninhab-
ited aerial vehicle synthetic aperture radar (UAVSAR) imagery
obtained from “The Soil Moisture Active Passive Validation
Experiment 2012” (SMAPVEX12) [16], [24]. SMAPVEX12
was conducted to support the development, enhancement, and
testing of the SMAP soil moisture retrieval algorithm. The
experiment lasted for 43 days (7–19 June 2012), during which
UAVSAR imaged the area for 13 days [16]. This study utilized
12 scenes of UAVSAR imagery, with their corresponding Pauli
RGB images, as shown in Fig. 2(a)–(l). The data were captured in
the L-band frequency (1.26 GHz) with a left-look direction. The
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Fig. 2. Overview of the experimental data. (a)–(l) Pauli RGB images.
(m) Local incidence angle distribution. (n) Azimuth and range direction of the
images.

acquired single-look complex data have a spatial resolution of
0.6 m in the azimuth direction and 1.67 m in the range direction.

Consistent with the previous study [10], these images under-
went multiview processing (with 15 views in range and 60 views
in azimuth) and were downsampled by a factor of three, covering
a ground range of 22 680 m × 24 566 m. The local incidence
angle size corresponding to each pixel on the image is shown in
Fig. 2(m), with the minimum local incidence angle being 21.2°
(near range of the image) and the maximum being 64.3° (far
range of the image). The local incidence angle is defined as the
angle between the radar line-of-sight and the surface normal
vector [25].

The Pauli RGB images evidently illustrate that the backscatter
characteristics of the same type of crop at near and far ranges
are significantly different. Factors influencing the backscat-
ter coefficient of crops in SAR images include terrain slope,
crop geometry, soil moisture content, and incidence angle. The
growth conditions of the same types of crops are assumed to
be consistent, given the small area of the region. In addition,
the terrain slope of the area ranges between 0% and 2%, and
the primary soil types are loam and clay. The moisture content
differences between these soil types are minimal [16], suggest-
ing that the impacts of terrain slope and soil moisture content
are also minimal. Consequently, the significant incidence angle
effect caused by the large variation in image incidence angles is
the primary reason for the pronounced differences in backscatter
characteristics of the same crop type at near and far ranges [10].
Therefore, in Section II-B, we provide a detailed analysis of the
effect of angle of incidence differences on crop distinguishabil-
ity. Moreover, given the flat terrain of the area, the local incidence
angle of a pixel is assumed to be equivalent to its incidence angle.
For ease of description, they are collectively referred to as the
incidence angle in the following content.

Several studies [26], [27], [28] have shown that the cross-
polarization channel (HV) in SAR time-series imagery is more
effective for crop differentiation than the horizontal (HH) and
vertical (VV) channels. Consequently, this research utilizes only

Fig. 3. Distribution of training samples.

the backscatter coefficient (SHV) from the cross-polarization
channel for crop classification. This approach not only stream-
lines the analysis but also offers a benchmark for other single-
or dual-polarization crop mappings. Each sample Si time-series
curve is derived from its SHV across all images, as shown in the
following equation:

Si =
{
St1
HV , S

t2
HV , . . . , S

tn
HV

}
(1)

where t is the time of observation, and n is the number of
observations within the time series.

B. Data Analysis

1) Data Distribution in H-Alpha Space: The synthesis of
time-series data and machine learning classifiers has emerged as
a prevalent and efficacious strategy for crop classification [29],
[30]. This methodology necessitates a substantial quantity of
training samples from diverse crop types, enabling the machine
learning classifier to learn with high efficacy. However, data dis-
tributions across different regions exhibit substantial variability,
owing to the incidence angle effects.

Contrary to the globally random sampling method typically
employed in image analysis, a sample collection method more
congruent with realistic application scenarios is explored in
this study. We have methodically collected and labeled samples
from a localized region (see Fig. 3), subsequently utilizing these
samples to train a classifier aimed at crop classification within
the image. For each crop type, 100 samples were meticulously
gathered. The training set is characterized by samples with an
incidence angle range of 62.3°–64.2°, with an average of 63.4°.
The remaining pixels within the image were designated as the
test set.

To elucidate the complexity of land object distribution af-
fected by the incidence angle effect, we have delineated the
distribution of various land object elements and the training
samples on the H-Alpha plane (see Fig. 4) using the average
of the C3 matrices derived from the 12 time-series images.

The H-Alpha plane, a pivotal feature space in polarimetric
SAR data, is instrumental in classifying the different types of
surfaces or targets. It delineates the entropy (H) and alpha angle
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Fig. 4. Distribution of samples on the H-Alpha plane. (a) Oats. (b) Canola.
(c) Soybean. (d) Corn.

(α) of the radar return. These parameters are intrinsically linked
to the randomness of the scattering process and the predominant
scattering mechanism. In this context, entropy (H) quantifies
the randomness of the scattering process, where lower values
signify more deterministic scattering, and higher values indicate
a more random nature. Conversely, the alpha angle (α) pertains
to the type of scattering mechanism, with lower angles typically
reflective of surface scattering, and higher angles indicative of
volume or multiple scattering.

The pixel distribution of oats is defined by a moderate to high
entropy range, with entropy values generally spanning from 0.5
to 0.9 and alpha angles from 30° to 60°. The positioning of the
high-density, red area indicates that oats are primarily influenced
by multiple scattering mechanisms, a characteristic of vegetative
structures with considerable volume scattering.

Canola shows a moderately high entropy distribution, with
the red high-density area covering entropy values from roughly
0.4 to 0.9 and alpha angles clustering between 30° and 60°.
The spread within the red area for canola points to a diverse
range of scattering behavior, reflecting different canopy densities
or stages of growth. The extent of this region underscores the
complexity of canola’s physical attributes because they interact
with SAR signals.

The soybean pixels display a broad distribution in the entropy
and alpha angle, with the red high-density region indicating the
most common scattering properties. The expansive nature of this
region, covering a wide range of entropy values and alpha angles,
suggests significant variability in the soybean fields’ scattering
mechanisms. This variation could be attributed to differences
in growth stages, plant density, or soil moisture conditions,
influencing the SAR signal’s response.

Corn pixels are characterized by a more concentrated dis-
tribution in a higher entropy region, specifically with the red
high-density area showing entropy values predominantly above
0.7 and alpha angles around 40°–60°. The concentrated nature
of corn’s red area reflects a consistent scattering behavior, likely

Fig. 5. Mean entropy and mean alpha angle of different crop types as a function
of incidence angle.

due to its uniform growth pattern and dense canopy structure
that results in pronounced volume scattering.

Ideally, distinct clusters in the H-Alpha space would
represent each crop type, streamlining the classification
process. However, the observed distributions indicate some
overlap degrees, especially between oats and canola, sharing
a high-density region with entropy values from 0.4 to 0.8 and
alpha angles from 30° to 60°. This shared space complicates
the discriminability between the two crops. Soybeans, with
their wide-ranging high-density area across entropy and alpha
angle values, exhibit a diverse scattering behavior, further
challenging the classification. Conversely, corn is characterized
by a compact and higher entropy cluster. However, its alpha
angle proximity to other crops may still lead to classification
difficulties due to the overlapping regions.

In addition, the density plots suggest that the training samples,
represented by triangles and limited to an incidence angle range
of 62.3°–64.2°, do not cover the entire range of scattering behav-
ior observed in the entire image. This restricted sample set may
lead to inaccuracies in classification, particularly when applied
to areas with incidence angles that differ significantly from
those of the training data. This challenge is particularly relevant
in airborne SAR imagery, characterized by varying incidence
angles that can lead to data distribution inconsistencies. As a
result, it affects the dependability of classification outcomes.

We have generated an additional figure (see Fig. 5) that depicts
the variation of mean entropy and mean alpha angle as a function
of incidence angle for the four crop types, further illustrating
the impact of the incidence angle effect on the polarimetric
scattering properties of different crop types.

As shown in Fig. 5, the mean entropy and mean alpha angle
of all four crop types exhibit significant variations with the in-
cidence angle. The mean entropy generally shows an increasing
trend as the incidence angle increases from approximately 21°
to 61°, whereas the mean alpha angle demonstrates a fluctuating
trend for most crop types. The variation patterns of mean entropy
and mean alpha angle differ among crop types, suggesting that
the incidence angle effect impacts the polarimetric scattering
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properties of different crops in distinct approaches. The separa-
bility of different crop types in the H-Alpha space also varies
with the incidence angle. The separability of crops decreases as
the incidence angle increases.

These observations provide compelling evidence that the
incidence angle effect significantly influences the polarimetric
scattering characteristics of crops, thereby affecting their sepa-
rability and classification performance.

2) Analysis of Incidence Angle Variability on Classification
Accuracy: Classification accuracy in image-based models de-
pends heavily on the consistency of distribution between the
training and test datasets. This condition is salient in the domain
of SAR imagery, where the natural variance in incidence angles
can significantly challenge the classifier’s generalizability. To
investigate the effect of incidence angle variability on classifica-
tion accuracy, we conducted the following analytical procedure
using the UAVSAR dataset.

1) The pixels on the image, forming the sample set U, are
uniformly divided into ten sample subsets along the range
direction: {U1, U2, . . . , U10}.

2) Each sample subset is randomly divided into a training set
(20%) and a test set (80%), resulting in ten training sets
{U tr

1 , U
tr
2 , . . . , U

tr
10} and ten test sets {U te

1 , U
te
2 , . . . , U

te
10}.

3) For each training set U tr
i , a classifier is trained using only

that set. Then, the trained classifier is used to classify
all test sets {U te

1 , U
te
2 , . . . , U

te
10}, yielding classification

accuracy Pi = {P 1
i , P

2
i , . . . , P

10
i } for each test set.

4) A total of 100 classification accuracy sets can be derived
from the ten training sets: 〈{P 1

1 , P
2
1 , . . . , P

10
1 }, {P 1

2 , P
2
2 ,

. . . , P 10
2 }, . . . , {P 1

10, P
2
10, . . . , P

10
10 }〉, with each set cor-

responding to a training set and a test set.
Steps (1) and (2) are repeated ten times, and the average value

from these ten experiments is considered the result for each set of
classification accuracy. The deep forest (DF) [31] model is used
as the classifier, and the Kappa coefficient is used to measure
the classification accuracy. All values of a sample Si time-series
curve are used as the features.

Fig. 6 presents a matrix heatmap of the 100 sets of classifi-
cation accuracies. The x-axis delineates the average incidence
angle magnitude for the test sets, while the y-axis corresponds
to the average incidence angle magnitude for the training sets.
Each cell within the matrix epitomizes a unique combination of
training and test sets, characterized by their respective average
incidence angles. The matrix’s secondary diagonal, extending
from the bottom left to the top right, represents pairs with
equivalent average incidence angles.

The pattern within the matrix is clear: cells near the secondary
diagonal have higher Kappa coefficient values, indicating better
classification accuracy. This condition highlights the need for the
alignment of incidence angles between the training and test sets
to achieve optimal classifier performance. Conversely, a differ-
ence in average incidence angles between the datasets, indicated
by cells further from the secondary diagonal, is associated with
a decrease in classification accuracy.

The heatmap supports the hypothesis that incidence an-
gle congruence is crucial for reliable SAR image-based crop
classification. The color gradation on the heatmap, from green to

Fig. 6. Correlation between incidence angle differences in training and test
sets and classification accuracy.

red, reflects the decrease in classification accuracy as incidence
angle differences increase. This trend is particularly noticeable
when moving from cells adjacent to the diagonal to those at
the matrix’s far reaches. Cells with Kappa coefficients nearing
0.9 exhibit the highest level of accuracy, which is concentrated
around the secondary diagonal. On the contrary, the lowest level
of accuracy, with values as low as 0.15, is found at the peripheries
of the matrix. This result confirms the following phenomenon:
as the incidence angle difference between the training and test
sets increases, the classification accuracy decreases.

The findings from this analysis underscore the substantial
impact of the incidence angle effect on crop classification per-
formance. The observed relationship between incidence angle
differences and classification accuracy can be attributed to the
changes in the scattering mechanisms of crops induced by vary-
ing incidence angles. The interaction between the SAR signal
and crop canopy structures is altered as the incidence angle
changes, leading to modifications in the polarimetric scattering
properties of crops. These changes, in turn, affect the separability
of crop types in the feature space and, consequently, degrade the
classification performance.

The insights gained from this analysis are crucial for under-
standing the challenges posed by the incidence angle effect in
SAR-based crop classification and highlight the necessity of
developing robust methods to mitigate its impact. This sec-
tion provides a strong foundation for the proposed approach
in this study by establishing a clear link between incidence
angle differences and classification accuracy. This approach
integrates transfer learning and VMD techniques to enhance the
adaptability and robustness of crop classifiers in the presence of
incidence angle variations.

III. METHOD

A. Overview of the Proposed Crop Classification Method

The data analysis results confirm that the incidence angle
effect is a crucial factor affecting the accuracy of crop-type
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Fig. 7. Flowchart of the proposed method.

classification in airborne SAR imagery. It primarily causes in-
consistencies in data distribution between the training and test
sets. In addition, it renders conventional horizontal and vertical
polarization (HV) time-series curves less effective at repre-
senting the differences between various crops. These factors
significantly degrade the model’s predictive performance [32].

To address these challenges, our approach leverages the trans-
fer learning technique. Transfer learning is designed to adapt
the learned knowledge from one domain (source) and apply it to
another (target) effectively. This method mitigates the impact of
the data distribution differences attributed to the incidence angle
effect. In terms of feature representation, we extract a richer set
of features from the original time-series data, augmenting the
backscattering coefficients with statistical and textural features,
as well as those derived from VMD, to improve their represen-
tational capability.

We also explore the feasibility and effectiveness of incor-
porating incidence angle information as critical reference data
into the model training process. This approach aims to refine
the classifier’s performance by enabling the model to more
accurately capture the characteristics of the data encountered
in actual SAR image classification tasks.

The proposed procedure is illustrated in Fig. 7. The work-
flow commences with the construction of pixel time series

from time-series images, followed by a VMD decomposition to
enrich the feature set. The enhanced features undergo extraction,
covering backscattering coefficients, statistical features, GLCM
texture features, and VMD features. Then, they are used to train
transfer learning classifier in which the DF-based active transfer
learning (DFATL) method is further bolstered by active learning
mechanisms, such as cascade forests and informative sample
selection, with incidence angle information being a critical
factor in sample weighting. The trained classifier is subsequently
tasked with predicting the classes on the test set, culminat-
ing in the generation of a comprehensive crop classification
map.

B. Time-Series Feature Extraction

As mentioned in Section II-A, the backscatter coefficient
(SHV ) of the cross-polarization channel (HV) is used to form the
time-series curve for crop classification. In addition, the SHV

time series is referred to as the sample’s original features for
simplicity.

When using the original features for classifier training and
considering these time-series features as isolated attributes,
altering the order of feature arrangement does not affect the
classifier’s performance. Thus, the sequential relationship of the
original features in the temporal dimension is not exploited.
However, we believe that the arrangement of the original features
in the temporal dimension encapsulates the crop’s changing
trend over time. This technique is highly effective in distinguish-
ing different crop types. Therefore, to harness this information
embedded in the time series for classifier training, feature ex-
traction is conducted using the original features.

1) VMD Features: Crop time-series curves fluctuate due to
two primary factors: crop growth trends and soil moisture
changes. While the former reflects the crop’s growth pattern,
the latter introduces significant variability, often influenced
by events, such as rainfall or irrigation [33], [34]. By iso-
lating curve variations attributed to crop growth from those
caused by soil moisture changes, the time-series curve can
more effectively capture crop dynamics, enhancing crop-type
differentiation.

Decomposing multicomponent signals into individual com-
ponents is often essential in signal processing for modal pa-
rameter identification [35], [36]. Leveraging this concept, we
introduce the VMD algorithm for our analysis [22].

The core procedure of VMD is depicted in Fig. 8. The VMD
algorithm assumes a signal that comprises overlaid subsignals
with distinct frequencies. It aims to decompose the signal into
these frequency-specific components. The algorithm adaptively
partitions the signal’s frequency domain by iteratively finding
the optimal solution of the variational model, determining each
component’s center frequency and bandwidth. Within VMD,
the intrinsic-mode function (IMF) is viewed as an amplitude-
modulated–frequency-modulated signal. The algorithm’s ob-
jective is to break down the original signal into a set number
of IMF components by addressing a constrained variational
problem.
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The algorithm for VMD can be described as follows:
Initialization:
The VMD algorithm begins with an initial setting of the
mode functions uk, associated center frequencies ωk, the
Lagrange multiplier λ, and iteration count n = 0.
Iteration:

(1) The iteration index n is incremented by 1.
(2) A mode index k is initialized to 1.
Mode Update:
(3) For each mode k, the mode function uk is updated by

solving the following optimization problem, aimed at
minimizing the bandwidth of the mode around its
center frequency ωk, as follows:

un+1
k = argmin

uk
L
({un+1

i<k }, {un
i≥k}, {ωn

i }, λn
)
(2)

This process involves the estimation of the mode with the
current estimate of its center frequency while fixing the
other modes and frequencies.
Convergence Check for Modes:

(4) The mode index k is incremented, and a check is
performed to determine if all modes have been
updated in this iteration.

(5) Otherwise, the algorithm returns to step 3 or resets k
to 1 and proceeds to update the center frequencies.

Frequency Update:
(6) For each mode k, the center frequency ωk is updated

by solving a similar optimization problem to
minimize the bandwidth, as follows:

ωn+1
k = argmin

ωk

L
({

un+1
i

}
,
{
ωn+1
i<k

}
,
{
ωn
i≥k

}
, λn
)
.

(3)
Convergence Check for Frequencies:

(7) After updating all frequencies, a convergence check
is performed to determine whether the difference
between the current and previous mode functions is
smaller than a predefined threshold ε.

Lagrange Multiplier Update:
(8) If convergence is not achieved, then the Lagrange

multiplier λ is updated using the residue of the
original signal and the sum of all modes, as follows:

λn+1 = λn + τ

(
f −

∑
k

un+1
k

)
(4)

where τ is the step size of the Lagrange multiplier update.
Termination:

(9) The convergence check is performed again, this time
including the criterion based on the squared L2 norm
of the difference between mode functions from
successive iterations normalized by the norm of the
previous mode function.

(10) When the convergence criterion is satisfied, the
algorithm is terminated, and the resulting modes,
known as IMFs, are output.

Output:
(11) The final step is to output the K IMFs that represent

the decomposed signal.

Fig. 8. Flowchart for VMD algorithm (adapted from [37]).

Dragomiretskiy and Zosso [22] present a more detailed dis-
cussion of the VMD algorithm.

In this study, we effectively decomposed the HV time-series
data into two distinct components by setting the mode number
for VMD to 2. The first component captures information related
to variations in soil moisture; it is significantly influenced by
precipitation events, thereby exhibiting a degree of randomness
in its temporal evolution. However, the second component con-
tains information that is specifically related to the crop growth
cycle, making it particularly useful for crop classification. There-
fore, we extract this second component as a key feature set
for subsequent model training and classification tasks. In this
experimental analysis and discussion, we thoroughly assess the
effectiveness of VMD decomposition in mitigating incidence
angle effects in crop classification and explore its potential
applications in agricultural remote sensing.

2) Gray-Level Co-Occurrence Matrix (GLCM) Texture Fea-
tures: The enhancement of image resolution allows for a clearer
representation of detailed information on the image. The rich
detail information of similar pixels in adjacent areas forms
the unique texture features of the object. Texture features are
patterns and characteristics formed by the frequent repetition of
small objects on an image. They are a comprehensive reflection
of the size, shape, shadow, and color of a large number of
individuals, describing the spatial variation characteristics of
pixel brightness. We believe that texture features can suppress
the influence of the incidence angle effect to some extent.

The GLCM is a widely used effective image texture feature,
established to estimate the second-order joint conditional prob-
ability density of the image. GLCM describes the occurrence
probability of a pair of pixels with gray levels i and j, separated
by a pixel distance d in the θ-direction. A total of 14 texture
features can be derived using GLCM [38]. However, only three
GLCM features, namely, homogeneity, contrast, and entropy are
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TABLE I
FEATURES USED FOR CLASSIFICATION

used to avoid excessive feature dimensions because each sample
can derive a set of GLCM features from each time phase image.
In this study, 12 images were used; thus, each sample can obtain
a 36-D (12×3) GLCM texture feature.

3) Statistical Features of Time-Series Features: We also em-
ployed feature extraction using statistical methods. Information
collected on different dates within the same year or over consecu-
tive years can be statistically summarized into various indicators.
These indicators can effectively differentiate land-cover types
[39]. We extracted the following 8-D features: standard devia-
tion, interquartile range (upper quartile–lower quartile), upper
quartile, lower quartile, maximum value, minimum value, mean,
and median.

We categorized the features into three groups for the
subsequent experiments to evaluate the efficacy of temporal
sequence features developed for this research. F1 represents
the original features derived directly from SAR data; F2
encompasses the traditional features, which include statistical
attributes of the temporal curves and GLCM texture features;
and F3 comprises the innovative-mode decomposition features,
which are novel to this study’s approach. These delineated
feature sets serve as the foundational elements for the detailed
crop classification, as presented in Table I.

C. Transfer Learning

Transfer learning methods, which often serve as machine
learning classifiers, use samples from a source domain to train
models that can classify unlabeled samples in a target domain
[40], [41]. This process considers classification as a labeling
exercise for the target-domain’s unlabeled samples, positioning
it within the broader context of image classification tasks.

When the training set (source domain) and the test set (target
domain) have the same data distribution, the performance of
the transfer learning model may unnecessarily surpass that of
the conventional machine learning classifiers. However, when
data distribution difference exists between the training and test
sets, conventional machine learning classifiers often experience
a significant performance decline, whereas transfer learning
models can still accurately classify the test set [21]. Hence, when
directly applying transfer learning models to image classification
tasks, these models are referred to as transfer learning classifiers.

In the scenario set (where the training set comes from the
far end of the image, and the test set consists of other pixels of
the image, as shown in Fig. 3), we introduce transfer learning
classifiers to enhance the classification accuracy of the test set,
thereby addressing the issue of reduced classification accuracy
due to distribution differences between the training and test
sets. We used two types of transfer learning classifiers in the
experiments.

The first transfer learning classifier is the DFATL tailored for
polarized SAR images. The existing research [42] indicates that
this method boasts excellent performance and strong scalability.
Therefore, we integrated the sample’s incidence angle informa-
tion into the model training process of this method to enhance
its performance.

The second transfer learning classifier is semisupervised
MIDA (SMIDA) [43], which is a semisupervised extension
of the MIDA framework. Operating within the semisuper-
vised paradigm, SMIDA harnesses labeled and unlabeled target-
domain data, effectively mitigating the discrepancy between the
training and test set distributions. This approach is particularly
beneficial in our study scenario because it enhances classifica-
tion accuracy where the training and test sets exhibit significant
distributional differences, as depicted in our experimental setup.
By judiciously utilizing the unlabeled data alongside the labeled
examples, SMIDA contributes to a more robust and accurate
model adaptation, aligning with the overarching goal of improv-
ing SAR image classification performance in this research.

The third transfer learning classifier is the semisupervised
transfer component analysis (SSTCA) algorithm [44]. This
method is a feature-based transfer learning approach. It requires
the computation of domain distribution differences between the
source-domain samples and target-domain samples and then
seeks effective feature mappings using these distribution dif-
ferences. The maximum mean discrepancy (MMD) [45] is used
as the data distribution measurement. When applying SSTCA
to image classification tasks, the following must be considered:
a large number of target-domain samples in image classification
tasks must be examined prior to MMD computation, which is
time-consuming and requires substantial computer storage. If
the sampled subset is not representative, then the accuracy of
MMD computation is affected, thereby influencing the SSTCA
performance to some extent.

In addition to the three transfer learning classifiers, the DF
model is employed as a conventional machine learning clas-
sifier for crop classification. This approach aims to evaluate
the performance improvement brought about by using transfer
learning classifiers. This model has demonstrated highly reliable
performance in many classification tasks [31].

D. Incorporating Incidence Angle Information

We attempted to incorporate incidence angle information
into the DFATL model to enhance classification performance.
The DFATL model is well regarded for its interpretability
and adaptability, allowing straightforward modifications to
integrate incidence angle data. The introduction of incidence
angle information into the DFATL training process aids in
the selection of informative target-domain samples and the



14510 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

weighting of training samples by accounting for distribution
differences between training and test sets attributable to varying
incidence angles. This integration optimizes the model’s
effectiveness. The methodology for this adaptation is detailed
in the following sections.

1) Selection of Informative Target-Domain Samples Using
Incidence Angle Information: The DFATL model’s training
comprises two phases: growth and filtering. In the growth phase,
active learning iteratively selects high-information samples from
the target domain for manual labeling, considering sample un-
certainty and diversity [46]. This study refines these measures
in DFATL by incorporating incidence angle information.

First, the method of calculating sample uncertainty in DFATL
was adjusted as follows.

1) The average incidence angle of all samples in the training
set, denoted as Incmean, is calculated.

2) The absolute difference between the incidence angles of
all samples {S1, S2, . . . , Sn} in the test set and Incmean,
denoted as {D1, D2, . . . , Dn}, is computed.

3) The maximum value from {D1, D2, . . . , Dn}, denoted as
Dmax, is determined.

4) During each iteration, the uncertainty of sample Si is
calculated as follows:

Ūi = Ui +
Di

Dmax
× σ (5)

where Ui is the uncertainty of sample Si calculated in DFATL
using class prediction probabilities, Ūi is the adjusted uncer-
tainty of sample Si, and σ is a tuning coefficient (set to 0.1 in
the experiments).

This adjustment is premised on the idea that, for a training
set from the far end, near-end test set pixels may be more infor-
mative. This approach identifies samples with high uncertainty
and notable training set distribution differences. After isolating a
high-uncertainty target-domain sample set (Gu), DFATL further
extracts diverse samples, forming the final high-information
sample set (Gu+d).

Second, the method of measuring sample diversity was ad-
justed in the first three cascade layers of the growth phase as
follows.

1) The extracted Gu is evenly divided into N subsets based
on their incidence angles.

2) Gu+d = ∅ is set.
3) The sample with the highest uncertainty from each subset

is selected, resulting in N samples.
4) N samples are added to Gu+d.
5) Steps (3) and (4) are repeated until the number of samples

in Gu+d satisfies the requirements.
This adjustment ensures that the samples from the three initial

iterations are uniformly distributed across various incidence
angle regions. This condition promotes model generalization
during initialization, preventing overfitting from excessive far-
end sample selection. Following the initial phase, the original
DFATL sample diversity measurement is employed in subse-
quent layers.

TABLE II
EXPERIMENTAL SETUP

2) Using Incidence Angle Information to Weigh Target-
Domain Samples: The selected high-information target-domain
samples with DFATL are manually labeled and merged with the
original training set for subsequent cascade layer training. To
expedite model fitting, samples fromGu+d with pronounced dis-
tribution differences from source-domain samples are assigned
higher weights, influencing the model more significantly.

Given the link between incidence angle and data distribution
differences and using the precalculated absolute differences
between each sample’s incidence angle and the training set’s
average incidence angle {D1, D2, . . . , Dn}, the weight wi of
each high-information target-domain sample is determined as
follows:

wi = 1.0 +
Di

Dmax
× δ, (6)

where δ is a tuning coefficient, set to 10. Hence, during training, a
labeled target-domain sample with a notably different incidence
angle from the source-domain average receives a higher weight.

IV. RESULTS

A. Experimental Setup

An in-depth analysis of the proposed method’s effectiveness
was conducted through a set of 20 distinct configurations, which
are meticulously detailed in Table II.

The primary objective of these experiments was to systemat-
ically analyze the following.
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1) The differential impact of employing transfer learning
models versus conventional machine learning approaches.

2) The effectiveness of integrating VMD for feature extrac-
tion in contrast to non-VMD feature sets.

3) The potential enhancement in classification performance
through the incorporation of incidence angle information.

Each experiment was designed to test the classification mod-
els across various combinations of features and additional infor-
mation.

1) DF Experiments (1–4): It serves as a control group us-
ing only traditional machine learning techniques. They
progressively integrate different feature sets, providing a
baseline for performance comparison.

2) SSTCA and SMIDA Experiments (5–12): Transfer learn-
ing with SSTCA and SMIDA classifiers is employed to
ascertain the benefits of transfer learning in reducing the
incidence angle effect. These experiments also systemati-
cally add VMD features (F3) to evaluate their contribution
to model accuracy.

3) DFATL Experiments (13–20): The DFATL model is lever-
aged to test the efficacy of transfer learning specifically
adapted to this domain. These experiments are further
enhanced with the introduction of incidence angle infor-
mation, denoted as “Angle” in the table, to determine its
influence on classification performance.

The experiments can be categorized into four main compara-
tive analyses.

1) Feature analysis (F1, F2, F3): Experiments 1–4, 5–8, 9–
12, and 13–16 examine the incremental benefit of each
feature set, providing insights into the significance of each
type of feature in isolation and in combination.

2) Transfer learning analysis (DF versus
DFATL/SSTCA/SMIDA): The advantage of transfer
learning over traditional methods can be evaluated by
comparing experiments 1–4 with 5–16.

3) VMD feature analysis: Comparisons within experiments
1–4, 5–8, versus 9–12, and 13–16 versus 17–20 assess the
impact of VMD features on the classification outcome.

4) Incidence angle analysis: Finally, experiments 17–20 al-
low for the evaluation of the classification improvement
when incidence angle information is incorporated into the
transfer learning model.

Feature selection is denoted as follows: F1 represents the basic
SAR image features, F2 encompasses the additional features
derived from traditional feature extract methods, and F3 indi-
cates the features extracted through VMD. The incidence angle
information (denoted by “Angle”) is a novel inclusion aimed
at enhancing the model’s contextual understanding of the SAR
data.

In executing these experiments, we employed multiple eval-
uation metrics to comprehensively assess the classifier’s per-
formance. The Kappa coefficient was primarily used as it ef-
fectively evaluates the consistency of classification results and
demonstrates good adaptability to class imbalance scenarios.
The results derived from the Kappa coefficient are expected to
provide a nuanced understanding of the strengths and weak-
nesses of each methodological aspect under consideration.

Fig. 9. Grouped bar chart of classification accuracy.

Furthermore, in our detailed analysis of classification results,
we utilized additional metrics, including the overall accuracy
(OA), F-score, Precision, and Recall. OA offers a global
view of classification correctness; F-score, as the harmonic
mean of Precision and Recall, provides a balanced evaluation,
particularly in cases of class imbalance; and Precision reflects
the accuracy of classification, while Recall indicates its
completeness. The combined use of these metrics allows for a
multifaceted evaluation of classification performance, providing
a more comprehensive and in-depth analytical foundation.

B. Experimental Results and Analysis

In this comprehensive evaluation, the classification accuracies
of the proposed method were scrutinized under varying condi-
tions of labeled sample sizes in the target domain, ranging from 0
to 100. This incremental approach, increasing by a single sample
at each step, allowed a nuanced understanding of the models’
performance across a continuum from purely transductive trans-
fer learning scenarios (zero target-domain samples) to inductive
transfer learning scenarios (one or more target-domain samples).

1) Transductive Transfer Learning Scenario: At zero-
labeled samples in the target domain, representing a purely trans-
ductive transfer learning scenario, the models relied exclusively
on source-domain data. The accuracy of this scenario is crucial
as it sets the stage for understanding how well the models can
generalize prior to the introduction of any target-domain data.
The group bar chart (see Fig. 9) reveals significant insights
into the effectiveness of feature selection and the superiority
of transfer learning models over the baseline DF model.

The baseline DF model, when enhanced with the VMD fea-
tures (F3) and the combination of F2 and F3 features, exhibits a
significant improvement in accuracy compared with using the F1
feature set alone. This increase indicates that the VMD features
can capture more complex and discriminative information from
the SAR data. This condition is essential for improving the
accuracy of classification without additional labeled data.
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Fig. 10. Classification maps at zero target-domain samples.

For the SMIDA model, the introduction of F2, F3, and the
combined F2+F3 features leads to a noticeable improvement in
classification accuracy compared with the baseline DF model’s
performance. Similarly, the SSTCA model outperforms the
baseline DF model across all feature sets, especially when
including F2 and F2+F3 features. This finding indicates that
the domain adaptation-based model, with its transfer learning
capabilities, can leverage these advanced features more effec-
tively than the baseline model, resulting in better generalization
from the source domain.

We then focus our analysis on the corresponding classification
maps (see Fig. 10) and accuracy table (see Table III) to further
dissect and evaluate the intrinsic merit of incorporating VMD
features and its discernible boost to domain adaptation models.

The baseline DF model establishes the foundational perfor-
mance with an OA of 59.59% and a Kappa coefficient of 48.32%.
A significant improvement is achieved with the incorporation
of F2 and F3 features, particularly when all feature sets are
combined (DF+F1+F2+F3), leading to an OA of 75.20% and
a Kappa of 65.82%. This phenomenon highlights the chal-
lenges in distinguishing crop types using limited features and
the considerable benefit of integrating a comprehensive feature
set, especially for soybean classification, the F-score of which
increased from 48.70% to 88.95%.

The SMIDA model, when augmented with F3 features,
demonstrates a notable increase in classification accuracy. The
SMIDA+F1+F3 configuration stands out, achieving an OA of
80.97% and a Kappa of 73.37%. This finding is especially sig-
nificant for oats and canola, where, compared with the baseline
(DF+F1+F3), the F-scores increase by 25.09% and 31.41%,
respectively. Such improvements are particularly meaningful in

TABLE III
ACCURACY STATISTICS AT ZERO TARGET-DOMAIN SAMPLES

light of the findings from Section II-B, which indicated that
oats and canola share overlapping features, evidenced by their
moderate entropy ranges and clustering at alpha angles from
30° to 60°. The pronounced accuracy gain for these crops by
SMIDA suggests that the domain adaptation-based approach can
effectively enhance the distinctiveness of overlapping feature
spaces.

The SSTCA model exhibits robust enhancements with
the addition of F2 and F3 features. For example, the
SSTCA+F1+F2+F3 configuration achieves an OA of 76.44%
and a Kappa of 67.53%. Similar to SMIDA, compared with
DF, the SSTCA+F1+F2+F3 configuration shows accuracy im-
provements mainly for oats and canola, with F-scores increasing
by 5.38% and 6.26%, respectively. However, a slight reduction in
the accuracy for soybean and corn is observed. This finding sug-
gests that while SSTCA refines the feature space discriminability
for oats and canola, it could potentially reduce the classification
distinction for soybean and corn.

Domain adaptation models were limited in their ability to
capture the distributional variances among different crop types
under the original HV features, resulting in modest accuracy
improvements. To better illustrate the impact of incorporating
VMD features, Fig. 11 presents an enlarged view of the near-
range area (incidence angle 21.2°–42.2°) from the classification
results, as shown in Fig. 10.

As evident from Fig. 11, the introduction of VMD features
(F3) has notably elevated the performance of domain adaptation
models. The classification results with F3 show improved accu-
racy and more consistent crop identification, particularly in areas
where the original models struggled. This visual comparison
clearly demonstrates the significant improvement in classifica-
tion accuracy brought about by the inclusion of VMD features.
This result suggests that VMD features excel in capturing the
phenological nuances of crops, thereby significantly refining
model efficacy and addressing the subtleties of crop classifi-
cation challenges.
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Fig. 11. Enhanced view of classification results in the near-range area (21.2°–
42.2° incidence angle) comparing DF, SMIDA, and SSTCA models with and
without VMD features (F3).

In summary, the comparative results from the DF, SMIDA,
and SSTCA models demonstrate that transfer learning methods
can markedly enhance accuracy beyond the baseline model, es-
pecially in a transductive learning context without target-domain
labeled samples. The efficacy of the VMD-derived features
is also validated, given that their inclusion generally leads to
significant improvements in classification accuracy, particularly
for oats, canola, and soybean. This finding indicates that the tem-
poral characteristics captured by VMD features are especially
aligned with the phenological traits of these crops, enhancing
their separability in the feature space.

2) Inductive Transfer Learning Scenario: This study also
investigates the inductive transfer learning scenario, where a
small subset of labeled target-domain samples is integrated. This
condition is important for benchmarking the effectiveness of
transfer learning models when minimal target-domain data are
available. This approach is useful in situations where obtain-
ing extensive labeled data is logistically challenging or costly.
The experimental setup is necessary because it can simulate
real-world conditions with few samples from the target domain.
This method provides important insights into the robustness and
practical usefulness of the model.

The accuracy variation of different models, as the number of
labeled samples in the target domain increases, is presented in
Fig. 12. For the DFATL model, “DFATL+F1+F2+F3+Angle”
achieved the highest accuracy in all 20 group results, followed
closely by “DFATL+F1+F2+F3.” The accuracy curves tend to
stabilize when the target-domain sample count reaches around
10, indicating the efficiency of DFATLs active learning approach
in selecting the most informative samples. The introduction of
the F3 feature set results in a significant increase in accuracy,
particularly in the 1–15 target-domain sample range, compared
to groups without F3. This emphasizes the advantages of ac-
tive transfer learning models, which can leverage a small yet
informative subset of data to achieve improved accuracy.

When incidence angle information (indicated by “+Angle”)
is included, the results consistently outperform those of groups

without this information. This finding demonstrates the value of
incidence angle data in the classification process.

The SMIDA model performs effectively in the transductive
setting, but its performance declines slightly in the inductive
learning context. Incorporating F3 leads to substantial accuracy
gains within the 1–15 sample range, but the gains plateau with
larger sample sizes. Interestingly, introducing F2 results in a
marked decrease in performance, possibly due to the model’s
specific characteristics that may not optimally capitalize on the
information provided by F2.

The SSTCA model demonstrates minimal improvement with
the inclusion of only F3. However, when F2 and F3 are com-
bined, a significant increase in accuracy, particularly within
the 1–50 target-domain sample range, is observed. The high-
est accuracy for SSTCA is achieved with the full feature set
(F1+F2+F3).

For the baseline DF model, accuracy incrementally increases
with the addition of target-domain samples. This trend signifies
the presence of a distribution discrepancy between the initial
training and test datasets. This difference diminishes as more
samples are introduced, thereby enhancing accuracy. In this
scenario, the combination of F1+F2+F3 exhibits the highest
accuracy, followed by F1+F3, F1+F2 and then F1 alone. This
gradation affirms the contribution of comprehensive feature sets
to overcoming distributional inconsistencies caused by inci-
dence angle effects.

Then, transitioning from a broad evaluation of model ac-
curacies across different sizes of target-domain samples, we
focus our analysis on the classification results obtained with
a target-domain sample size of five. This sample size is selected
to further assess the effectiveness of transfer learning, VMD
features, and the incorporation of incidence angle information in
enhancing classification accuracy. The selection of five samples
is deliberate, representing a scenario that is practically relevant
and challenging, offering a middle ground, where the benefits of
advanced modeling techniques can manifest without requiring
extensive labeled data. The results of the DFATL model, an
active transfer learning approach, were contrasted with those of
the baseline DF model to underscore the nuanced improvements
in precision achieved by active learning strategies to the fore in
resource-constrained settings. The results in Fig. 13 represent
the experiment whose accuracy is nearest to the ten-experiment
average. Corresponding F-score statistics for each crop type are
detailed in Table IV.

At a target-domain sample size of five, the DF model with
the F1 feature set shows reasonable performance, with an OA
of 69.84% and a Kappa of 59.76%. However, when we examine
the DFATL model with the same F1 feature set, a noticeable
drop of 65.11% and 53.63% in OA and Kappa, respectively,
was observed.

Interestingly, the addition of angle information
(DFATL+F1+Angle) does not substantially improve the
model’s accuracy, with OA slightly increasing to 63.94%
but Kappa remaining low at 52.84%. This finding suggests
that while angle information can be beneficial, its impact is
dependent on the model’s ability to effectively integrate it into
the learning process.
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Fig. 12. Variation in the accuracy of different methods with an increasing number of target-domain samples.

TABLE IV
ACCURACY STATISTICS AT FIVE TARGET-DOMAIN SAMPLES

The addition of F2 features, which likely include more
detailed temporal information, results in a significant per-
formance enhancement for the DF model (DF+F1+F2),
with OA and Kappa increasing to 71.28% and 61.31%.
This enhancement is less pronounced in the DFATL model
(DFATL+F1+F2) and further boosted when angle informa-
tion is introduced (DFATL+F1+F2+Angle), suggesting that
combining detailed temporal features with angle information

could better delineate crop types, reflected in the higher Kappa
of 64.11%.

The most notable improvements are observed when combin-
ing all feature sets (F1+F2+F3), with the DF model reaching an
OA of 80.71% and a Kappa of 72.99%. This improvement is even
more pronounced in the DFATL model (DFATL+F1+F2+F3),
which achieves an OA of 83.02% and a Kappa of 76.00%. The
integration of angle information into this comprehensive feature
set (DFATL+F1+F2+F3+Angle) maintains a high level of
accuracy, suggesting that the model utilizes the comprehensive
features effectively.

These results highlight that even with the addition of a small
number of target-domain samples, transfer learning models can
leverage the additional information to significantly improve clas-
sification accuracy. Evidently, the advanced features, especially
when used in conjunction with angle information in the DFATL
model, enhance the model’s capacity to generalize from a limited
sample set. This ability is crucial for practical applications where
abundant labeled data may be unavailable.

Several conclusions can be drawn from the synthesis of these
experimental outcomes.

1) Notable differences in data distribution are introduced
by incidence angle effects. Classification accuracy can
be effectively enhanced by introducing transfer learning
methods and appropriate feature sets.
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Fig. 13. Classification accuracy map for five labeled samples in the target
domain.

2) Different transfer learning models demonstrate varying
degrees of suitability for specific scenarios, as illustrated
by the distinct performance profiles of DFATL, SMIDA,
and SSTCA.

3) The use of features derived from VMD (F3) has shown
significant potential in improving model performance,
particularly when limited target-domain data are available.

4) The strategy of inclusion incidence angle information in
DFATLs model training is effective in refining classifica-
tion result.

V. DISCUSSION

A. Analysis of the Effectiveness of the Incidence Angle
Information Utilization Strategy

A detailed evaluation was conducted to discern the incremen-
tal benefits of incorporating incidence angle information within
the DFATL model. While the introduction of angle information
can enhance accuracy even with a minimal set of target-domain
samples, its impact becomes more pronounced as the number of
target-domain samples increases. Therefore, we have selected
the classification results of DFATL with a target-domain sample
size of 100 for this examination to provide a deeper and clearer
analysis of how incidence angle information can suppress inci-
dence angle effects and boost classification accuracy.

We adopted the following procedure to analyze the effec-
tiveness of incorporating incidence angle information. For the
selected classification results, all image pixels are divided using
the incidence angle value, with an interval of 1°. Therefore, the
pixels corresponding to each 1° increment of incidence angle are
grouped and assessed collectively. The classification accuracy
for each angle-based group is computed separately. The result-
ing accuracies are depicted in Fig. 14, illustrating the varying
impacts of incidence angle information across different angle

Fig. 14. Classification accuracy of samples in different incidence angle re-
gions.

TABLE V
ACCURACY STATISTICS AT 100 TARGET-DOMAIN SAMPLES

ranges. The corresponding accuracy statistics are presented in
Table V.

For each control group within the DFATL model, an analysis
was conducted to initially identify the incidence angle ranges,
where the integration of angle information results in enhanced
accuracy. Subsequently, potential reasons for these improve-
ments were explored.

Fig. 14(a) clearly illustrates that the classification accuracy for
“DFATL+F1+Angle” surpasses that of “DFATL+F1” across
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various incidence angle regions. This enhancement is particu-
larly marked within the incidence angle ranges of 21.2°–26.4°
and 47.1°–50.5°. In Fig. 14(b), the introduction of angle infor-
mation results in a notable increase in classification accuracy,
specifically within the incidence angle interval of 21.2°–55.7°.
This consistent improvement across a broad range of angles
indicates the effectiveness of incorporating angle data.

Fig. 14(c) shows that, when comparing “DFATL+F1+F3”
to “DFATL+F1+F3+Angle,” the introduction of angle
information provides a notable improvement in classification
accuracy across most incidence angle ranges. The enhancement
is especially evident in the range of 21.2°–33.3°, where
the accuracy peaks significantly with the addition of
angle data. When analyzing “DFATL+F1+F2+F3” against
“DFATL+F1+F2+F3+Angle,” as shown in Fig. 14(d), we
observe that the classification accuracy of the former is relatively
low in the incidence angle range of 21.2°–33.3°. Introducing
angle information with “DFATL+F1+F2+F3+Angle” signi-
ficantly enhances classification accuracy within this critical
region.

The discernible improvement in classification accuracy within
specific incidence angle ranges underscores the substantial con-
tribution of angle information, particularly in areas where the
incidence angle effect significantly influences the SAR sig-
nal’s characteristics. By integrating this geometric information
with VMD-derived features, the model effectively mitigates
the incidence angle effect, yielding more precise classification
outcomes.

A notable observation is that, for the DFATL model, the
inclusion of angle information (“+Angle”) significantly boosts
classification accuracy for oats and soybean. When the F3 fea-
ture is added to the F1 set, the accuracy for soybean is improved
but that for canola is slightly diminished. With the introduction
of F3 into the F1+F2 set, all categories except canola exhibited
enhanced classification accuracy. This result is further amplified
when F2, F3, and angle information are combined within the F1
set, thereby improving accuracy across all four crop categories.
These findings highlight the effectiveness of angle information
and the robustness of the F3 feature in the classification process.

The outcomes strongly imply that the incorporation of in-
cidence angle information into the model training is a potent
strategy to enhance the model’s predictive capabilities, particu-
larly in regions that pose classification challenges. The exper-
imental results validate the proposed training strategy of this
study, considering incidence angle information; it significantly
improves the classification accuracy across various incidence
angle regions. This condition is especially pertinent in areas that
traditionally have been more difficult to classify with accuracy.

B. Analysis of the Effectiveness of the VMD

These experiments have confirmed the effectiveness of fea-
tures derived from VMD in distinguishing different crops. In
this section, we aim to delve deeper into the interpretation of
these VMD-derived features. We attempt to combine rainfall and
crop phenology information to further elucidate the underlying
significance of the features extracted from VMD on crop tem-
poral curves across varying incidence angles.

Fig. 15. Schematic of the VMD decomposition results for the HV time series.
(a) Oats. (b) Corn. (c) Canola. (d) Soybean.

To achieve this condition, following the methodology of
the prior study [10], the image was segmented into three
equal regions in accordance with the incidence angles: small
(21.2°–32.0°, Inc_S), medium (50.0°–56.0°, Inc_M), and large
(60.0°–64.3°, Inc_L). We sampled 100 instances of each crop
type from each region, averaged the SHV for each time phase,
and constructed temporal curves, achieving 12 curves across the
three regions. These curves were then decomposed into two com-
ponents using VMD, as shown in Fig. 15. The daily precipitation
curve during the monitoring period is also displayed in Fig. 15,
with data sourced from the National Oceanic and Atmospheric
Administration. In addition, the growth period information [47],
[48], [49] for each crop type has been annotated in the figure.

Fig. 15 evidently shows that, in the original HV curve, the
distinction between certain crops is subtle. For instance, oats and
canola exhibit minimal differences from soybean, and some corn
can be easily misclassified as canola. Moreover, the similarity
of the same crop under different incidence angles is notably low,
potentially impacting classification accuracy.

The first component extracted from the VMD primarily re-
flects changes in soil moisture content. The existing research
[16], [50] indicates a significant lag correlation between soil
moisture content changes and precipitation. When rainfall oc-
curs, soil moisture content subsequently increases, a trend
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reflected in subsequent measurements. This lag effect is at-
tributable to the soil’s absorption and retention capabilities. In
the VMD decomposition results, the first component of all four
crops displays this lag correlation with the precipitation curve,
confirming its primary reflection of changes in soil moisture
content. Notably, significant differences exist in the first compo-
nent of the same crop under different incidence angles, probably
due to varying responses to changes in soil moisture. These
variations for the same crop might reduce the similarity between
the same crops in classification, affecting accuracy.

The second component extracted via VMD mainly encapsu-
lates information related to the growth cycle of crops. When
compared with the original backscatter coefficient curve, the
regularity of the curve of the same crop across different incidence
angle regions in the second component is more pronounced,
and the numerical differences are significantly reduced. In ad-
dition, distinct differences exist between the curves of different
crops. This finding suggests that the second component enables
a clearer capture of the growth characteristics and periodic
changes of crops, thereby enhancing the distinction among
different crop types.

As demonstrated in Section IV, the integration of the third fea-
ture set (F3), specifically the second component extracted from
VMD, into the classification framework markedly enhances
accuracy. The enhanced classifier performance, particularly in
regions with disparate incidence angles, underscores the use of
VMD in mitigating the adverse effects of incidence angle vari-
ability on classification. The 12-D VMD decomposition feature,
identical to the original feature dimension, not only maintains
the complexity of the data but also enhances its interpretability
and classification potential.

In summary, the experimental results substantiate that VMD
effectively separates soil moisture and growth-related compo-
nents from the SAR temporal signatures, enhancing crop clas-
sification across various incidence angles. Therefore, VMD,
which originates from the field of signal processing, has signifi-
cant potential for enhancing SAR-based agricultural monitoring.

C. Applicability, Extensibility, and Limitations of the
Proposed Method

The preceding sections have demonstrated the effectiveness
of the proposed method in mitigating the impact of the incidence
angle effect on crop classification using airborne SAR data.
One of the core innovations of our study is the integration of
polarization information, incidence angle data, and the VMD
technique through a transfer learning framework to improve
the robustness and spatial adaptability of the classifier. This
strategy of comprehensively utilizing multiple dimensions of
SAR data (polarization, incidence angle, and time) enables a
more comprehensive characterization of crop characteristics and
enhances classification performance. However, the applicabil-
ity, extensibility, and limitations of the proposed method must
be discussed to provide a comprehensive understanding of its
potential and scope.

Regarding the applicability of the method in data-scarce
scenarios, although this study utilized a time series of 12 SAR

images, the core idea of the method lies in extracting stable
crop features and enhancing classifier adaptability through VMD
and transfer learning. This conceptual framework remains valid
even when the available data are limited. Future research could
explore the integration of multisource data and the adoption of
few-shot learning techniques to further improve the method’s
robustness in data-scarce situations.

Concerning the universality of the proposed method across
various SAR datasets, including both airborne and spaceborne
SAR data, several crucial aspects warrant consideration. Primar-
ily, our approach addresses data distribution disparities without
directly accounting for band-specific information, theoretically
endowing it with cross-band applicability potential. However,
its performance across different bands necessitates validation
through future research. Regarding platform differences, air-
borne and spaceborne SAR systems exhibit significant variations
in incidence angle ranges. Airborne SAR typically encompasses
a wider range of incidence angles, providing a more challeng-
ing testing environment for our method. Given the method’s
exemplary performance with airborne SAR data, we posit that
it may prove even more effective in managing the relatively
smaller incidence angle variations characteristic of spaceborne
SAR. Nevertheless, it is important to note that spaceborne SAR
generally covers larger swaths, potentially leading to greater
topographic variations between near and far ranges. This could
exacerbate data distribution disparities and increase processing
complexity.

Additionally, differing noise levels across platforms may
impact the transferability of sample information, constituting
another critical factor to consider when applying this method.
Spatial resolution differences represent another key considera-
tion. In lower resolution datasets, the presence of mixed pixels
may further intensify data distribution disparities, potentially
reducing model transferability. Moreover, this could diminish
the robustness of the VMD algorithm in extracting regular
features of ground objects. Consequently, applying the method
to data of varying resolutions may necessitate adjustments to
VMD parameters and transfer learning strategies.

While the proposed method has demonstrated promising re-
sults, its limitations and potential for broader application must
be carefully considered. Future research should focus on sev-
eral key areas to enhance and validate the method’s applica-
bility. This includes validating the method’s generalizability
across more diverse agricultural landscapes and cropping sys-
tems, as well as assessing its efficacy across different bands,
platforms, and resolutions of SAR data. Such assessment is
particularly important, given the potential impacts of varying
incidence angle ranges, spatial resolutions, and noise levels
characteristic of different SAR systems. Additionally, exploring
optimizations to accommodate these variations will be crucial,
potentially involving fine-tuning VMD parameters, enhancing
transfer learning strategies, and developing new techniques to
handle mixed pixels that are more prevalent in lower reso-
lution data. By addressing these aspects, future studies can-
not only validate the method’s broader applicability but also
potentially extend its capabilities to handle a wider range of SAR
data types.
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VI. CONCLUSION

In this study, we introduced a comprehensive framework that
synergistically combines transfer learning, VMD, and incidence
angle information to effectively address the impact of incidence
angle effects on airborne SAR time-series image classification.
The proposed method exhibits improved performance in classi-
fying crops across the full incidence angle range compared with
the existing techniques. Our main findings are as follows.

1) Transfer learning can effectively manage data distribution
discrepancies arising from diverse incidence angles, en-
hancing the model’s adaptability and robustness.

2) VMD can isolate components and enable a clearer capture
of the growth characteristics and periodic changes of
crops, improving the discrimination among different crop
types.

3) Incidence angle information can serve as important aux-
iliary data to improve the model’s performance.

The innovative integration of interdisciplinary technologies
from different fields not only provides new perspectives for
overcoming this specific challenge but also serves as an im-
portant reference for solving various problems in areas, such
as land-use change detection and disaster assessment within
time-series SAR-based studies. Future studies must focus on
using more real-world data for testing to further validate and
refine our approach.

ACKNOWLEDGMENT

The authors would like to thank the JPL NASA and
SMAPVEX 2012 teams for providing the UAVSAR images, and
the NASA National Snow and Ice Data Center Distributed Active
Archive Center (NSIDC DAAC) for making and providing the
2012 crop map of the Winnipeg area.

REFERENCES

[1] T. W. Hertel, “The challenges of sustainably feeding a grow-
ing planet,” Food Secur., vol. 7, no. 2, pp. 185–198, Apr. 2015,
doi: 10.1007/s12571-015-0440-2.

[2] B. Wu et al., “Challenges and opportunities in remote sensing-based crop
monitoring: A review,” Nat. Sci. Rev., vol. 10, Apr. 2023, Art. no. nwac290,
doi: 10.1093/nsr/nwac290.

[3] B. Wu et al., “Global crop monitoring: A satellite-based hierarchi-
cal approach,” Remote Sens., vol. 7, no. 4, pp. 3907–3933, Apr. 2015,
doi: 10.3390/rs70403907.

[4] S. Fritz et al., “Mapping global cropland and field size,” Glob. Change
Biol., vol. 21, no. 5, pp. 1980–1992, 2015, doi: 10.1111/gcb.12838.

[5] M. E. Qureshi, J. Dixon, and M. Wood, “Public policies for improving
food and nutrition security at different scales,” Food Secur., vol. 7, no. 2,
pp. 393–403, Apr. 2015, doi: 10.1007/s12571-015-0443-z.

[6] C. F. Nicholson, E. C. Stephens, B. Kopainsky, A. D. Jones, D. Parsons, and
J. Garrett, “Food security outcomes in agricultural systems models: Cur-
rent status and recommended improvements,” Agricultural Syst., vol. 188,
Mar. 2021, Art. no. 103028, doi: 10.1016/j.agsy.2020.103028.

[7] F. Canisius et al., “Tracking crop phenological development using multi-
temporal polarimetric radarsat-2 data,” Remote Sens. Environ., vol. 210,
pp. 508–518, Jun. 2018, doi: 10.1016/j.rse.2017.07.031.

[8] G. W. Gella, W. Bijker, and M. Belgiu, “Mapping crop types in com-
plex farming areas using SAR imagery with dynamic time warping,”
ISPRS J. Photogramm. Remote Sens., vol. 175, pp. 171–183, May 2021,
doi: 10.1016/j.isprsjprs.2021.03.004.

[9] N. Bhogapurapu et al., “Dual-polarimetric descriptors from
Sentinel-1 GRD SAR data for crop growth assessment,” ISPRS
J. Photogramm. Remote Sens., vol. 178, pp. 20–35, Aug. 2021,
doi: 10.1016/j.isprsjprs.2021.05.013.

[10] X. Qin et al., “Active pairwise constraint learning in constrained time-
series clustering for crop mapping from Airborne SAR imagery,” Re-
mote Sens., vol. 14, no. 23, Nov. 2022, Art. no. 6073, doi: 10.3390/
rs14236073.

[11] D. Mandal et al., “Dual polarimetric radar vegetation index for crop growth
monitoring using sentinel-1 SAR data,” Remote Sens. Environ., vol. 247,
Sep. 2020, Art. no. 111954, doi: 10.1016/j.rse.2020.111954.

[12] H. Shi et al., “Soil moisture estimation using two-component decomposi-
tion and a hybrid X-Bragg/Fresnel scattering model,” J. Hydrol., vol. 574,
pp. 646–659, Jul. 2019, doi: 10.1016/j.jhydrol.2019.04.049.

[13] C. H. Menges, J. J. Van Zyl, G. J. E. Hill, and W. Ahmad, “A procedure
for the correction of the effect of variation in incidence angle on AIR-
SAR data,” Int. J. Remote Sens., vol. 22, no. 5, pp. 829–841, Jan. 2001,
doi: 10.1080/01431160051060264.

[14] I. E. Mladenova, T. J. Jackson, R. Bindlish, and S. Hensley, “In-
cidence angle normalization of radar backscatter data,” IEEE Trans.
Geosci. Remote Sens., vol. 51, no. 3, pp. 1791–1804, Mar. 2013,
doi: 10.1109/TGRS.2012.2205264.

[15] H. Tamiminia, S. Homayouni, H. McNairn, and A. Safari, “A par-
ticle swarm optimized kernel-based clustering method for crop map-
ping from multi-temporal polarimetric L-band SAR observations,” Int.
J. Appl. Earth Observ. Geoinf., vol. 58, pp. 201–212, Jun. 2017,
doi: 10.1016/j.jag.2017.02.010.

[16] H. McNairn et al., “The soil moisture active passive validation experi-
ment 2012 (SMAPVEX12): Prelaunch calibration and validation of the
SMAP soil moisture algorithms,” IEEE Trans. Geosci. Remote Sens.,
vol. 53, no. 5, pp. 2784–2801, May 2015, doi: 10.1109/TGRS.2014.
2364913.

[17] I. Khosravi and S. K. Alavipanah, “A random forest-based framework for
crop mapping using temporal, spectral, textural and polarimetric observa-
tions,” Int. J. Remote Sens., vol. 40, no. 18, pp. 7221–7251, Sep. 2019,
doi: 10.1080/01431161.2019.1601285.

[18] W. Wagner, J. Noll, M. Borgeaud, and H. Rott, “Monitoring soil mois-
ture over the Canadian Prairies with the ERS scatterometer,” IEEE
Trans. Geosci. Remote Sens., vol. 37, no. 1, pp. 206–216, Jan. 1999,
doi: 10.1109/36.739155.

[19] J. P. Ardila, V. Tolpekin, and W. Bijker, “Angular backscatter varia-
tion in L-band ALOS ScanSAR images of tropical forest areas,” IEEE
Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 821–825, Oct. 2010,
doi: 10.1109/LGRS.2010.2048411.

[20] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of trans-
fer learning,” J. Big Data, vol. 3, no. 1, Dec. 2016, Art. no. 9,
doi: 10.1186/s40537-016-0043-6.

[21] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010,
doi: 10.1109/TKDE.2009.191.

[22] K. Dragomiretskiy and D. Zosso, “Variational mode decomposition,”
IEEE Trans. Signal Process., vol. 62, no. 3, pp. 531–544, Feb. 2014,
doi: 10.1109/TSP.2013.2288675.

[23] V. R. Carvalho, M. F. D. Moraes, A. P. Braga, and E. M. A. M.
Mendes, “Evaluating five different adaptive decomposition methods for
EEG signal seizure detection and classification,” Biomed. Signal Process.
Control, vol. 62, Sep. 2020, Art. no. 102073, doi: 10.1016/j.bspc.2020.
102073.

[24] H. McNairn, J. Powers, and G. Wiseman, “SMAPVEX12 land cover
classification map, version 1. [June to July 2012],” NASA Nat. Snow
Ice Data Center Distrib. Active Archive Center, Boulder, CO USA,
2014.

[25] T. Shibayama, Y. Yamaguchi, and H. Yamada, “Polarimetric scattering
properties of landslides in forested areas and the dependence on the
local incidence angle,” Remote Sens., vol. 7, no. 11, pp. 15424–15442,
Nov. 2015, doi: 10.3390/rs71115424.

[26] L. Zhao, J. Yang, P. Li, and L. Zhang, “Seasonal inundation monitoring
and vegetation pattern mapping of the Erguna floodplain by means of
a RADARSAT-2 fully polarimetric time series,” Remote Sens. Environ.,
vol. 152, pp. 426–440, 2014, doi: 10.1016/j.rse.2014.06.026.

[27] T. Whelen and P. Siqueira, “Use of time-series L-band UAVSAR
data for the classification of agricultural fields in the San Joaquin
Valley,” Remote Sens. Environ., vol. 193, pp. 216–224, May 2017,
doi: 10.1016/j.rse.2017.03.014.

[28] X. Huang et al., “Cropland mapping with L-band UAVSAR and devel-
opment of NISAR products,” Remote Sens. Environ., vol. 253, 2021,
Art. no. 112180, doi: 10.1016/j.rse.2020.112180.

[29] J.-E. Ouzemou et al., “Crop type mapping from pansharpened Landsat
8 NDVI data: A case of a highly fragmented and intensive agricultural
system,” Remote Sens. Appl., Soc. Environ., vol. 11, pp. 94–103, 2018,
doi: 10.1016/J.RSASE.2018.05.002.

https://dx.doi.org/10.1007/s12571-015-0440-2
https://dx.doi.org/10.1093/nsr/nwac290
https://dx.doi.org/10.3390/rs70403907
https://dx.doi.org/10.1111/gcb.12838
https://dx.doi.org/10.1007/s12571-015-0443-z
https://dx.doi.org/10.1016/j.agsy.2020.103028
https://dx.doi.org/10.1016/j.rse.2017.07.031
https://dx.doi.org/10.1016/j.isprsjprs.2021.03.004
https://dx.doi.org/10.1016/j.isprsjprs.2021.05.013
https://dx.doi.org/10.3390/rs14236073
https://dx.doi.org/10.3390/rs14236073
https://dx.doi.org/10.1016/j.rse.2020.111954
https://dx.doi.org/10.1016/j.jhydrol.2019.04.049
https://dx.doi.org/10.1080/01431160051060264
https://dx.doi.org/10.1109/TGRS.2012.2205264
https://dx.doi.org/10.1016/j.jag.2017.02.010
https://dx.doi.org/10.1109/TGRS.2014.2364913
https://dx.doi.org/10.1109/TGRS.2014.2364913
https://dx.doi.org/10.1080/01431161.2019.1601285
https://dx.doi.org/10.1109/36.739155
https://dx.doi.org/10.1109/LGRS.2010.2048411
https://dx.doi.org/10.1186/s40537-016-0043-6
https://dx.doi.org/10.1109/TKDE.2009.191
https://dx.doi.org/10.1109/TSP.2013.2288675
https://dx.doi.org/10.1016/j.bspc.2020.102073
https://dx.doi.org/10.1016/j.bspc.2020.102073
https://dx.doi.org/10.3390/rs71115424
https://dx.doi.org/10.1016/j.rse.2014.06.026
https://dx.doi.org/10.1016/j.rse.2017.03.014
https://dx.doi.org/10.1016/j.rse.2020.112180
https://dx.doi.org/10.1016/J.RSASE.2018.05.002


QIN et al.: MITIGATING INCIDENCE ANGLE EFFECTS IN AIRBORNE SAR TIME-SERIES CROP CLASSIFICATION 14519

[30] Y. Kang et al., “Land cover and crop classification based on red edge
indices features of GF-6 WFV time series data,” Remote. Sens., vol. 13,
2021, Art. no. 4522, doi: 10.3390/rs13224522.

[31] Z. H. Zhou and J. Feng, “Deep forest, Nat. Sci. Rev., vol. 6, no 1, pp. 74–86,
Jan. 2019, doi: 10.1093/nsr/nwy108.

[32] M. Fernandez-Delgado, E. Cernadas, S. Barro, and D. Amorim,
“Do we need hundreds of classifiers to solve real world classifi-
cation problems?,” J. Mach. Learn. Res., vol. 15, pp. 3133–3181,
Oct. 2014.

[33] S. Piao et al., “Summer soil moisture regulated by precipitation fre-
quency in China,” Environ. Res. Lett., vol. 4, 2009, Art. no. 044012,
doi: 10.1088/1748-9326/4/4/044012.

[34] X. Huang, Z. Shi, H. Zhu, H. Zhang, L. Ai, and W. Yin,
“Soil moisture dynamics within soil profiles and associated
environmental controls,” Catena, vol. 136, pp. 189–196, 2016,
doi: 10.1016/J.CATENA.2015.01.014.

[35] Y. Yang, X. Dong, Z. Peng, W. Zhang, and G. Meng, “Component
extraction for non-stationary multi-component signal using parameterized
de-chirping and band-pass filter,” IEEE Signal Process. Lett., vol. 22, no. 9,
pp. 1373–1377, Sep. 2015, doi: 10.1109/LSP.2014.2377038.

[36] H. Li, B. Fan, R. Jia, F. Zhai, L. Bai, and X. Luo, “Research on multi-
domain fault diagnosis of gearbox of wind turbine based on adaptive vari-
ational mode decomposition and extreme learning machine algorithms,”
Energies, vol. 13, 2020, Art. no. 1375, doi: 10.3390/en13061375.

[37] G. Tang and X. Wang, “Variational mode decomposition method
and its application on incipient fault diagnosis of rolling
bearing,” J. Vib. Eng., vol. 29, no. 4, pp. 638–648, 2016,
doi: 10.16385/j.cnki.issn.1004-4523.2016.04.011.

[38] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for
image classification,” IEEE Trans. Syst., Man, Cybern., vol. SMC-3, no. 6,
pp. 610–621, Nov. 1973, doi: 10.1109/TSMC.1973.4309314.

[39] D. Jia, P. Gao, C. Cheng, and S. Ye, “Multiple-feature-driven co-training
method for crop mapping based on remote sensing time series im-
agery,” Int. J. Remote Sens., vol. 41, no. 20, pp. 8096–8120, Oct. 2020,
doi: 10.1080/01431161.2020.1771790.

[40] C. Deng, Y. Xue, X. Liu, C. Li, and D. Tao, “Active trans-
fer learning network: A unified deep joint spectral–spatial feature
learning model for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 3, pp. 1741–1754, Mar. 2019,
doi: 10.1109/TGRS.2018.2868851.

[41] X. Liu, G. Wang, Z. Cai, and H. Zhang, “Bagging based ensemble transfer
learning,” J Ambient Intell. Humanized Comput., vol. 7, no. 1, pp. 29–36,
Feb. 2016, doi: 10.1007/s12652-015-0296-5.

[42] X. Qin, J. Yang, L. Zhao, P. Li, and K. Sun, “A novel deep forest-based
active transfer learning method for PolSAR images,” Remote Sens., vol. 12,
no. 17, 2020, Art. no. 2755, doi: 10.3390/rs12172755.

[43] K. Yan, L. Kou, and D. Zhang, “Learning domain-invariant subspace
using domain features and independence maximization,” IEEE Trans.
Cybern., vol. 48, no. 1, pp. 288–299, Jan. 2018, doi: 10.1109/TCYB.2016.
2633306.

[44] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE Trans. Neural Netw., vol. 22, no. 2,
pp. 199–210, Feb. 2011, doi: 10.1109/TNN.2010.2091281.

[45] K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel, B. Scholkopf, and
A. J. Smola, “Integrating structured biological data by kernel maximum
mean discrepancy,” Bioinformatics, vol. 22, no. 14, pp. e49–e57, Jul. 2006,
doi: 10.1093/bioinformatics/btl242.

[46] A. I. Schein and L. H. Ungar, “Active learning for logistic regression:
An evaluation,” Mach. Learn., vol. 68, no. 3, pp. 235–265, Aug. 2007,
doi: 10.1007/s10994-007-5019-5.

[47] N. W. W. Ort, M. J. Morrison, E. R. Cober, D. McAndrew, and Y. E.
Lawley, “A comparison of soybean maturity groups for phenology, seed
yield, and seed quality components between eastern Ontario and southern
Manitoba,” Can. J. Plant Sci., vol. 102, no. 4, pp. 812–822, Aug. 2022,
doi: 10.1139/cjps-2021-0235.

[48] “SMAPVEX12,” SMAP, Accessed on: Dec. 26, 2023. [Online].
Available: https://smap.jpl.nasa.gov/science/validation/fieldcampaigns/
SMAPVEX12

[49] H. Wang, R. Magagi, and K. Goita, “Polarimetric decomposition for
monitoring crop growth status,” IEEE Geosci. Remote Sens. Lett., vol. 13,
no. 6, pp. 870–874, Jun. 2016, doi: 10.1109/LGRS.2016.2551377.

[50] H. Wang, R. Magagi, and K. Goita, “Comparison of different polarimetric
decompositions for soil moisture retrieval over vegetation covered agri-
cultural area,” Remote Sens. Environ., vol. 199, pp. 120–136, Sep. 2017,
doi: 10.1016/j.rse.2017.07.008.

Xingli Qin received the B.S. degree in remote sensing
science and technology from the School of Remote
Sensing and Information Engineering, Wuhan Uni-
versity, Wuhan, China, in 2015, and the M.S. degree
in surveying and mapping engineering and the Ph.D.
degree in photogrammetry and remote sensing from
the State Key Laboratory of Information Engineering
in Surveying, Mapping, and Remote Sensing, Wuhan
University, in 2017 and 2021, respectively.

He is currently an Assistant Researcher with the
Key Laboratory of Remote Sensing and Digital Earth,

Aerospace Information Research Institute, Chinese Academy of Sciences, Bei-
jing, China. He is also a member of the Global Agricultural Remote Sensing
Monitoring Team (CropWatch) of China. His research interests include intelli-
gent interpretation of remote sensing imagery, transfer learning, and agricultural
remote sensing. His work combines advanced machine learning techniques
with remote sensing data to develop innovative solutions for environmental
monitoring and agricultural management.

Lingli Zhao (Member, IEEE) received the B.S.
degree in geographic information system from
Zhengzhou University, Zhengzhou, China, in 2010,
and the Ph.D. degree in photogrammetry and remote
sensing from Wuhan University, Wuhan, China, in
2015.

She was a Xiangjiang Scholar with the Department
of Land Surveying and Geo-Informatics, The Hong
Kong Polytechnic University, Hong Kong, from 2017
to 2019. She has been a Research Fellow with the
School of Remote Sensing and Information Engineer-

ing, Wuhan University, since 2015. Her research interests include polarimetric
SAR image processing and its applications in agriculture, wetland, and disaster
monitoring.

Jie Yang received the Ph.D. degree in photogram-
metry and remote sensing from Wuhan University,
Wuhan, China, in 2004.

Since 2011, he has been a Professor with the State
Key Laboratory of Information Engineering in Sur-
veying, Mapping, and Remote Sensing, Wuhan Uni-
versity. His main current research interests include
understanding synthetic aperture radar images.

Pingxiang Li received the Ph.D. degree in pho-
togrammetry and remote sensing from Wuhan Uni-
versity, Wuhan, China, in 2003.

Since 2002, he has been a Research Fellow with
the State Key Laboratory of Information Engineering
in Surveying, Mapping, and Remote Sensing, Wuhan
University. His research interests include synthetic
aperture radar image processing and applications.

Hongwei Zeng received the Ph.D. degree in natural
resources from the Graduate School of the Chinese
Academy of Sciences, Beijing, China, in 2012.

He is an Associate Professor with the Key Labora-
tory of Remote Sensing and Digital Earth, Aerospace
Information Research Institute, Chinese Academy of
Sciences. He is a member of the Global Agricultural
Remote Sensing Monitoring Team (CropWatch) of
China and a member of the Executive Committee
of the Global Earth Observation Global Agricultural
Monitoring Flagship. His research interests include

remote sensing identification of crop types, remote sensing estimation methods
for crop yields, and comprehensive evaluation of water resources availability at
the basin scale driven by machine learning.

https://dx.doi.org/10.3390/rs13224522
https://dx.doi.org/10.1093/nsr/nwy108
https://dx.doi.org/10.1088/1748-9326/4/4/044012
https://dx.doi.org/10.1016/J.CATENA.2015.01.014
https://dx.doi.org/10.1109/LSP.2014.2377038
https://dx.doi.org/10.3390/en13061375
https://dx.doi.org/10.16385/j.cnki.issn.1004-4523.2016.04.011
https://dx.doi.org/10.1109/TSMC.1973.4309314
https://dx.doi.org/10.1080/01431161.2020.1771790
https://dx.doi.org/10.1109/TGRS.2018.2868851
https://dx.doi.org/10.1007/s12652-015-0296-5
https://dx.doi.org/10.3390/rs12172755
https://dx.doi.org/10.1109/TCYB.2016.2633306
https://dx.doi.org/10.1109/TCYB.2016.2633306
https://dx.doi.org/10.1109/TNN.2010.2091281
https://dx.doi.org/10.1093/bioinformatics/btl242
https://dx.doi.org/10.1007/s10994-007-5019-5
https://dx.doi.org/10.1139/cjps-2021-0235
https://smap.jpl.nasa.gov/science/validation/fieldcampaigns/SMAPVEX12
https://smap.jpl.nasa.gov/science/validation/fieldcampaigns/SMAPVEX12
https://dx.doi.org/10.1109/LGRS.2016.2551377
https://dx.doi.org/10.1016/j.rse.2017.07.008


14520 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Miao Zhang received the Ph.D. degree in cartogra-
phy and geographical information system from the
University of Chinese Academy of Sciences, Beijing,
China, in 2014.

He is an Associate Professor with the Key Labora-
tory of Remote Sensing and Digital Earth, Aerospace
Information Research Institute, Chinese Academy of
Sciences, Beijing, China. He was a key member of the
CropWatch Team, which provides remote-sensing-
based global agricultural monitoring through a cloud
platform. As a member of the Executive Committee

of the GEOGLAM Flagship and a co-lead of the Joint Experiments for Crop
Assessment and Monitoring Initiative, he has collaborated with researchers
from more than 20 countries and various international organizations within
the GEOGLAM framework. His research focuses on remote-sensing-based
agriculture monitoring, specifically crop classification using multisource remote
sensing imagery and crop area estimates, remote-sensing-based agricultural
monitoring and food security assessment, and big Earth data for cropland and
cropping intensity mapping.

Kaimin Sun (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in photogrammetry and re-
mote sensing from Wuhan University, Wuhan, China,
in 1999, 2004, and 2008, respectively.

He is currently a Professor with the State Key
Laboratory of Information Engineering in Surveying,
Mapping, and Remote Sensing, Wuhan University.
His research interests include photogrammetry, ap-
plications of remote sensing in ecology and surface
disaster, and time-series analysis of remote sensing
images.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


