
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024 15373

Assessing Various Scenarios of Multitemporal
Sentinel-2 Imagery, Topographic Data, Texture

Features, and Machine Learning Algorithms
for Tree Species Identification

Iosif Vorovencii

Abstract—Accurate information about forests, including the
identification of tree species, can be achieved by utilizing combina-
tions of various datasets, analyzed over different temporal scales,
and employing advanced classification algorithms. Free Sentinel-2
(S-2) satellite imagery, along with other auxiliary data, can serve
as valuable sources of geospatial data. In the present study, sev-
eral scenarios and time intervals were evaluated for tree species
identification. Within each scenario, the data were classified using
supervised machine learning algorithms random forest (RF) and
gradient tree boosting (GTB). The data combinations targeted four
scenarios: S-2 bands (scenario 1); S-2 bands and topographic data
(scenario 2); S-2 bands and texture features (scenario 3); S-2 bands,
topographic data, and texture features (scenario 4). Each scenario
was applied for spring, summer, autumn, and long-term intervals.
The identified tree species included spruce, beech, fir, larch, pine,
mixed species, and other broadleaf species. The best results in tree
species identification were obtained in scenario 4. The findings
showed that GTB outperformed RF algorithm, providing overall
accuracies (OAs) between 96.40% (long-term, scenario 4) and
95.73% (spring, scenario 4). RF was placed second, reaching OAs
ranging from 87.41% (long-term, scenario 4) to 84.02% (summer,
scenario 4). The integration of topographic data in combinations
led to the largest increase in OAs, reaching up to 24.05% percentage
point (GTB, summer, scenario 2) in tree species identification. The
contribution of texture features in tree species identification was
marginal.

Index Terms—Machine learning (ML), scenario, Sentinel-2 (S-2)
image, tree species identification.

I. INTRODUCTION

THE ecological benefits provided by forests, such as
regulating surface temperature, maintaining hydrological

regimes, adjusting local and regional climates, and reducing
carbon emissions, are widely acknowledged. Tree species are the
most important components of forests, and obtaining informa-
tion about them is necessary for forest management planning [1].
Secure identification of tree species and their distribution help
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in monitoring forest biodiversity, assessing ecological changes,
understanding forest conditions, and in many other forestry
applications [2].

Ground-based identification of forest resources is costly, time-
consuming, challenging, and requires highly skilled personnel.
Furthermore, this traditional method does not provide detailed
information regarding the spatial distribution of tree species,
which is necessary for modern forestry resource management
[3], and does not allow for a higher update frequency. Remote
sensing is the main method for collecting geospatial data used in
tree species identification, especially when studies are conducted
over large areas. In addition, Google Earth Engine (GEE), which
is the world’s most advanced cloud platform for processing
remote sensing Big Data, provides a rich library of free satel-
lite imagery and facilitates access to dense time series. These
images can be used to conduct studies based on seasonal and
phenological variations of tree species [4].

Sentinel-2 (S-2) imagery has high potential in various map-
ping applications, including forest-type classification [5], and
tree species identification [6], [7], [8]. The relatively high repet-
itive cycle of S-2A/B satellites (five days) and higher spatial res-
olution (10–20 m), allowing for the capture of more detailed in-
formation, make these images valuable geospatial data sources.
Moreover, the spectral information included in the 13 bands of
the S-2 multispectral instrument, especially the red-edge and
SWIR bands, shows promise in detecting differences between
vegetation features [9], [10]. Studies employing multitemporal
S-2 imagery have shown their high potential for mapping forest
stand species [6], [8], [11], [12], [13], [14], [15], [16], [17], [18].

In large areas with complex forest composition and environ-
mental conditions, new challenges arise in tree species classifica-
tion. Different growth conditions, ages of tree species [19], and
forest structures lead to a high variability of spectral signatures
recorded by the optical bands of S-2 imagery. Therefore, com-
bining S-2 imagery with various auxiliary data can significantly
increase the overall accuracy (OA) in tree species identification.
Such data can be obtained from gray level co-occurrence matrix
(GLCM) and digital elevation model (DEM). By combining
spectral data with texture features, such as texture, contrast,
entropy, variability, etc., OA can increase by up to 10%–15%
[6], [20]. Moreover, topographic data such as elevation, aspect,
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Fig. 1. Research area, represented on the digital terrain model, with the distribution of reference samples. The dots represent the plot center.

and slope obtained from DEM can provide valuable information
for tree species discrimination, especially in mountain areas
[4]. Since these data influence the altitudinal distribution of
tree species, this leads to an increase in OA for the resulting
cartographic products.

Processing large and complex datasets composed of multi-
temporal imagery, topographic data, and textural features is done
using machine learning (ML) algorithms [14]. These algorithms
are often used for tree species identification and are capable of
modeling complex class signatures [21]. ML algorithms have
proven to be efficient in classifying high-dimensional data,
allowing for the use of a wide variety of data and do not
require a statistical distribution of them [21], [22], [23]. In GEE,
many ML algorithms are built that can be used in tree species
identification, such as random forest (RF) and gradient tree boost
(GTB). Several studies have found that these algorithms produce
higher accuracy compared to traditional parametric algorithms,
especially for complex data, with a high-dimensional feature
space [21], [24]. Using ML algorithms requires tuning the
parameters to find the optimal input values for obtaining the best
OAs. A common problem for most ML algorithms is the
risk of overfitting. To reduce this risk, techniques for reducing
the number of variables can be applied, thus avoiding model
overfitting and contributing to accuracy improvement [23].

The main objective of this study was to assess various sce-
narios of multitemporal S-2 imagery, topographic data, texture
features, and ML algorithms for tree species identification in an
area with complex landscape. The specific objectives were as
follows:

1) to compare RF and GTB ML algorithms in classifying the
datasets used for the defined scenarios and time intervals;

2) to evaluate the defined scenarios for each time interval and
ML algorithm;

3) to compare between time-scale intervals;
4) to evaluate tree species identification. The defined scenar-

ios considered different combinations of data, while the
time intervals took into account seasonal intervals with
significant phenological activity.

II. MATERIALS

A. Study Area

The study was conducted in an area located between 45°10′

− 45°19′ N and 25°31′ − 25°42′ E, situated in the central
part of Romania, south of the Bucegi Mountains (see Fig. 1).
The terrain is characterized by high hills and the beginning of
a mountainous area, where approximately 77% of the slopes
have a steep gradient (up to 30°) and 18% have a very steep
gradient (over 30°). The study area covers an area of 8519
ha, situated on terrain with an elevation difference of 810 m
(530–1340 m above sea level). The average annual temperature
is+6.8 °C, and the average annual precipitation is approximately
770 mm.

The predominant tree species (89%) are common beech
(Fagus sylvatica), Norway spruce (Picea abies), silver fir
(Abies alba), European larch (Larix decidua), Scots pine (Pinus
sylvestris), and black pine (Pinus nigra). In smaller proportion,
other species include sycamore maple (Acer pseudoplatanus),
oak (Quercus petraea ssp. petraea), gray alder (Alnus incana),
black alder (Alnus glutinosa), European hornbeam (Carpinus
betulus), aspen (Populus tremula), silver birch (Betula pen-
dula), European ash (Fraxinus excelsior), and willow (Salix
caprea). Forest management is carried out by the National
Forestry Administration (34.5%) and private forestry districts



VOROVENCII: ASSESSING VARIOUS SCENARIOS OF MULTITEMPORAL S-2 IMAGERY, TOPOGRAPHIC DATA, TEXTURE FEATURES 15375

Fig. 2. Tree species phenology and corresponding image acquisition dates, illustrating the relationship between tree phenological phases and image acquisition
timing.

(43.3%). The remaining analyzed area (22.2%) consists of pas-
ture, hayfields, and built-up areas (roads, buildings, parking
lots, etc.).

The forests in the study area are both pure and mixed stands. In
a mixed stand, five–six tree species can be found, with some (two
or three) being dominant species and the rest being secondary
species. The share of tree species in a stand is specified in
the forest management plan and was determined through forest
inventory. Species with less representation in the stand (below
10%) appear in the forest management plan as other species.

B. Satelite Imageries

In total, 15 scenes of S-2 imagery were used, acquired in
the years 2021 and 2022, from April 1st to November 26th
(see Fig. 2). The images belong to relative orbit number 50,
tile number T35TLL, and were freely downloaded from the
Copernicus Data Hub. These images are orthorectified and atmo-
spherically and topographically corrected at Level-2A (Bottom
of Atmosphere). The spectral bands of the S-2 images used in
the study were: B2, B3, B4, B5, B6, B7, B8, B8a, B11, and B12.
In addition, coastal aerosol, water vapor, and cirrus bands were
excluded from further processing. The images are in the WGS
84 projection, zone 35N.

C. DEM and Extraction of Texture Features

The DEM with a spatial resolution of 30 m was downloaded
from the archive available in the GEE platform. It was clipped to
the outline of the study area and resampled to a 20 m resolution
using the bilinear resampling method. Processing the DEM
resulted in slope and aspect, which, along with elevation, con-
stituted the topographic data used as auxiliary data in different
combinations with S-2 images and texture features. In GEE,
scaling is performed automatically, ensuring that all bands used
in various combinations are correctly overlaid.

The GLCM is used in remote sensing to extract texture
features. GLCM calculates the gray levels of pixels in the image

and provides a series of statistical indicators. Haralick et al. [25]
proposed 14 statistics, while Conners et al. [26] proposed an
additional four statistics that can be calculated based on GLCM.
The feature selection procedure involves choosing a subset or a
linear combination of features available through two methods:
1) using a set of training image regions to establish a set of
features that result in the smallest classification errors; 2) using
some functional feature space distance metric such that a large
feature space distance implies a small classification error [27].
Gotlieb and Kreyszig [28] found that groups of four features
were optimal.

To calculate GLCM, S-2 images were rescaled to a 16-bit
integer range. For spatial texture estimation, the near-infrared
band (B8) from S-2 composite images (2021 and 2022) was
used, based on a 4-pixel-wide with 3 × 3 square kernel. We
chose the near-infrared band because it contains spectral in-
formation suitable for differentiating vegetation characteristics.
In total, five texture features were calculated by processing
GLCM in GEE: entropy (EN), variance (VAR), correlation
(COR), contrast (CO), and homogeneity (HO) (see Table I).
The entropy value indicates the complexity of the image in
terms of the distribution of gray values; for complex images,
entropy values are larger, and vice versa. Variance is a measure
of the distribution of gray values in the analyzed image. The
correlation shows the level of similarity of gray values along the
rows or columns. Contrast represents the texture characteristics
and image clarity; high values reflect significant correlation.
Homogeneity is calculated within a processing window and
expresses the similarity measure of pixel values. Texture fea-
tures, as well as topographic data in different combinations with
spectral bands of S-2 images, served as input data for each ML
algorithm.

D. Reference Data

The official forestry database of the state forest administration
from the National Institute for Research and Development in
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TABLE I
TEXTURE FEATURES FORMULAS USED IN THIS STUDY

Forestry “Marin Drăcea” from Romania constituted the refer-
ence data. It included data from Forest Management Unit (FMU)
I Comarnic and FMU II Posada, both within the Sinaia Forestry
District. In FMU I Comarnic, state-managed forests cover an
area of 2091.6 ha, supplemented by 907.7 ha of private forests.
FMU II Posada has an area of 850.9 ha covered by state forests,
to which private forests are also added. The field boundaries of
the two FMUs consist of natural features (water bodies, ridges,
valleys) or artificial features (roads, railways, etc.) represented
by characteristic symbols. Within the two FMUs, in the urban
areas of the localities, there are parcels of forests of various sizes,
compositions, and structures.

The forestry database includes graphical data and attributes of
each forest unit, which constitutes the minimum recorded unit.
The graphical data comprise polygons delineating each forest
unit and are defined by coordinates on the outline expressed
in the Stereographic 1970 projection, which is the official pro-
jection of Romania. In the present study, the boundaries of
FMUs and forest units were converted from Stereographic 1970
to WGS 84 projection, Zone 35 N [32], [33]. The boundaries
of the two FMUs, along with forest units, were merged in
QGIS and imported into the GEE via Google Fusion Tables.
The attributes from the forestry database include data related
to species composition, attributes of stands (stand structure,
stand density, age, height, medium diameter, volume, etc.), site
characteristics (soil, geology, slope, orientation, etc.), and many
other types of information.

A forest unit represents the minimum recorded unit in the
forest management plan. The establishment of forest units was

based on silvicultural criteria used in forest inventory to delimit
homogeneous stands. These criteria include:

1) encompassing a single ecosystem or site unit;
2) having the same density or a density difference not exceed-

ing 0.2 (on a scale from 0 to 1);
3) having the same composition, with differences not exceed-

ing 20% for the main species (on a scale from 0 to 100);
4) the average age not differing by more than 20 years;
5) presenting a similar structure type (even-aged, relatively

even-aged, relatively uneven-aged, uneven-aged);
6) having a single productivity category.
FMU I Comarnic comprises 355 forest units, while FMU

II Posada has 111 forest units. Approximately 60 forest units
located mainly in the southern part of the study area were also
analyzed in private forests. In the forestry database, each forest
unit is demarcated by a polyline that has known coordinates; in
the field, demarcation is done using paint signs on trees [34],
[35]. The forest units ranged in size from 0.2 to 44.3 ha (average
5.9 ha) for FMU I Comarnic and from 0.1 to 31.8 ha (average
7.7 ha) for FMU II Posada.

Forest management plans are updated every ten years. Major
changes occurring during these ten years, such as cuttings and
windthrows, are recorded annually [36]. In this way, the forestry
database is continuously updated and includes all changes affect-
ing each stand at the time they occur. Part of the data from the
forestry database was validated through field trips in 2022. As
secondary products used for validation, orthophotoplans from
the National Agency for Cadastre and Land Registration and
Google Earth images were also employed.
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TABLE II
NUMBER AND AREA OF TRAINING AND VALIDATION POLYGONS FOR

ALL TREE SPECIES

E. Training and Validation Data

Samples for training and validation were collected from pure
stands listed in the official forestry database and were previously
confirmed during a field trip. The collection of spectral signa-
tures was performed within polygons located in the middle of
the forests, thus avoiding marginal areas that may interfere with
species from neighboring stands. The number and area occupied
by the polygons created for each tree species or group of species
are presented in Table II.

The reference samples were randomly divided, with 80% used
for training and 20% for accuracy assessment. The separation
into training and validation was made at the stock level. In this
sense, each sample was assigned a stock that had an associated
attribute used to differentiate the stocks within the analysis. All
defined stocks were added to a collection and were randomly
split into training and validation sets by adding a random column
to each stock. The splitting method ensures that all points in the
same stock are treated together, so the separation is consistent
at the stock level. In the case of generating the forest/nonforest
map, the total number of pixels was 14 525, with 11 621 pixels
for training and 2904 pixels for validation. For tree species
identification, a total of 6961 pixels were used, with 5603 for
training and 1358 pixels for validation.

An accuracy assessment was conducted based on the confu-
sion matrix. For each classified map, OA, producer’s accuracy
(PA), user’s accuracy (UA), and F1-score were calculated. In
addition, quantity disagreement and allocation disagreement
were determined instead of the Kappa coefficient. Quantity
disagreement evaluates the absolute disparities in proportions
between the reference map and a comparison map across dif-
ferent categories [37]. This metric arises when there are varying
numbers of pixels for each category in the two maps, and it is
calculated using the following equations [37]:

qg =
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where qg represents the quantity disagreement for a specific
category g, while pig and pgi indicate the estimated proportion
of that category in both the simulation and reference maps,
respectively; Q stands for the overall quantity.

Allocation disagreement indicates the difference between ob-
served and simulated maps, stemming from inconsistencies in
the spatial distribution of categories, and is computed using the
following equation [37]:

ag = 2min

⎡
⎣( J∑

i=1

pig

)
− pgg,

⎛
⎝ J∑

j=1

pgi

⎞
⎠− pgg

⎤
⎦ (3)

A =

∑J
g=1 ag

2
(4)

where ag represents the allocation disagreement for a specific
category g, pgg denotes the proportion of category g from the
observed data that is allocated to category g in the simulated map,
and A represents overall allocation. The overall disagreement
(D) is the aggregate of quantity disagreement and allocation
disagreement [37].

After applying ML algorithms, the importance of variables
was estimated in GEE by computing the normalized and raw
variable importance. In addition, McNemar’s test was employed
to highlight statistically significant relationships between ML
algorithms.

III. METHODS

A. Machine Learning Algorithms and Tuning Parameters

In this study, we employed the RF and GTB ML algorithms
available in the GEE platform. For each classifier, a series of
values were used and tested in the tuning process to find the
optimal parameters ensuring the highest OA for classification.
The flowchart of the research is illustrated in Fig. 3.

RF is a fast, easily parameterizable, robust algorithm [38]
commonly used for land use and land cover classification [39],
[40] as well as for tree species classification [41], [42], [43]. The
RF classifier consists of Ntree, where N is the number of trees to
be grown, defined by the user. When classifying a new dataset,
it passes through each of these N trees. The RF classifier selects
the class with the most votes from N, for that particular case.
The parameters for which the optimal value needed to be found
are the number of trees (Ntree) and the variables used in each
node (mTry). Studies have shown that to achieve satisfactory
and stable results, Ntree should be between 200 and 500 [44]. In
this study, to find the optimal parameters of the RF model, Ntree
values were tested in the range of 50–600, with a step size of
50; for mTry, the tested values were in the range of 1–15, with
a step size of 1.

GTB, similar to RF, employs an ensemble of decision trees
but, unlike RF, it restricts the complexity of the trees. To reduce
the correlation between trees, each new tree is created based
on the randomized selection of subsamples from the complete
training data [45]. These subsamples are then used to fit the base
learner and update the model for the next iteration, gradually
reducing the cumulative model loss [46]. Studies have shown
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Fig. 3. Flowchart illustrating the step-by-step process of the research methodology and analysis. Before making the composite, the temporal intervals (spring,
summer, autumn, and long-term) were defined.

that GTB algorithms, such as Xgboost, outperform RF, support
vector machine, and K-nearest neighbor algorithms [47], mainly
on unbalanced datasets. However, GTB algorithms are prone to
overfitting, but this risk can be minimized through parameter
tuning [45].

The GTB algorithm parameters tuned in this study are the
number of trees (Ntree), maxNodes, sampling rate, shrinkage
rate, and loss. Regarding Ntree, the tested values were between
50 and 200, with a step size of 10. Although the literature
generally recommends Ntree to be 1000 [48], the maximum
value tested in this study was 200. The maxNodes parameter was
in the range of 2–10, with a step size of 1. The two parameters that
control the learning rate of the algorithm, namely the sampling
rate and shrinkage rate, were also optimized. For the sampling
rate, values in the range of 0.40–0.80 were tested, with a step
size of 0.05. In the case of the shrinkage rate, the tested values
were 0.01, 0.05, 0.1, 0.25, and 0.5. In addition, the three loss
functions available in GEE for GTB, namely least squares, least
absolute deviation, and Huber, were compared.

B. Forest Tree Species Identification

The identification of tree species was carried out in two stages.
In the first stage, a forest mask was built using all S-2 images and
the RF classifier, which is easier to parameterize, to retain only
forested areas. For training and validation, 193 samples were
used, consisting of 84 samples for forest and 109 for nonforest.
These were visually selected and delineated through polygons.
The nonforest class consists of built-up areas (roads, buildings,
etc.), agricultural lands (hay, pasture, arable), and water. In the
second stage, tree species were identified within the forest mask
using the three ML algorithms.

We defined four different time scales, including spring, sum-
mer, autumn, and long-term intervals of time (see Table III).
Within each temporal interval, various classification datasets
(scenarios) were defined, with different combinations of input
variables. Thus, in the study, for each scenario, a composite
was created that included the S-2 bands from the analyzed time
interval. The composites were created using the median of the
bands, resulting in multitemporal composites for each band. In
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TABLE III
TEMPORAL INTERVALS USED FOR CALCULATING SEASONAL AND LONG-TERM COMPOSITES BETWEEN 2021 AND 2022

TABLE IV
SCENARIOS NAME, NUMBER, AND NAME OF SELECTED VARIABLE USED IN THE STUDY FOR EVERY TEMPORAL INTERVAL

the case of scenarios 2, 3, and 4, the other variables were added to
these composites. Thus, for each temporal interval, 4 scenarios
were established, totaling 16 scenarios (see Table IV).

The dominant tree species in the area were spruce, beech,
larch, fir, and pine. A separate class was formed for each tree
species. In addition to these, two groups of tree species were
identified, each forming separate classes. In the first group,
called other broadleaves species (other BL species), broadleaves
tree species found in the forest management plan with a share of
less than 10% were included. In the second group, called mixed
species class, tree species located at lower altitudes, primarily
found in urban areas, were included. The species in this class
are both coniferous and broadleaves, found in patches of various
sizes and shapes, and could not be assigned to classes with
dominant species due to their intimate grouping pattern.

IV. RESULTS

A. Optimal Tuning Parameters

Most ML algorithms require hyperparameter tuning. Opti-
mizing hyperparameters is a key aspect of the ML algorithm

training process, and optimal parameter values vary across sites;
therefore, an extensive grid search is needed [49]. The tuned
parameters based on which the highest OAs were obtained for
each scenario, classifier, and time-scale interval are presented
in Table V. For GTB, the Ntree ranged from 160 to 190,
with maxNodes set to no limit. The shrinkage function showed
optimal values between 0.05 and 0.50, with the most frequent
value being 0.10, while for the sampling rate, the values ranged
from 0.40 to 0.80. The type of loss function used had a negligible
effect on OAs, as highlighted in other studies [45]. For RF, the
Ntree used for the final analysis varied between 50 and 600, and
mTry was between 1 and 12. The greater variation in Ntree
for RF may be due to the complexity and variability of the
data, meaning that datasets with higher variability required a
larger number of trees to ensure model accuracy. In addition,
it is possible that the dimensions of the training data samples
influence the optimal number of trees. Thus, larger datasets may
require a greater number of trees to cover the data variability.

Table VI lists the results obtained after applying McNemar’s
test. The results show that in scenarios 2 and 4, there is a
significant difference between RF and GTB regarding the test
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TABLE V
VALUES OF TUNING PARAMETERS FOR OPTIMAL ACCURACIES FOR EACH SCENARIO, CLASSIFIER, AND TIME-SCALE INTERVAL

TABLE VI
RESULTS OF APPLYING THE MCNEMAR’S TEST
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Fig. 4. Maps depicting the distribution of tree species identified in the studied area using RF and GTB ML algorithms (scenario 4). The pie chart illustrates the
areas (in hectares) occupied by tree species. (a) Spring. (b) Summer. (c) Autumn. (d) Long-term.

outcomes, and this difference cannot be attributed to chance.
This indicates that, in this specific context, one of the ML
algorithms, primarily GTB, has yielded more accurate results
than RF.

B. Overall Accuracy Assessment

After applying the three ML algorithms to each scenario
and time interval, maps illustrating the distribution of each tree
species were generated (see Fig. 4). Fig. 5 displays a map rep-
resenting the best result achieved, specifically for the long-term
interval in scenario 4 using GTB.

The achieved OAs depend on the ML algorithm, the type
of datasets, and the time-scale intervals. These range between
70.54% and 96.40% and are presented in Fig. 6. GTB has led
to the highest OAs for scenario 4, exceeding 95%, in all time
intervals, which implies the combination of S-2 spectral bands,
topographic data, and textural features. The OAs values for
GTB are very close in scenario 4, with a difference of 0.67%pt.
(percentage point) between the highest (96.40%, long-term) and
the lowest (95.73%, spring). RF also yields high values (over
84%) in scenario 4 using the same combination of S-2 spectral
bands, topographic data, and texture features.

Regarding the datasets used, the OAs have significantly in-
creased for all ML algorithms and time scales in scenario 2
by adding topographic data to spectral features (see Fig. 6).

For example, for the summer interval, the OA increased by
24.05%pt. for GTB and by 13.58%pt. for RF. It is possible that
in this case, the significant increase in OA is due to topographic
data rather than phenological processes, which are less visible
in summer satellite images; also, the number of summer bands
used to create the composite was lower. The smallest increase
in OA was 9.38%pt. and was encountered in RF in autumn for
scenario 2. Relative to spectral features (scenario 1), the addition
of texture features (scenario 3) led to a moderate increase in
OA ranging from 1.69%pt. (RF, autumn) to 8.64%pt. (GTB,
summer). In the long-term interval, by adding texture features,
OA even decreased by 1.12%pt. for RF (see Figs. 6 and 7).

Related to OAs obtained from temporal intervals, the highest
values were obtained in the long-term and autumn. Thus, in the
long-term interval, GTB led to the highest OA for scenario 4
(96.40%), and in autumn for scenarios 1–3 (78.16%, 95.39%,
and 84.64%, respectively). In contrast, RF resulted in high OAs
in the long-term interval (scenarios 1, 2, and 4–76.50%, 86.60%,
and 87.41%) and in the autumn interval (scenario 3–77.81%).

The highest overall disagreements were estimated for RF for
all intervals, with the highest values in autumn (12.72%) and
spring (9.72%) (see Fig. 8). The lowest overall disagreement
values were obtained by GTB in all cases, with 4.66% for the
long-term interval and 4.89% for spring. In the case of RF,
overall disagreements ranged from 8.53% (summer) to 12.72%
(autumn).
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Fig. 5. (a) Map depicting the distribution of tree species for long-term interval in scenario 4, where the GTB algorithm ensured the best accuracies. (b) Pie chart
represents the areas (in hectares) occupied by tree species.

Fig. 6. OAs (%) obtained from applied ML algorithms in the four scenarios.

C. Tree Species Level Accuracy Assessment

The accuracy with which each tree species was identified by
each algorithm varies considerably (see Fig. 11). Regardless of
the analyzed scenario, time intervals, and ML algorithms, the
highest values for UA and PA were obtained for beech (UA
ranging from 70.28% to 95.38%; PA ranging from 90.38% to
98.91%), followed by spruce (UA ranging from 77.01 to 98.50;
PA ranging from 79.52% to 98.62%). The lowest UA and PA
values were obtained for the mixed species class (UA between
35.55% and 98.10% and PA between 7.57% and 90.00%), as
well as for the other BL species class (UA between 46.42% and

98.95% and PA between 18.75% and 85.27%) (see Fig. 11).
The highest F1 score values were obtained for spruce (98.40%),
followed by beech (97.26%), while the lowest values were for
mixed species (13.88%) and other BL species (29.93%) (see
Fig. 9).

RF applied for all time intervals shows that the lowest values
of UA, PA (see Fig. 11), and F1 score (see Fig. 9) were generally
obtained for scenarios 1 and 3. Better results for UA, PA, and F1
score were obtained for scenarios 2 and 4. These results suggest
that topographic data significantly contributed to distinguishing
between tree species at different altitudes. Discrimination was
observed for all tree species, but it was particularly pronounced
for fir, pine, mixed species, and other BL species. For example,
when applying the GBT algorithm, for scenario 4, the UA for
other BL species increased by 29.08%pt. compared to scenario
3, while PA increased by 33.55%pt. (see Fig. 11).

The confusion matrices of the best classifications, namely for
GTB and RF (scenario 4, long-time), are presented in Tables VII
and VIII. In both GTB and RF cases, most confusions occurred
between beech, mixed species, and other BL species. For exam-
ple, in GTB, out of 57 pixels from the mixed species class, 48
were correctly classified, 4 as beech, 4 as other BL species, and
1 as pine. For RF, out of 52 pixels representing mixed species, 31
were correctly classified, 14 were assigned to the beech class,
5 to other BL species, and 1 each to spruce and pine classes.
In the case of other BL species, confusions were higher; out
of 95 reference pixels representing this class, 54 were correctly
classified as other BL species and 33 as beech.

For each classification result, we calculated the importance of
the variables. In Fig. 10, the importance of variables is presented
by applying RF and GTB for scenario 4.
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Fig. 7. Differences in OAs (%pt.) between (a) scenario 2 and scenario 1, (b) scenario 3 and scenario 1, (c) scenario 4 and scenario 1, (d) scenario 4 and scenario
2, and (e) scenario 4 and scenario 3.

Fig. 8. Allocation and quantity disagreement components (in percentages) in scenario 4 for RF and GTB algorithms.

V. DISCUSSION

A. Assessing Capabilities of ML Algorithms

Considering the analyzed scenarios and time-scale intervals,
as well as the optimal parameters found, the highest accuracies
were achieved with GTB followed by RF. Some differences
were encountered between GBT and RF at the tree species level
accuracy assessment (see Fig. 11).

GTB performed the best despite the current limitation of Ntree
in GEE to less than 200. The high performance of GTB was

attributed to its ability to model complex relationships between
classes in satellite images, as well as to build complex models
based on the large datasets used. In addition, GTB managed the
variability and heterogeneity of data in S-2 images well, includ-
ing variations in lighting conditions, atmospheric distortions,
and noise. Georganos et al. [50] demonstrated that implementing
XGboost in GTB, especially based on an extended set of fea-
tures, systematically outperforms RF. However, there are studies
in the literature showing that RF has outperformed GTB, but the
increase in OA was only 0.14%pt. [3]. As demonstrated by the
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Fig. 9. F1 score obtained after applying ML algorithms for the seven tree species.

tuning results for GTB, the significance of parameter tuning also
relies on the quality of the training dataset [45].

RF is a very popular algorithm, which is often faster compared
to others, and does not require advanced hyperparameter tuning
[44]. Regarding the RF parameter of Ntree in this study, the
results showed that maximum OAs were achieved, for certain
datasets, when Ntree was set in the range of 50–600. Obtaining
lower OAs by RF compared to GTB may be due to the difficulties
faced by the algorithm in the case of less common classes
and imbalanced training data, as highlighted in other studies
[23]. In addition, RF is not so robust to a small number of
training samples, and it is possible that their number was smaller,
insufficient for this algorithm.

The locations of each class in the classified maps were best
identified by GTB, in the spring interval, which exhibited the
lowest value for allocation disagreement (1.73%, representing
35.38% of the overall disagreement), followed by the long-term
interval (2.30%, representing 49.36% of the overall disagree-
ment). The quantity disagreement values were also low, ranging
between 2.36% and 3.16%, indicating that the number of pixels
in the classified map was close to that in the forest management
map. Thus, through the optimal parameters set, the algorithm
managed to separate the classes most effectively.

In the case of RF, the allocation disagreement values ranged
from 3.48% to 5.08%, indicating that many areas were classified
in locations where they were not observed. In this situation, the



VOROVENCII: ASSESSING VARIOUS SCENARIOS OF MULTITEMPORAL S-2 IMAGERY, TOPOGRAPHIC DATA, TEXTURE FEATURES 15385

Fig. 10. Importance of variables used in classification applying ML algorithms for every analyzed time interval (scenario 4).

TABLE VII
CONFUSION MATRIX FOR GTB CLASSIFICATION IN SCENARIO 4 AND LONG-TIME INTERVAL

most representative class is beech. It is possible that many areas
classified by RF, which had mixtures of beech with different
tree species, were allocated as beech. The discrepancies in
quantity values for RF were consistently larger than those in
allocation across all time intervals, indicating that the primary
source of disagreement between the two maps was related to
quantity errors rather than allocation errors at the pixel level.
This indicates that the number of pixels predicted for each class

differs substantially from the number of reference pixels. As
a result, the RF algorithm delineates a larger area occupied
by beech compared to the delineations produced by the GTB.
Furthermore, the clear differences in the occupied areas are
between beech, mixed species, and other BL species. This made
the difference between algorithms, because in mixed species and
other BL species, there is also beech that could not be separated
and attributed to the beech class.
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Fig. 11. UAs and PAs for the seven tree species identified in the study area.
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TABLE VIII
CONFUSION MATRIX FOR RF CLASSIFICATION IN SCENARIO 4 AND LONG-TIME INTERVAL

B. Assessing Different Scenarios

The different input variables led to different classification
outcomes. Using only the S-2 bands (scenario 1) led to the
highest OA achieved by the GTB algorithm (78.16%, autumn);
the lowest OA was obtained by RF (70.54%, summer). The OAs
obtained in scenario 1 were the lowest among all scenarios, ex-
cept for one situation encountered in scenario 3 (RF, long-term),
when they exceeded these (see Fig. 6). The use of rich spectral
information obtained solely from the S-2 image bands plays an
important role in tree species identification [51]. Compared to
OA obtained using a single image, utilizing dense time-series
S-2 images in tree species identification leads to higher OAs. In
the study conducted by Persson et al. [8], using RF classifier and
multitemporal S-2 images in identifying common tree species
in Sweden, an OA of 88.2% was achieved. Grabska et al. [52]
obtained an OA of 92.38% by combining five S-2 images taken
in spring, summer, and autumn, and using all available images
led to an OA of 92.12%.

Adding topographic data to the S-2 bands (scenario 2) resulted
in a substantial increase in OAs, and consequently in better tree
species identification. For example, using only S-2 multitempo-
ral composites, in the case of GTB and the long-time interval, re-
sulted in an OA of 77.65%, and adding the DEM layer improved
the OA to 95.20% (see Fig. 6). The results obtained are in line
with those in the literature. In the study conducted by Hościło and
Lewandowska [13], it is shown that by combining topographic
data with multitemporal S-2 images, for the classification of
eight tree species, OA increased from 75.6% to 81.7%. Liu et al.
[42] demonstrated that by combining multitemporal Landsat-8
and S-2 imagery with topographic data for the classification of
four tree species and mixed forest types, an OA of 82.8% was
achieved; OA increased by 15.2%pt. by adding topographic data
compared to a single image. Dorren et al. [53] demonstrated
that including topographic data in forest type classification can
improve OA from 64% to 73%. In addition, other studies have
shown the beneficial use of topographic data in increasing OA
[3], [14], [54].

The texture information extracted from the multispectral S-2
images played a relatively minor role in tree species identifica-
tion compared to topographic data. The contribution of texture
features in combination with S-2 images (scenario 3) ranged
between 1.69%pt. (RF, autumn) and 8.64%pt. (GTB, summer).
Moreover, adding texture features led, in one case, to a decrease
in OA by 1.12%pt. (RF, long-term) [see Fig. 7(b)]. The marginal
contribution of texture features was also encountered in scenario
4, where OAs increased between 0.43%pt. (GTB, spring) and
2.80%pt. (RF, spring) compared to OAs in scenario 2 [see
Fig. 7(d)]. In the summer interval, for RF, adding texture features
led to a decrease in accuracy by 0.10%pt. The results obtained
are similar to those in other studies. In the study conducted by
You et al. [3], the addition of texture information improved the
model accuracy by 3.10%pt. (for GTB) and by 1.89%pt. (for
RF). Although, in the current study, GLCM textural features did
not result in a significant increase in OAs, their contribution in
scenario 4 was marginal; they contributed to the increase in UAs
of mixed species and other BL species. In this regard, texture
features have shown their capability of detecting the variability
of forest species at the stand level.

Using S-2 spectral bands in combination with topographic
data and texture features (scenario 4) led to the highest OAs
(see Fig. 6), and consequently to a better identification of tree
species. The variables used in the classification of tree species in
this scenario had different contributions (see Fig. 10). Among the
S-2 bands, the most important variables were B12, B11, B3, and
B4, identified as crucial in other studies based on S-2 imagery
related to tree species mapping [6], [8], [11], [12], [13], [15],
[16], [17], [52]. Bands B11 and B12 were found to be sensitive
to needle water content [55], canopy leaf water content [56],
and lignin, starch, and nitrogen [20]. Since vegetation water
content is closely related to phenology, this was reflected in the
reflectance in the SWIR [57]. The visible red part of the spectrum
is also sensitive to chlorophyll content. However, the red-edge
bands, although related to vegetation leaf properties such as
photosynthetic pigments, biomass, and structural carbohydrates
[58], did not have a significant contribution to the current study.
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Topographic data in scenario 4 had the highest contribution to
tree species classification, with elevation ranking first, followed
by aspect and slope (see Fig. 10). Adding topographic data
as an auxiliary to satellite images can facilitate tree species
identification, especially in mountainous areas with complex
species composition, heterogeneous forest structures, and spatial
variability in phenology [14], [18]. This is because the same
tree species may exhibit different morphology and phenology in
different growing seasons, depending on elevation, which results
in their spectral characteristics differing locally [18].

The contribution of texture features in tree species identi-
fication was small. Among these, CON (B8_contrast), VAR
(B8_var), and HO (B8_idm) showed the highest contribution
to the classification accuracy among the GLCM texture, while
COR (B8_corr) and EN (B8_ent) showed the lowest (see
Fig. 10). The minimal contribution of EN suggests that the S-2
images were not complex, meaning they did not have a highly
diverse distribution of gray values that would highlight their fea-
tures. Therefore, texture information obtained for the study area
from S-2 images with spatial resolutions of 10 and 20 m seems
insufficient for such analyses. Adding texture features as vari-
ables in classification is more suitable for classifying details that
are significantly larger than the spatial resolution of the remote
sensing data. In the case of pixel-based analyses, texture features
are less significant, especially if the pixel size is the same as or
larger than the size of the recorded detail. Using satellite images
with high spatial resolution provides richer texture information
and allows for obtaining details related to size, canopy shape,
and roughness, thereby enabling more precise identification of
tree species [2]. This underscores the delicate balance between
adding texture features as auxiliary layers of information for tree
species identification and the noise introduced by their addition,
which can affect classification accuracy [45]. However, in the
study conducted by Nasiri et al. [4], it is shown that including
forest stand textural and structural features can help highlight
vertical and horizontal patterns among different species groups.

C. Comparison Between Time-Scale Intervals

The highest QAs, and thus a good separability between tree
species, were obtained in the long-term interval (scenario 4,
GTB), followed by those in autumn (scenario 4, GTB), with
a difference of only 0.31%pt. between the two OAs. Moreover,
the maximum difference in OAs between seasonal intervals for
GTB was 0.67%pt., while for RF, it was 3.40%pt, both for sce-
nario 4. The spring and summer combinations, regardless of the
algorithm and scenario used, were not effective in distinguish-
ing species in the analyzed area. These findings contrast with
other studies that emphasized the superior accuracy of seasonal
spectral-temporal metrics followed by monthly acquisitions [4],
[14].

The reasons for the low performance of tree species identifi-
cation in the seasonal intervals can likely be attributed to various
factors. Large areas are characterized by highly diverse species
composition, forest patterns, and management practices, as well
as environmental conditions [14]. The timing of phenological
events differs across the study region, especially if the altitudinal

gradient is large. This is particularly relevant for spring and
autumn composites when changes are more rapid. In addition,
the phenology of tree species is controlled by factors such as
photoperiod, winter chilling, altitude, and temperature [59]. In
the studied area, the altitudinal distribution of tree species ranges
from 530 to 1340 m a.s.l., resulting in phenological phases
being shifted even for the same species. Although topographic
data ensured that the sample plot belonged to the class based
on the precise location and distribution range of tree species,
confusions still occurred in classifications. This was encountered
in beech and other species mixed with mixed species and other
BL species, such as maple, birch, gray alder, black alder, and
European hornbeam located across the entire area in various
shares.

Another reason for the low accuracy in seasonal intervals for
tree species identification could be the limited number of S-2
bands used to create the composites. This led to the data not
being sufficiently precise or correctly synchronized with field
processes. Although most S-2 images were captured in spring,
when important phenological events such as leafing occur, the
OAs of GTB (scenario 4) were the lowest (95.73%). Similarly, in
summer, the OAs were also the lowest, indicating that phenology
had little effect on species identification; moreover, there were
fewer S-2 images available. Although phenological stages pro-
vided by seasonal scenarios can improve the spectral separability
between tree species [4], the results of this study showed that
combining phenological stages led to better separability.

Studies on tree species identification have yielded different
results. Xi et al. [51] found that S-2 images captured in May,
June, and July were more sensitive to phenological variations of
tree species. Immitzer et al. [12] also concluded that images cap-
tured in April, May, and June were much more beneficial for tree
species classification. Persson et al. [8] found that images from
late spring and early summer were optimal for discriminating
tree species. Grabska et al. [52] highlighted that the combination
of spring and autumn led to good species discrimination. Hościło
and Lewandowska [13] found that midautumn imagery was the
best for tree species classification. Spectral variations in these
months represented temporal dynamic differences in crown
structure and biochemical characteristics among different tree
species [13]. This is probably because phenological variations
are much easier to capture using multitemporal imagery, such as
S-2. Somewhat similar results to those of the present study were
obtained by Grabska et al. [52] through the combination of S-2
images captured in spring and autumn (April 30/May 5/October
14/October 17/November 8). In addition, they showed that using
a time series of S-2 images instead of single-date imagery sig-
nificantly improved OA by approximately 5%–10%pt. in terms
of tree species identification.

Therefore, although the best results were obtained in the long-
time interval using the GTB algorithm, the differences in OA
compared to the other time intervals were small, with a margin
of only 0.67%pt. It is possible that certain specific phenophases
of each season were captured in the long-term interval but were
slightly shifted from each other. All these small discrepancies,
considered for each season and combined, led to the best results
in the long-term interval. However, some studies recommend
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using dense time series to capture rapid phenological changes
[14]. In addition, using satellite images from multiple years
could help obtain compositions that facilitate better tree species
identification. This underscores the complexity of identifying
the optimal input variables in the temporal domain, which may
explain why the long-term scenario outperforms the seasonal
scenarios in this study.

D. Tree Species Identification

Identifying tree species using multitemporal S-2 images relies
on capturing phenophases, such as budburst, leaf unfolding,
autumn coloring, and abscission [60]. The spectral separability
between different tree species increases at certain times related to
phenological stages [8], and variations in the spectral behavior
of tree species in different phenological stages are beneficial
for their identification. For deciduous trees, the most important
phenophase occurs during autumn and is related to leaf col-
oring. In addition, spring is characterized by another important
phenophase, namely leaf emergence and greening. Although this
study utilized most S-2 images acquired in spring (April and
May) and autumn (October and November), and scenarios were
analyzed for each season separately, considering phenophases
individually did not aid in identifying tree species, except when
considered together (long-time interval). It is possible that these
phenophases either were not captured by the images used at
their peak or that this point occurred between satellite passes.
Thus, the timing of image acquisition outweighs the significance
of image quantity [61]. Also, by using composites created by
combining the bands of S-2 images taken during the analyzed
time intervals, it is possible that not all phenological differences
were captured.

The tree species that were best identified were spruce and
beech, located in forests with homogeneous structures, of the
same age, and having only one tree species in composition
(see Fig. 11). These are compact stands generally found in
the upper part of the study area. Considering the elevational
gradient, although topographic data were used, differences still
appeared even within the same species. These were caused by
variations in reflectance determined by tree age, crown openness,
local site conditions, stress, shadow effects, and crown health
[52]. In addition, factors such as elevation, aspect, and soils
influenced growth conditions, which in turn affected spectral
variability within the same species [52]. Some studies have
shown that broadleaf species, especially oak and birch, are
elevation-dependent, while birch is sensitive to slope [13], [62],
[63]. Furthermore, differences in the chemical and physical
properties of tree species are reflected in the distinct spectral
response, which constitutes the main driver for discriminating
species [64].

Analyzing confusion matrices reveals that most confusions
occurred between mixed species, other BL species classes, and
beech (see Tables VII and VIII). Tree species in these classes, lo-
cated at lower altitudes, are found in forests with heterogeneous
structure, high fragmentation, and posed challenges in collecting
accurate training samples. The presence of hornbeam, oak, birch,
ash, and beech in intimate mixtures led to the collection of a

mixed spectral signature. Moreover, spectral similarities among
beech, hornbeam, alder, maple, oak, and ash contributed to
inaccurate identification of mixed species and other BL species.
This phenomenon is emphasized in other studies [52], [61], [65].
Furthermore, the training sample size for the mixed species class
was smaller (see Table II). Some studies have demonstrated that
small classes tend to be misclassified [52], [66], [67].

The phenophases in spring can be shifted even within the same
species. For a species located at lower altitudes, leaf emergence
and greening began earlier compared to the same species at
higher altitudes, with temperature being the decisive factor [68],
[69]. In the case of beech, located at lower altitudes, leafing
depended on March temperatures, while for higher altitudes, it
depended on April temperatures [68], [69]. In addition, some
species such as hornbeam and beech are characterized by very
similar phenological phases [68], [69], making phenological
differences difficult to detect, as noted in other studies [70]. All
these interspecific similarities led to lower accuracies for these
classes. Moreover, the resolution of S-2 images does not allow
the identification of such small groups of tree species [52].

For other BL species, located in the lower part of the study
area, the forest is fragmented, has a more complex structure, and
alternates with pastures, meadows, and built-up areas. These do
not form large and homogeneous stands, and it is possible that
marginal pixels from other land cover classes were included in
the training samples, classified as forest in the nonforest map.
Furthermore, the study by Wessel et al. [6] shows that using
S-2 images allows for good results for forests with less complex
structures and background signal effects.

Using topographical data in tree species identification requires
the presence of reference data that cover the entire altitudinal
range for each tree species or group of species from the lowest
to the highest point of the current distribution of these species.
In the present study, spruce, beech, fir, and mixed species are
spread across the entire area, and for these, reference samples
were distributed throughout their range. In contrast, for larch and
pine, the reference samples were located only in a few locations
where these two species are found. In addition, in the case of
other BL species, which are located in the lower and central
parts of the studied area, the reference samples were made in
these parts. Under these conditions, for this tree species, it is
possible that the models may be affected because using decision
tree-based algorithms will be biased, as decision trees generally
do not extrapolate.

E. Tree Species Identification in Forest Management

In forest management planning, tree species identification
is essential. This constitutes the primary objective in forest
inventory, alongside the collection of dendrometric data. Within
the forest management plan, stand maps depict tree species and
the composition of each forest unit, but obtaining maps using
satellite imagery allows for their precise localization within
the forest unit. Thus, by understanding the composition and
distribution of tree species, a comprehensive and systematic
perspective on forests is provided, enabling the monitoring and
assessment of changes over time.
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Implementing silvicultural management activities, including
treatments, constitutes crucial actions for the future of forests.
Planning and monitoring these activities using S-2 images as
cartographic support can offer a significant advantage. For
example, in the studied area of FMU I Comarnic, 1564.5 ha
of forests [68] are included in the forest management plan
where silvicultural treatments can be applied. Understanding
species distribution, including within mixed stands, is important
in determining cutting regimes to ensure natural regeneration,
maintain an optimal mix of tree species, and eliminate invasive
species. Simultaneously, this can help in planning sustainable
management practices for mature forests that take into account
the needs of different species to maintain a high level of biodi-
versity. By understanding changes in tree species distribution,
decision-makers in forestry can adopt various strategies for
forests to adapt to climate change.

The ecosystem services provided by forests in the studied area
are undeniable and must be considered in forest management.
One of these services is conservation, given that the forests
are adjacent to or part of the protected area of the Bucegi
Natural Park. From the forests within FMU I Comarnic, 19.7%
(411.4 ha) are subject to conservation efforts, whereas within
FMU II Posada, 98.5% (837.9 ha) are dedicated to conservation
[68], [69]. Furthermore, 442.1 ha of FMU II Posada [69] are
included in the Natura 2000 site ROSCI0013 Bucegi. In addition,
285.9 ha of forest [69] serve as buffer zones for reserves in the
Bucegi Natural Park. Apart from these, there are 94.7 ha [69]
designated as seed production and forest gene pool conserva-
tion reserves. Habitats encountered in the studied area include
southeastern Carpathian forests of spruce, beech, and fir with
Pulmonaria rubra, and southeastern Carpathian beech forests
with Symphytum cordatum, requiring conservation activities. By
understanding tree species, specific conservation strategies can
be developed by conservation specialists to protect and restore
habitats, with particular emphasis on threatened or endemic
species.

Soil and steep slope protection constitute another ecosys-
tem service that requires tree species identification for forest
management. In FMU II Posada, 162.1 ha [69] are located on
slopes with gradients exceeding 30°, with some stands situated
on rocks and scree slopes. Another 192.1 ha [69] are found on
slopes with gradients up to 30°, situated on lithologically very
vulnerable substrates to erosion and landslides. In this situation,
it is important to know the original species composition for
reintroducing the right tree species and promoting ecosystem
resilience [71]. Strategies for planting and regenerating forests
in accordance with species requirements are necessary to prevent
negative effects, such as insect attacks or fungal infections,
which may occur when planting tree species outside their natural
range.

Another ecosystem service offered by the studied forests is
related to urban forests. In the lower and middle parts of the
studied area, 257.9 ha [69] are included in the forest management
plan and serve recreational and social interests. Considering
the increasing expansion of urban areas and their status as
tourist destinations, it is vital to maintain the role of these
forests in ensuring air quality and quality of life in urban areas.

Differences in the capacity of tree species to capture carbon
dioxide from the atmosphere require their identification and
inclusion in forest management. In this regard, forests play a
crucial role in mitigating climate change by capturing and storing
significant amounts of carbon [60], [72].

VI. CONCLUSION

In the present study, various scenarios of multitemporal S-2
imagery, ML algorithms, topographic data, and texture features
were evaluated for tree species identification. The algorithms
used were GTB and RF, both available on the GEE cloud
computing platform. The results highlighted differences in the
outputs of tree species identification due to classifiers, datasets,
and time-scale intervals. The most accurate results were obtained
by the GTB algorithm (over 95.70%) for all input datasets and
time-scale intervals examined. Among these, the combination
of S-2, topographic data, and textural features (scenario 4) for
the long-term interval provided the best result (96.40%). The
difference in OAs between the result obtained in the long-term
interval and the weakest one obtained in spring, in the case of
GTB, was only 0.67%pt. RF ranked after GTB, with a difference
in OAs ranging from 8.31%pt. to 12.38%pt.

A significant increase in OA, and consequently in tree species
identification, was achieved by introducing topographic data into
the model. The contribution of texture features was marginal in
increasing OAs but contributed to increasing UAs for mixed
species and other BL species. Although images from different
time-scale intervals were used, where phenological aspect is
important, the best results were obtained in the long-time in-
terval. To capture phenology, and thus ensure a more accurate
identification of tree species, dense time series of S-2 images
should be used.

The study relied on free S-2 images and the GEE platform,
which enable the creation of a workflow that can be regularly
used for mapping tree species. Such studies can be conducted
at both local and regional levels. In this way, updated thematic
maps can be prepared for forest management at various levels
(forest unit, district unit). In addition, the studies can be used to
promote sustainable forest management, monitor forest resource
dynamics, and conserve biodiversity.
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