
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024 14179

HBSeNet: A Hybrid Bilateral Network for Accurate
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Abstract—Semantic segmentation of aerial and satellite images
plays a crucial role in a wide range of applications and services,
catering to the increasing needs of environmental resource man-
agement, urban planning, and traffic safety. Many efficient se-
mantic segmentation methods have been proposed by exploiting
deep learning techniques with convolution neural networks (CNNs)
architectures and self-attention mechanisms to achieve superior
accuracy if compared with conventional machine learning-based
approaches. In this article, we introduce a hybrid bilateral seg-
mentation network (HBSeNet), a novel semantic segmentation ar-
chitecture. Inspired by the success of dual-path network models
that replace conventional single-branch encoder–decoder architec-
tures, we construct a model with the core idea of combining the
context path and the spatial path to optimize both the accuracy
and the complexity of deep learning model in the field of remote
sensing image segmentation. Moreover, HBSeNet innovates with
auxiliary modules designed to enhance its performance, such as
sequential atrous convolution, information synthesis module, and
bridge for efficient multiscale feature extraction, fusion, and inte-
gration. In simulations, our model achieves a global accuracy of
92.04%, a mean intersection-over-union of 83.57%, and a mean
boundary-F1-score of 90.23% when evaluated on the ISPRS Pots-
dam dataset, surpassing the state-of-the-art segmentation models,
such as DeepLabV3+, SwinCNN, and ST-UNet.

Index Terms—Artificial intelligence, bilateral network, image
segmentation, object recognition, remote sensing.

I. INTRODUCTION

S EMANTIC segmentation, or pixel-level classification,
stands as a fundamental and computationally demanding

task in image-based remote sensing applications and services.
The objective is to assign an appropriate semantic label for
each pixel within a remote-sensing image. Notably, semantic
segmentation of very high-resolution and large-scale images
has gained significant traction in various applications, includ-
ing environmental monitoring, agricultural management, urban
planning, and land cover classification. Remote sensing image
(RSI) segmentation approaches traditionally fall into two broad
categories: handcrafted feature-based and deep neural network
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(DNN)-based methods. Handcrafted methods rely on manually
designed features and classifiers. The widely adopted simple lin-
ear iterative cluster algorithm typifies this approach, leveraging
a k-means clustering scheme to efficiently produce superpixel
features and partition RSIs into small neighboring pixel clusters.
For instance, an innovative objective function and a novel graph
construction strategy were introduced for superpixel segmenta-
tion [1], while the authors in [2] studied a robust SVM-HOG
model, as the combination of histograms of oriented gradients
(HOG) and support vector machine (SVM) for feature descriptor
and classifier, respectively, employing GrowCut segmentation
to capture handcrafted features. Subsequently, Markov models
and region-based graph models are utilized to merge adjoining
regions that have the highest similarity. However, very high-
resolution and large-scale RSIs exhibit complex spectral char-
acteristics, potentially leading to emphasized intraclass variance
and a decline in interclass variance, thereby challenging the
efficiency of such methods.

Inspired by the remarkable success across various computer
vision tasks, semantic segmentation techniques based on deep
learning (DL) have made substantial strides in both natural and
remote sensing contexts. Nonetheless, unlike close-range natural
images, the scale disparity inherent in RSIs presents a unique
challenge. Specifically, small-scale land cover features can be
lost with declining spatial resolution, ultimately compromising
segmentation accuracy. Recognizing this characteristic, numer-
ous research efforts have focused on constructing deep networks
with different architectures adept at multiscale feature aggrega-
tion. For example, the work [3] implemented dilated convolution
to enhance context information within feature aggregation, while
the multiscale features extracted from various network layers
(shallow and deep) are fused to enrich feature representation
and learning efficiency. To further refine boundaries within RSIs,
the authors [4] recently introduced a boundary attention module
to capture land-cover boundary information from hierarchical
feature aggregations. Overall, DL-based methods have demon-
strably outperformed traditional approaches by a significant
margin.

While several DL-based semantic segmentation methods have
shown some applicable potential for RSIs, they face some
substantial challenges. The large image sizes of RSIs often
necessitate convolutional layers with expansive receptive fields
to effectively seize object-specific information. This, however,
can lead to a significant increase in both model complexity and
the number of learnable parameters. Although atrous convolu-
tions have been introduced to address this issue by expanding
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Fig. 1. Overview of different architectures are commonly used for image semantic segmentation. From left to right, it features U-shape, bilateral, and our proposed
architectures. The yellow zone represents the down-sampling stage, while the green zone indicates the up-sampling stage.

receptive fields without increasing parameter count [5], their op-
timal adoption in network architectures remains a challenge. In
addition, unlike natural images where target objects frequently
occupy a large region in the image, RSIs often contain diverse
object categories dispersed across varying regions. This disper-
sion can result in inaccurate boundary segmentation or, more
problematically, pixel-level misclassification of object labels
across extended areas.

To address the two abovementioned problems, we propose
a semantic segmentation network model for RSIs, called the
hybrid bilateral segmentation network (HBSeNet). Specifically,
we design a novel densely connected sequential architecture,
which establishes the foundation for building a spatial path
to maximize the information gained while preserving com-
plexity and processing time at levels deemed acceptable. In
addition, inheriting theories from bilateral networks proposed
in [6], [7], and [8], our HBSeNet is able to leverage sev-
eral convolutional neural network (CNN) backbones to ex-
tract high-level abstraction features, along with clever enhance-
ments of the conventional encoder–decoder architecture to
construct the context path. This enhances the understanding
capability of contextual information, especially when being
combined with the spatial understanding of the spatial path
to substantially boost the segmentation performance of the
model.

In a nutshell, the key contributions of our work can be sum-
marized as follows.

1) We propose a novel HBSeNet for RSI semantic segmenta-
tion, featuring a densely connected sequential architecture
with the cooperation of spatial path and context path.

2) In the spatial path, we leverage atrous convolutions in an
advanced structural connection to maximize information
extraction for accurate segmentation while maintaining
model efficiency.

3) We enhance the conventional encoder–decoder architec-
ture by integrating effective auxiliary modules, establish-
ing a well-organized context path, and strengthening its
contextual learning capability.

4) Through diversified simulations, HBSeNet achieves supe-
rior performance on diverse RSI datasets, demonstrating
the effectiveness of the proposed network architecture.

The rest of this article is organized as follows. Section II
undertakes a comprehensive review of related works. Section III
describes the details of our proposed method. Section IV con-
ducts the experimental validation of the proposed method, along
with a comparative assessment against other methodologies.
Finally, Section V concludes this article.

II. RELATED WORK

In recent times, semantic segmentation techniques for RSIs
have emerged, offering effective tools for identifying objects
from aerial views. These techniques can be categorized into
various groups, including single-branch encoder–decoder mod-
els (denoted U-shape) and dual-path network models (denoted
bilateral). Fig. 1 presents an overall comparison of these se-
mantic segmentation architectures, including a depiction of our
proposed model.

A. Single-Branch Encoder–Decoder Models

The semantic segmentation models have typically studied
single-branch encoder–decoder architectures. These models
with a single and unified pathway unveil their capability by
distilling intricate spatial details and global context into accurate
pixel-level predictions. In this section, we convey a brief review
of several prominent single-branch models that have been in-
troduced in the past. U-Net, SegNet, and fully convolutional
network (FCN) are three well-known single-branch encoder–
decoder architectures. U-Net [9] introduced the U-shaped archi-
tectural design, which uses skip connections to link the encoder
and decoder. This allows the preservation of the fine-grained
spatial information that could be lost during the downsampling
process. U-Net achieved remarkable results in medical image
segmentation with its simple and elegant design and later ex-
tended to various domains. However, its performance may suffer
when dealing with complex scenes, due to its relatively shallow
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encoders. In [10], SegNet prioritizes memory efficiency over
U-Net by using pooling indices to perform upsampling without
reconstructing the whole feature maps. With this beneficial
feature, SegNet became a suitable solution for real-time appli-
cations, but it compromised the feature representation quality
compared with other deeper architectures. FCN [11] was the
pioneer of the encoder–decoder paradigm, in which it converted
classification networks into fully convolutional ones. By using
convolutions instead of fully connected layers, FCN enabled
dense prediction for the whole image in semantic segmentation.
However, its initial versions might not have cutting-edge context
aggregation methods, thus being easily overcome by other recent
models motivated by FCN.

Some deep models have been aptly designed to obtain high-
resolution and context-aware semantic segmentation. For in-
stance, DeepLabV3+ [12] leveraged atrous convolutions to an-
alyze the scene at different scales, thus revealing the complex
relationships between objects without losing resolution. As a
result, DeepLabV3+ produced accurate segmentation maps with
detail preservation, however, it may require more computational
cost than other simpler architectures. Derived from accurately
segmenting objects with varying sizes concept, the authors
in [13] proposed an adaptive feature selection (AFS) module to
address this issue. This module incorporates an attention mech-
anism to assign weights to different scales within the image,
improving the segmentation of objects with uncertain scales.
Moreover, SwinCNN [14] combines a Swin transformer for
capturing long-range relationships between image features and
CNN for handling local details. It utilizes various techniques to
improve performance: atrous spatial pooling for capturing mul-
tiscale context, a U-shape decoder for progressively recovering
image resolution, skip connections for preserving local details,
and a channel attention block for feature enhancement. In the
work [15], RefineNet was fabricated for accurate high-resolution
segmentation by adopting a multipath refinement network that
progressively enhances pixel-level classification. Although Re-
fineNet improved the accuracy of semantic segmentation, es-
pecially for object boundaries, but its multipath structure may
increase the overall network complexity and expose some diffi-
culties in training and optimization. PSPNet [16] engaged in
a pyramid pooling module that comprehensively aggregates
context information at multiple levels of feature representation.
Interestingly, PSPNet can handle distant and diverse elements
in the scene, consequently generating a comprehensive view of
the image. Indeed, these three models demonstrate how context
aggregation and high-resolution segmentation can be achieved
by different methods.

To optimize the performance tradeoff between accuracy and
complexity, Unet++ [17] took advantage of residual connections
by revolutionizing them to advanced structural architectures to
handle learnable information more efficiently. Rather than com-
bining neighboring levels, Unet++ convolved several dense con-
nections in the decoder to gather multiscale features extracted
at different presentation levels. With an advanced architecture,
Unet++ prevented the details of small objects in a scene from
attaining high-accuracy semantic segmentation, even if the com-
putational expense may be burdensome for resource-constrained

computing platforms. By exploiting a multiscale feature pyra-
mid for semantic segmentation, feature pyramid networks [18]
studied a selective attention mechanism in the decoder by ex-
tracting and learning salient features at multiple appropriate
scales. Concretely, rich contextual information helps to localize
objects in a scene more accurately and improve the overall
segmentation accuracy. However, it is important to acknowledge
that the inherent computational overhead relating to building and
navigating this pyramidal structure increases significantly and
potentially raises some implementation concerns on Internet-
of-Things devices. Recently, ESPNet [19] introduced a spatial
pyramid of atrous convolutions with different dilation factors by
cleverly replacing a regular pyramid pooling with strategically
dilated convolutions, thus enhancing learning efficiency and pre-
senting a lightweight structure. This allows ESPNet to operate
smoothly on edge devices besides delivering an improvement of
segmentation accuracy without computational intensification.
However, its structure mostly relying on dilated convolutions
can limit its capability of coarse-to-fine feature presentations
if compared with other regular pooling-aided pyramid mech-
anisms. Despite inherent technical constraints, the noteworthy
achievements of these semantic segmentation models promote
and emphasize the potential for advancing the overall system
performance.

B. Dual-Path Network Models

The urgent requirements for accurate and efficient semantic
segmentation for diverse application models have promoted the
development of numerous cutting-edge architectures. Among
these, dual-path networks have emerged as a potential solution
by leveraging the learning capability of two distinct pathways:
a spatial path focuses on local details and a semantic path
(a.k.a., context path) plays the role of learning global context. As
pioneering the dual-path paradigm, BiSeNet [6] was launched
as a lightweight yet powerful architecture. Its spatial path en-
ables to extraction of fine-grained information through convo-
lutions, while the semantic path deploys dilated convolutions
to accumulate globally contextual information. Moreover, the
effective spatial attention mechanism deployed in BiSeNet fuses
the features from both paths to improve segmentation accuracy
and fulfill real-time processing. However, BiSeNet may be lim-
ited by intricate object boundaries due to its weak learning of
global dependencies. Achieving a balance between detail and
global comprehension in semantic segmentation models is a
challenging issue. From this perspective, ContextNet [20] was
proposed with a deep network architecture with two branches
of feature learning: one aims to capture the global context
and the remainder is to maintain fine-grained specifics. This
innovative integration enables the model to comprehend both
the macro and micro details of a scene for semantic segmen-
tation. However, the dual-branch configuration of ContextNet
may require a higher computing cost if compared with other
straightforward and single-branch structures. LinkNet [21], on
the other hand, leveraged the advancements of residual con-
nections throughout its encoder–decoder structural architecture.
These processes are able to prevent downsampling operations
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and enable the preservation of fine-grained details, accordingly
boosting segmentation accuracy. However, LinkNet’s depen-
dency on residual connections increased computational cost as
well as reduced the processing speed if compared with less
complicated architectural models. In [22], ICNet, building upon
BiSeNet, introduced some intermediate channels to facilitate the
information exchange issue among different paths. This enables
bidirectional communication to enrich feature representations
in both paths. In addition, channel-wise attention in ICNet
refines feature aggregation, thus being able to yield superior
segmentation performance for complex scenes. However, the
increasing complexity of ICNet, compared with BiSeNet, may
result in higher computational costs, which becomes an essential
drawback when being implemented for resource-limited com-
puting platforms. By embracing the ability of dense connections
in feature emphasis, DANet [23] embedded them into both
the spatial and semantic paths. This promotes information flow
and feature reuse to consequently enhance learning efficiency.
Remarkably, dual attention mechanisms further strengthen the
interaction between paths and then allow the network to capture
fine-grained dependencies and global context comprehensively.
Although DANet presented impressive accuracy, its intricate ar-
chitecture may demote its real-time applicability. The refinement
continues with U2-Net [24] by merging the U-Net architecture
with squeeze-and-excitation blocks to advance the competence
of relevant feature extraction and learning. These blocks dynam-
ically adjust channel weights as well as highlight informative
features and suppress irrelevant ones. Besides, residual connec-
tions organized in the U-Net structure facilitate information flow
to generate accurate segmentation. However, U2-Net’s reliance
on pretrained encoders like ResNet usually limits its flexibility
in adapting to diverse datasets.

Several deep models have exploited attention mechanisms
in the architecture of spatial and context paths. The authors
in [25] proposed a novel approach called the BANet, which
has two pathways: a dependence path to capture long-range
relationships between objects and a texture path to capture
fine-grained details within objects. These pathways are then ef-
fectively merged using a feature aggregation module with linear
attention. Moreover, in [26], pixel-level attention is the center
stage of a deep network, namely PANet, providing adaptive
context aggregation for each pixel. This empowers the model
to selectively focus on relevant contextual information based
on its individual needs. Spatial path attention further enriches
local details, leading to accurate boundary delineation. While
PANet demonstrates impressive results, its reliance on multiple
attention mechanisms might inflate its computational demands.
In [27], BASNet employs backward attention which guides the
spatial path by propagating semantic information from higher
levels back to lower levels, effectively refining local features
with global context. In addition, feature channel scaling adjusts
the information volume exchanged between paths, ensuring
efficient fusion. However, BASNet’s backward attention mech-
anism might present challenges in optimization and training
compared to standard forward flow approaches.

The field of semantic segmentation has witnessed an in-
tensive manipulation of attention mechanisms to culminate in

ever-refined feature representations. AUNet [28] aptly integrated
the channel and spatial attention mechanism to attain a se-
lective refinement of features. In particular, channel attention
illuminates informative channels across the entire feature map,
while spatial attention focuses on crucial regions within each
channel. This dual-structural style amplifies feature saliency,
which leads to an improvement in segmentation accuracy. How-
ever, AUNet’s multiattentional ensemble necessitates careful
balancing to avoid redundancy and computational strain [29]. To
attain high-resolution image segmentation, HRNet [30] utilizes
stage-wise residual connections for the progressive refinement
of features. It leverages parallel aggregation of multiscale fea-
tures to seize useful information at different granularities. In
addition, channel attention modules dynamically scale feature
channels, thus emphasizing salient information in scenes. De-
spite the fact that HRNet excels at semantic segmentation tasks
for high-resolution RSIs, its reliance on multiple processing
stages might increase its inference time. ST-UNet [31] ascends
to the stage, effectively merging the transformative power of
transformers with the U-Net architecture. Its encoder has a long-
range dependence on Swin transformers and tightly works with
the U-Net decoder, a guardian of spatial information. Moreover,
hybrid attention mechanisms expedite context fusion across
scales thoroughly. While ST-UNet’s performance overwhelms
other existing segmentation models, its computational demands
might outshine those of purely convolutional networks. Notably,
to combine the strengths of the transformer and the CNN, STD-
SNet [32] uses a Swin transformer as its backbone to overcome
CNN limitations and incorporates a dual-decoder design with
separate global and shape streams. The global stream tackles
context loss during upsampling with a specific module, while
the shape stream employs another module to focus on boundary
information. This combination improves segmentation accuracy,
particularly for small targets and their boundaries.

This intricate landscape of dual-path network models high-
lights the constant evolution in semantic segmentation. While
each network possesses unique strengths and weaknesses, the
unifying theme of exploiting the duality between spatial and
semantic information remains a key driver of progress. Future
research in this domain might focus on further optimizing at-
tention mechanisms, reducing computational complexity, and
adapting these architectures to handle diverse conditions.

III. METHODOLOGY

In the domain of semantic segmentation, recent advancements
suggest that utilizing bilateral networks [6], [7], [33], [34] leads
to superior segmentation performance compared to conventional
single-branch networks [5], [12], [17]. Indeed, several research
trends have focused on building models that integrate spatial
and context paths, achieving significant success in enhancing
semantic segmentation accuracy [6], [7], [8]. Building upon
these concepts, our work introduces a novel network model that
segregates the spatial and context paths with the incorporation
of innovative enhancement methods to achieve superior image
segmentation performance in the domain of remote sensing.
In this section, we will detail the architecture of our proposed
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Algorithm 1: The Implementation of SAC Module.
Require:A set of dilation rates for N elements
a1, a2, . . ., aN .

Ensure:a1 < a2 < . . . < aN .
i← 1,
T1 ← SACin,
K← T1,
for i < N do

Ti+1 = A3×3
1,ai

(Ti),
K← 〈K,Ti+1〉,
i← i+ 1,

end for
SACout ← K.

spatial path, context path, and the comprehensive model, referred
to as the HBSeNet.

A. Spatial Path

With the introduction of atrous convolutions [5], which fa-
cilitate the expansion of kernel receptive fields while preserving
the number of parameters, more and more studies are leveraging
them to enhance model performance [6], [12], [35]. Primarily,
these investigations concentrate on integrating atrous convolu-
tions in the last layers of the backbone to enlarge the receptive
field for feature maps at higher abstraction levels [5], [12]. How-
ever, challenges arise when adopting this approach in real-time
applications with low-resolution input images, where the feature
map size at high abstraction levels becomes smaller than the
receptive field of the kernels, thus leading to potential unneces-
sary weight redundancy [36]. An alternative utilization of atrous
convolution involves the implementation of atrous spatial pyra-
mid pooling (ASPP) modules for extracting multiscale feature
information [12], [37]. The ASPP employs parallel atrous con-
volutional layers with varying reception fields on the same input.
Consequently, kernels with large receptive fields may not fully
capitalize on the relevant information obtained through filters
with smaller receptive fields, and vice versa. Addressing this
problem requires a substantial number of filters with the same
receptive field to ensure comprehensive information, hence re-
sulting in a surge in parameter count with just one ASPP module.

Sequential atrous convolution (SAC): To overcome these
limitations, we propose a new approach via the architecture
named SAC, transforming conventional parallel connections
into a dense sequential connection. Each SAC module comprises
a set of N atrous convolutional layers with corresponding a set
of dilation rates a1, a2, . . ., aN . The pseudocode of the whole
proposed SAC module is presented by Algorithm 1, where
〈·〉 is a depth-wise concatenation, A3×3

1,ai
denotes a sequential

operation, including an atrous convolution (specified by the filter
size 3× 3, the stride 1, and the identical dilation rate ai), a
batch normalization (bn), and a leaky rectified linear unit (leaky
ReLU) activation. It is noted thatT andK are variables that store
temporary features used for data processing in SAC modules.

Sequential deployment of atrous convolutional layers enables
us to leverage information extracted from previous layers. As a

result, this leads to a reduction in the number of kernels needed in
a layer, thereby significantly reducing the number of parameters
in the SAC module regardless of its placement within the model.
It is worth noting that, to preserve important feature information
with such a small number of parameters, we adopt to use the
leaky ReLU function [38] with a scale of 0.01, rather than the
standard ReLU function, within the SAC module.

Based on the SAC module, we propose the establishment of
a spatial path by incorporating two distinct SAC modules: one
at the input (denoted as Sin1) and another at the final layer in
the backbone (denoted as Sin2). It is realized that there exists a
difference in the level of abstraction and resolution of the inputs
of the two SAC modules. For details, Sin1 has a large resolution
but a low abstraction level, and Sin2 has a relatively small
resolution but a higher abstraction level. For that reason, Sin2

may require more learnable parameters as well as guarantee that
the receptive field should be less than or equal to its spatial size.
The following describes the detailed architecture of modules to
process Sin1 and Sin2. In particular, for Sin1, we design an SAC
module comprising six atrous convolutional layers with varying
dilation rates, including three layers with small rates ([1, 2, 3])
and three layers with large rates ([5, 7, 9]), strategically focusing
on spatial features of the input at multiscale of reception fields.
ForSin2, the module SAC must be specified for a notably reduced
size, which means, we should fabricate four atrous convolutional
layers with relatively small dilation rates to address the weight
redundancy issues as studied in [36]. The detailed architecture
of the spatial path can be referred to in Fig. 2. The output of the
spatial path comprises a concatenation of spatial information at
both low and high abstraction levels.

B. Context Path

While the spatial path captures spatial information within
the image, the context path is a powerful tool for gathering
contextual information across various abstraction levels. Sim-
ilar to encoder–decode architectures [5], [7], [17], where en-
coded information (obtained through a DNN, or backbone) is
passed through up-sampling steps to generate the output seg-
mentation map, we propose an innovative context path built on
ResNet50 [39] as the backbone. However, in contrast to standard
ResNet50, we exclude the last stage to maintain feature map
resolution and reduce the number of trainable parameters in our
proposed backbone. This section will offer a comprehensive
overview of our context path, including technical details of
the information synthesis module (ISM) and the bridge to the
context path, both designed to improve feature integration for
more accurate segmentation.

ISM: In the context path, besides constructing a model entirely
based on typical encoder–decoder architectures, we recognized
the importance of introducing some enhancements. In some
recent works, researchers have highlighted the importance of
constructing information transmission from encoder to decoder
to help the up-sampling stage [6], [10], [40]. Inheriting those
ideas, we propose to build an ISM. This module serves to
amalgamate information from various stages in the backbone,
thereby facilitating the upsampling process with a diverse array
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Fig. 2. Our proposed spatial path consists of 2 SAC modules. The detailed
implementation of the SAC module is highlighted in the blue zone. For instance,
the SAC for Sin1 has 6 atrous convolutions with the set of dilation rates is
[1, 2, 3, 5, 7, 9].

of information from different contexts. The ISM module can
be succinctly expressed through the following mathematical
equations:

ISMout = C� s (1)

with ISMout denotes the output of the ISM module and C are
the feature maps that contain information from various stages
referred in the algorithm

Θi = C1×11,1 (Xi)

C = 〈Θ1,Θ2,Θ3〉 (2)

and s is the channel-wise attention scores [41] calculated by the
following equations:

z(c) =
1

H×W

H∑

h=1

W∑

w=1

C(h,w, c)

s = σ (W2δ (W1z)) . (3)

The detailed descriptions of the meaning of mathematical sym-
bols used in (2) and (3) can be referred to Table I.

In our context path implementation, we utilize the ReLU
activation function due to its remarkable success in constructing
deep image segmentation networks [6], [10], [17]. Conversely,

TABLE I
DESCRIPTIONS OF THE MEANING OF MATHEMATICAL SYMBOLS

owing to the nature of the context path, a substantial number of
parameters are required to attain high-level abstract information.
Hence, employing leaky ReLU to prevent information loss, as
in the spatial path, becomes unnecessary. In addition, we adopt
the output information from stages 2, 3, and 4 of the backbone
as input to the ISM module to maximize contextual information.
We omit the information from the first stage because it has a low
level of abstraction and can be effectively retained by the spatial
path.

Bridge: The concept of a bridge, as defined in previous
works [42], is a module that facilitates the connection between
the last layer of the encoder and the first layer of the decoder.
Its purpose is to enhance information synthesis and improve
segmentation capabilities. In our model, we employ a simple
bridge architecture consisting of just two convolutional layers
with distinct receptive fields, applied to the same feature maps.
To safeguard against any information loss, the output of the
bridge module undergoes a concatenation layer. A detailed
illustration of the bridge module can be referred to the following
equation:

Bout =
〈C1×11,1 (X3) ,

δA3×3
1,4 (X3)

〉
(4)

where Bout denotes the output feature map of bridge and δA3×3
1,4

is sequential operation similar to A3×3
1,4 but using ReLU activa-

tion instead.

C. Network Architecture

To extract contextual information from RSIs, we construct
a context path using a truncated ResNet50 backbone, an ISM
module, and a bridge. By integrating this context path with a
spatial path that leverages the coarse information of the input
image as Sin1 and the fine features extracted at the stage 4 as
Sin2, we introduce a novel semantic segmentation model named
HBSeNet. This model stands out as a high-performing solution
for remote sensing object recognition. A detailed depiction of
the entire architecture is provided in Fig. 3, where the spatial
path has been abbreviated. The amalgamation of spatial and
contextual information occurs through an additional layer, and a
concluding convolution layer is employed to generate the output
with the specified number of categories.
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Fig. 3. Our proposed comprehensive model, information will be synthesized
based on a layer combining outputs obtained from both the spatial path and
the context path. Subsequently, it will be passed through a convolutional layer
to produce the satellite image segmentation mask. The gray zone depicts the
context path with truncated ResNet50 backbone, modules ISM, and bridge.

Loss function: In this article, we adopt a loss function to
supervise the output of the HBSeNet model. Specifically, during
the training process, we utilize the cross-entropy loss function
to assess the discrepancy between the predicted results of the
proposed model and the actual ground truth, enabling the update
of the learning weights to construct the model. The mathematical
representation of the cross-entropy loss function can be referred
to the following equation:

L = − 1

Np

Np∑

i=1

Nc∑

c=1

yi,c log(pi,c) (5)

where L denotes the cross-entropy loss, Np denotes the number
of pixels needed to classify in a minibatch, Nc is the number of
categories, yi,c is a binary indicator, with a value of 1 if the class
label c is the correct classification for the observed pixel i and 0
otherwise, and pi,c is the predicted probability observed pixel i
is of class c.

IV. EXPERIMENTAL RESULTS

We conduct our evaluation sequentially on common and
widely used datasets, such as UAVid [43], ISPRS Vaihingen [44],
and ISPRS Potsdam [45]. First, we provide a brief introduction
to the datasets and a detailed description of our implementation.
Then, we investigate the ablation studies, where we succes-
sively remove the improvement components from the model
and compare the impact of each component on the model’s
performance. The ablation study is implemented and evaluated
on the UAVid dataset. Finally, we present a comparison in terms
of both accuracy and processing speed between HBSeNet and
other state-of-the-art models on the UAVid, ISPRS Vaihingen,
and ISPRS Potsdam datasets to provide an overall evaluation of
our proposed model.

A. Datasets

UAVid dataset:1 The UAVid dataset is a valuable contribution
to the field of remote sensing, specializing in semantic segmenta-
tion of urban scenes captured by unmanned aerial vehicles. This
study focuses on the UAVid dataset’s image component, which
comprises 42 sequences distributed across a training set with 20
sequences, a validation set with 7 sequences, and a test set with
15 sequences. Each sequence consists of a series of consecutive
images and their corresponding pixel-perfect semantic segmen-
tation labels (segmentation masks), originally captured in 4 K
resolution and downscaled to 540× 960 pixels. Notably, the
dataset encompasses eight distinct object categories: building,
road, static car, tree, low vegetation, human, moving car, and
background clutter.

ISPRS Vaihingen dataset:2 The ISPRS Vaihingen dataset is a
well-known benchmark for remote sensing applications, par-
ticularly in semantic segmentation and classification. It con-
sists of high-resolution aerial images of Vaihingen, Germany,
captured in RGB channels. Our study focuses specifically on
the image segmentation aspect of the dataset. Comprising 33
individual image patches of varying sizes, each patch incorpo-
rates a sequence of images along with corresponding semantic
segmentation labels. Originally provided with an average reso-
lution of approximately 2500× 2000 pixels, these images and
masks are cropped to 512× 512 pixels. The dataset covers land
cover categories with five object classes: impervious surfaces,
buildings, low vegetation, trees, and cars besides background
clutters. We solely utilize the IRRG bands in our experiment,
excluding the digital surface model information. For this work,
we use 11 patches of images (1, 3, 5, 7, 13, 17, 21, 23, 26, 32, 37)
for training, and five remaining patches (11, 15, 28, 30, 40) for
testing as following the previous works [46], [47].

ISPRS Potsdam dataset:3 Similarly to the ISPRS Vaihingen
dataset, the ISPRS Potsdam dataset is a valuable resource for
remote sensing research. In our work, this dataset is utilized
for its image segmentation. The original high resolution with
6000× 6000, is cropped to 512× 512. The dataset encompasses
various urban object categories, including impervious surface,
building, low vegetation, tree, car, and background clutter.
Following the settings of most research [48], [49], we use 17 tiles
for training, 7 tiles for validating, and the remaining 14 tiles for
testing. Specifically, all 38 tiles are divided into training set (17
images, IDs: 2_10, 3_10, 3_11, 3_12, 4_11, 4_12, 5_10, 5_12,
6_8, 6_9, 6_10, 6_11, 6_12, 7_7, 7_9, 7_11, 7_12); validation
set (7 images, IDs: 2_11, 2_12, 4_10, 5_11, 6_7, 7_8, 7_10); and
test set (the remaining images). We only utilize the RGB bands
of TOP mentioned above without ground reference data lacking
eroded boundaries, and the evaluation results are, therefore, not
as high as reported in some examples in the literature.

1[Online]. Available: https://uavid.nl/
2 [Online]. Available: https://www.isprs.org/education/benchmarks/Urban

SemLab/2d-sem-label-vaihingen.aspx
3[Online]. Available: https://www.isprs.org/education/benchmarks/

UrbanSemLab/2d-sem-label-potsdam.aspx

https://uavid.nl/
https://www.isprs.org/education/benchmarks/Urbanpenalty -@M SemLab/2d-sem-label-vaihingen.aspx
https://www.isprs.org/education/benchmarks/Urbanpenalty -@M SemLab/2d-sem-label-vaihingen.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx
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B. Implementation Details

Training configurations: For training configuration, we em-
ploy weight initialization according to the Glorot standard [50].
Specifically, the convolutional layers in the backbone utilize
weights pretrained on the ImageNet dataset [51]. In the training
phase, all weights (a.k.a., trainable parameters) are iteratively
updated using the stochastic gradient descent with momentum
with the momentum parameter β = 0.9. The initial learning
rate is set to 2.5−2 and decayed by a factor of 0.3 after every
10 epochs. In addition, L2 regularization with a coefficient of
0.0001 is applied to mitigate model overfitting. Notably, all
network models are trained for 60 epochs to ensure model
convergence, in which the mini-batch size is 8 for the UAVid
dataset and 12 for the remaining datasets. Both the training and
the evaluation phase are implemented in MATLAB R2023b and
are trained on one RTX2080 GPU.

Data augmentation: As mentioned earlier, images are first
resized to a predetermined resolution, 540× 960 for the UAViD
dataset and 512× 512 for the ISPRS Vaihingen and Postdam
datasets, to ensure compatibility with the neural network ar-
chitecture. This preprocessing allows for simplifying feature
extraction and reducing computational complexity. For data
augmentation, we apply random left-right reflection to randomly
flip the image horizontally along its vertical axis with a range
[−10, 10] pixel. This augmentation allows the model to learn
more diversified features that are independent of the object’s
orientation in the image [48], [49]. In real-world scenarios,
objects can be viewed from various angles, and flipping helps
the model generalize better to unseen directions.

Evaluation metrics: The segmentation results of all models
are evaluated using metrics that are common and widely adopted
in the field of semantic segmentation [52]. Specifically, we em-
ploy global accuracy, mean intersection-over-union (IoU), and
mean boundary-F1-score (BFScore) to assess model accuracy.
For comparisons of processing speed, we recommend using
frames per second (fps). All results are the average of each metric
value over 3 executions. Due to the unavailability of segmenta-
tion masks in the testing set, our complete segmentation results
are based on the metric values obtained during the evaluation
process on the validation set.

C. Ablation Study

In this section, we conduct a comprehensive ablation study to
investigate the impact of each component within our proposed
HBSeNet architecture on both accuracy and processing speed.
The ablation is performed in a step-by-step manner, with evalu-
ations based on the UAVid dataset.

Ablation for bridge: As mentioned in Section II, we design
a simple bridge module to connect the downsampling (as en-
coder) and the upsampling (as decoder) stages through two
convolutional layers and a concatenation layer. This module aids
in better apprehending abstract information, thereby enhancing
the model’s learning capabilities and increasing segmentation
accuracy compared with the model with a sole context path,
however, the detailed improvements presented in Table II are
not impressive. The results of the model constructed by context

TABLE II
DETAILED PERFORMANCE COMPARISON OF COMPONENTS IN OUR

PROPOSED HBSENET

path with only bridge module, denoted as CP (B), in the global
accuracy, mean intersection over union (mean IoU), and mean
boundary-F1-score (mean BFScore) of 82.97%, 54.36%, and
69.50%, respectively. Compared with the naïve architecture
involving only a clean context path (i.e., without improvements
of ISM and bridge modules), the bridge presents some slight
improvements in global accuracy, mean IoU, and mean BFScore
with less than 0.7%. The effectiveness of the bridge module is
also proven through its higher performance when combined with
the CP (ISM) model, showing that our improvement strategy
is truly effective and highly flexible. Meanwhile, the decrease
in the fps metric indicates that accuracy enhancement through
high-level abstraction features analysis comes with slowing
down processing speed.

Ablation for ISM: With ISM, the crucial encoding information
of an image is preserved and emphasized at multiple deeper
analysis stages. This abundance of necessary information refines
the up-sampling stage, thus resulting in an accuracy increase
within the output segmentation map. Notably, ISM demonstrates
a considerable improvement over using solely the context path,
as it increases accuracy metrics by approximately 2.21%, aver-
age IoU by 9.09%, and average BFScore by 3.35% (as shown
in Table II). This substantial enhancement underscores the im-
portance of enriching multiscale relevant information acquired
during downsampling and subsequently conveyed to the upsam-
pling process. However, it is worth noting that the computation
complexity of the model increases with the significant increase
in a number of learnable parameters [approximately 2.4 millions
(M)] and the processing speed being slower than the non-ISM
model (a.k.a., only the context path in consideration). Further-
more, ISM remarkably delivers a significant improvement in
model accuracy even when the contextual path includes an addi-
tional bridge module. In this scenario, the global accuracy, mean
IoU, and mean BFScore exhibit increases of 2.43%, 9.18%,
and 2.74%, respectively. These results convincingly demonstrate
the adaptability and compatibility of ISM within our proposed
models.

Ablation for spatial path: The spatial path bolsters the model’s
ability to capture spatial information, with the SAC architecture
augmenting class recognition capabilities. This significantly en-
hances accuracy compared to versions without the spatial path.
By effectively extracting information from preceding convolu-
tional layers using stacked atrous convolutions, we minimize the
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Fig. 4. Visualization results (as segmentation masks) for ablation study. Here are 3 examples of the results of the output before and after adding our proposal
methods. The pink rectangles are used to emphasize the regions that show clear improvement in segmentation accuracy. GT: Ground truth; CP: Context path; SP:
Spatial path; ISM: Information synthesis module; B: Bridge.

number of required weights. To prevent information loss when
the number of learning weights in the spatial path is notably
small (approximately 400 K), we strategically employ the leaky
ReLU activation function [38]. Incorporating both the completed
context path and spatial path yields the highest segmentation
accuracy across all metrics: 85.11% global accuracy, 60.04%
mean IoU, and 71.73% mean BFScore. However, this comes
with increased complexity (approximately 17.5 M parameters)
and a decrease in model speed to approximately 11.55 fps when
evaluated on the UAVid dataset [43] at a resolution of 540× 960.
A comprehensive presentation of the evaluation results with both
paths is provided in Table II.

In summary, the ablation study provides a comprehensive
overview of the importance and effects of each module on the
model’s performance. Indeed, all modules proposed in HBSeNet
contribute to improved accuracy, with ISM and the spatial path
having the most significant impact. However, this enhanced
accuracy comes with increased model complexity and higher
execution time, as reflected in the number of parameters and
fps. To facilitate a visual evaluation of the segmentation output
accuracy, we present the segmentation results as image over-
lays in Fig. 4, in which the results are produced from various
configurations of model architecture, including the naive con-
text path, the full context path with ISM and bridge, and the
complete HBSeNet with spatial path and full context path. Our
analysis highlights the superior segmentation accuracy of the
complete HBSeNet, further underscoring its robust recognition
capabilities. This is most evident in the pink rectangle of visual-
ization, where the complete version demonstrably outperforms
its incomplete counterparts. In the first case, while confusion
persists in classifying the former incomplete versions, our com-
prehensive model exhibits a superior classification probability,
this advantage is exemplified by the reduction of the number of
misclassified pixels observed in the lower right corner region.
The second and third cases reveal that the complete model
significantly enhances boundary recognition for moving car
objects across various scenes. This improvement is particularly

evident in its superior discrimination of singular moving cars on
the road, where the incomplete version fails to establish clear
distinctions.

D. Comparison Results

The HBSeNet’s performance is obtained comprehensively
through our comprehensive evaluation, where we not only dis-
sect its components but also compare it to cutting-edge image
segmentation models in terms of accuracy and complexity on the
UAVid, ISPRS Vaihingen, and ISPRS Potsdam datasets, using
standard quantitative metrics, such as global accuracy, mean
IoU, mean BFScore, and model size (a.k.a., the total number
of trainable parameters). In addition, intensive discussions are
provided regarding experimental results for better insights and
analysis of our work.

Overall performance analysis: In our implementation, both
compared models experience training convergence to ensure
the reliability of our method. In addition, to prove the model
flexibility across different datasets, we demonstrate accuracy
based on global accuracy, mean IoU, and mean BFScore mea-
surements on UAVid, ISPRS Vaihingen, and ISPRS Potsdam
datasets with various image sizes. Based on the results presented
in Table III, our HBSeNet model achieves superior segmentation
results with higher accuracy compared to other existing models.
This analysis delves into these results, highlighting HBSeNet’s
effectiveness in segmenting objects within aerial and satellite
imagery.

First, on the UAVid dataset results, HBSeNet emerges as
the leader in all three key performance metrics: global accu-
racy of 85.11%, mean IoU of 60.04%, and mean BFScore
of 71.73%. HBSeNet outperforms all the compared models,
including DeepLabV3+ (with 84.65% global accuracy, 59.26%
mean IoU, and 69.11% mean BFScore), ShelfNet (with 84.25%
global accuracy, 57.61% mean IoU, and 70.92% mean BFScore),
and others. This achievement underscores HBSeNet’s capability
in accurately segmenting diverse objects, such as buildings, road,
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TABLE III
METHOD COMPARISON BETWEEN THE PROPOSED MODEL AND OTHER

STATE-OF-THE-ART MODELS IN TERMS OF SEGMENTATION PERFORMANCE AND

MODEL SIZE

vehicles, and human within UAV imagery, while also excelling
in capturing accurate object boundaries. It is important to note
that most methods in the UAVid dataset comparison and HB-
SeNet itself utilize the ResNet-50 (R50) backbone. This suggests
that R50 might be well-suited for semantic segmentation tasks
involving aerial imagery.

The second experiment is on ISPRS Vaihingen and Potsdam
datasets, in this situation, HBSeNet also maintains the leading
performance. The trends observed on the UAVid dataset extend
to the ISPRS Vaihingen and Potsdam datasets as well. HBSeNet
consistently achieves the highest global accuracy (in particular,
91.30% for Vaihingen and 92.04% for Potsdam), mean IoU
(82.35% for Vaihingen and 83.57% for Potsdam), and mean
BFScore (89.99% for Vaihingen and 90.23% for Potsdam).
This further solidifies HBSeNet’s position as a leading semantic
segmentation method across diverse aerial and satellite imagery
scenarios. Furthermore, for the ISPRS Vaihingen and Potsdam
datasets, the table showcases a wider variety of backbones,
including ResNet-101 (R101), Swin-B, and others. HBSeNet

maintains its leading position even when employing R101,
demonstrating its effectiveness with different backbones.

Detailed accuracy analysis: To demonstrate more detail about
our proposed model capacity in individual class recognition, we
provide comprehensive results about the comparison of mean
IoU between our method against other state-of-the-art methods.

UAVid dataset: In Table IV, a comprehensive assessment of
accuracy across distinct categories is facilitated through the
mean IoU benchmark. Overall, HBSeNet emerges as the leader
in mean IoU across all classes on the UAVid dataset, it is true that
individual class mean IoU reveals that HBSeNet excels in seg-
menting several crucial classes. It also presents the highest mean
IoU for background clutter with 57.32%, road with 74.27%,
trees with 75.68%, and moving cars with 63.96%, and static
cars with 46.56%. The only exception is low vegetation when
our HBSeNet performance is slightly lower than DeepLabV3+.
Notably, HBSeNet archives the highest mean IoU on buildings
with 89.67%, followed by DeepLabV3+ and ShelfNet, and the
remaining methods, which show a significantly lower than our
results (around 81.11%–87.52%). This achievement highlights
HBSeNet’s capability in accurately segmenting diverse objects
within the UAVid dataset’s aerial imagery. On the other hand,
our proposed model yields only 5.69% mean IoU for humans
class. Although it is the best performance compared with other
state-of-the-art methods, our model still does not have signif-
icant improvements in segmenting small objects, which forms
a critical weakness of HBSeNet when facing small objects that
require high-precision recognition.

ISPRS Vaihingen: Table V compares the performance of
various semantic segmentation methods on the ISPRS Vaihin-
gen dataset. The proposed method, HBSeNet, reports as the
leader in mean IoU of Impervious Surfaces with 87.76% on the
Vaihingen dataset. This outperforms all the compared methods,
including DeepLabV3+ with 84.82%, DANet 86.32%, GFFNet
87.38%, RSSFormer 86.74%, STDSNet 86.09%, SwinCNN
85.45%, and ST-UNet 85.24%. This achievement demonstrates
HBSeNet’s capability in precisely segmenting large objects
within the Vaihingen dataset. Notably, HBSeNet exhibits com-
petitive results in other individual classes as well. For example,
HBSeNet reaches the highest mean IoU for different classes,
such as low vegetation with 73.23%, trees with 81.18%, and
cars with 77.62%, to demonstrate its proficiency in segment-
ing these crucial elements. For the buildings class, HBSeNet
obtains the second-best mean IoU with 91.98%, slightly lower
than STDSNet. The marginal difference for buildings suggests
comparable performance, while HBSeNet remains highly com-
petitive for it. Overall, HBSeNet delivers an exceptional per-
formance across all Vaihingen dataset classes. It is important
to acknowledge that STDSNet achieves a slightly higher mean
IoU for Buildings. This might indicate a specialization in build-
ing segmentation for STDSNet and the weakness of HBSeNet
when having a simple decoder with continuously upsampling
layers, making it difficult for our proposed model to recognize
square objects, such as buildings. However, HBSeNet maintains
strong building segmentation while achieving the best overall
mean IoU, signifying a more balanced performance across all
classes.
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TABLE IV
CLASS-WISE PERFORMANCE COMPARISON BETWEEN THE PROPOSED MODEL AND OTHER STATE-OF-THE-ART MODELS ON THE UAVID

TABLE V
CLASS-WISE PERFORMANCE COMPARISON BETWEEN THE PROPOSED MODEL AND OTHER STATE-OF-THE-ART MODELS ON THE ISPRS VAIHINGEN

TABLE VI
CLASS-WISE PERFORMANCE COMPARISON BETWEEN THE PROPOSED MODEL AND OTHER STATE-OF-THE-ART MODELS ON THE ISPRS POTSDAM

ISPRS Potsdam: Table VI compares the performance of var-
ious semantic segmentation methods on the ISPRS Potsdam
dataset via individual mean IoU class metrics. Similar to the
Vaihingen dataset analysis, we can gain valuable insights into
the effectiveness of HBSeNet by dissecting these results. The
proposed model, HBSeNet, achieves the highest mean IoU of
85.51% on impervious surfaces among all the compared meth-
ods. This suggests that HBSeNet is able to effectively segment
surfaces in the Potsdam dataset. It outperforms STDSNet, as
the second-best mean IoU model, by a small margin. Moreover,
HBSeNet also achieves the best mean IoU for the other three
classes, including trees with 80.98%, cars with 85.22%, and low
vegetation 74.25%. However, for the buildings class, HBSeNet
performs competitively with other methods, just achieving the
second-best result with 91.92% mean IoU. Overall, the com-
parison results show that HBSeNet is a competitive semantic
segmentation method that achieves the state-of-the-art perfor-
mance on the ISPRS Potsdam dataset. It achieves the highest

overall mean IoU and the best mean IoU for four out of the
five classes. These results suggest that HBSeNet is a promising
method for semantic segmentation tasks in aerial imagery.

Visualization Analysis: Having established HBSeNet’s strong
performance through quantitative metrics, we delve into a visual
exploration of its segmentation capabilities. We compare the
segmentation outputs of HBSeNet with state-of-the-art models
that share similar complexities, as reflected in the previous com-
plexity analysis. For the UAVid dataset, we compare HBSeNet
with BiSeNet and DeepLabV3+ as utilizing the ResNet-50
backbone. Similarly, for the remaining two datasets, we present
segmentation masks generated by ST-UNet and SwinCNN com-
pared with our ResNet-101-based HBSeNet. These comparisons
are visually depicted in Fig. 5. Each dataset showcases two
images: the ground truth and the segmentation masks pro-
duced by the compared models. While existing methods like
BiSeNet and DeepLabV3+ achieve object segmentation, they
face challenges in accurately delineating boundaries, especially
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Fig. 5. Visualization results (as segmentation masks) of HBSeNet and other state-of-the-art models based on different datasets. (a) UAVid. (b) ISPRS Vaihingen.
(c) ISPRS Potsdam. The pink rectangles are used to emphasize the regions that show a clear improvement in segmentation accuracy. GT: ground truth.

for closely positioned objects. BiSeNet prioritizes speed over
accuracy, leading to less detailed segmentation masks on the
UAVid dataset, often resulting in misclassifications of small
regions. DeepLabV3+ exhibits better segmentation on UAVid
but struggles to maintain object coherence and capture finer
boundary details in other datasets. Even cutting-edge models

like SwinCNN and ST-UNet, which combine convolutional
layers with transformer self-attention, encounter difficulties with
fine-grained boundaries between high-resolution objects. This
is evident in the pink rectangular areas in Fig. 5, where these
models exhibit lower accuracy. Interestingly, HBSeNet not only
outperforms the compared models in segmentation accuracy but
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also demonstrates superior boundary delineation, particularly in
the regions highlighted by pink rectangles. However, there is still
room for improvement. In some specific cases with small-sized
object classes, further refinement is needed to achieve even
sharper segmentation mask borders.

Complexity analysis: Another crucial aspect is the number of
parameters. On the one hand, for the UAVid dataset, HBSeNet
achieves this superior efficiency with a relatively small model
size with approximately 17.5 M trainable parameters. This is
significantly smaller if compared to other deep models like
BiSeNet with 49.0 M and DeepLabV3+ with 43.9 M parameters.
This translates to opportunities for faster processing speed,
making HBSeNet more suitable for real-time applications in
domains like autonomous vehicles or drone-based monitoring
where fast and accurate image understanding is essential. On
the other hand, for the ISPRS Vaihingen dataset, compared to
powerful models like STDSNet and SwinCNN having 130.13 M
and 235.77 M parameters, respectively, HBSeNet with 36.5 M
parameters can maintain a superior efficiency with around 3
times smaller of model size while achieving exceptional accu-
racy. Similar to Vaihingen, HBSeNet outperforms other methods
in all metrics while presenting a smaller model size if compared
to STDSNet and SwinCNN having 130.13 M and 235.77 M
parameters. This reinforces HBSeNet’s capability to achieve
high accuracy with a cost-efficient architecture. A key factor
contributing to HBSeNet’s remarkable ability to achieve high
accuracy with a small number of weights lies in our optimiza-
tion of the ResNet backbone. Traditional ResNet architectures
often include a final stage with several convolutional layers
and a global average pooling layer. However, through careful
analysis, we identified that this final stage, while contributing
to the overall depth of the network, might not be strictly neces-
sary for effective semantic segmentation on the remote sensing
datasets.

Insightful comparative analysis: Compared with the pro-
posed HBSeNet model, existing works have several pros and
cons. DeepLabV3-AFS [13] and PSPNet-AFS [13] utilize AFS
mechanisms to enhance feature selection at specific layers.
However, they often fail to capture long-range dependencies
and global context, which are crucial for accurate semantic
segmentation in RSIs. The CG-Swin model [53], which employs
Swin transformers, is good at capturing local features but strug-
gles to integrate global contextual information as effectively as
models like HBSeNet that incorporate dedicated context paths.
GFFNet [55], focusing on global feature fusion, may lead to
the loss of local details necessary for fine-grained segmentation
tasks and can be computationally intensive. In [56], RSSFormer
emphasizes foreground saliency enhancement, potentially re-
sulting in suboptimal performance in accurately segmenting
less prominent but equally important background features. The
dual-stream Swin transformer in STDSNet [32] requires high
resources, and managing dual streams effectively is challenging,
possibly leading to comprehensive performance if not properly
tuned. Based on the combination of transformers and CNNs,
SwinCNN [14] significantly increases model complexity and
computational requirements, making it less efficient compared
to more streamlined architectures like HBSeNet. In addition,

the hybrid nature of SwinCNN poses challenges in balancing
different types of layers and their respective hyperparameters.
Although Swin transformers in ST-UNet [31] improve local fea-
ture extraction, they may not effectively capture broader contex-
tual information without additional mechanisms, and integrating
Swin transformers into the UNet architecture considerably in-
creases computational cost and memory, thus limiting its scala-
bility. In contrast, the densely connected sequential architecture
of HBSeNet ensures efficient information flow between layers,
enhancing feature reuse and improving segmentation accuracy.
By integrating a spatial path with atrous convolutions and a well-
organized context path, HBSeNet achieves a balance between
local detail preservation and global context understanding. The
streamlined architecture of HBSeNet maximizes information
extraction while maintaining computational efficiency, making it
suitable for real-time applications. Furthermore, the exploitation
of effective auxiliary modules strengthens its contextual learning
capability, addressing the shortcomings of existing models that
may not adequately capture context.

V. CONCLUSION

In this work, we presented a novel semantic segmentation
model with outstanding performance in the field of remote
sensing. To achieve this, we proposed several enhancements
to the model: constructing a bilateral network by combining
a context path and a spatial path to capture both contextual
and spatial features of the images simultaneously; introduc-
ing performance-improving modules, such as an SAC module
for the spatial path, an ISM, and a bridge for the context
path to minimize information loss during propagation within
the network as well as optimize the number of model pa-
rameters. To demonstrate the robustness and reliability of the
model, we conducted extensive simulation evaluations using
different widely adopted datasets, including UAVid, ISPRS
Vaihingen, and ISPRS Potsdam, with varying image resolu-
tions and hardware deployments. The results reveal that our
model achieved a moderate segmentation speed, but apprecia-
bly excels in accuracy when compared to other state-of-the-art
models.

However, it is important to acknowledge some drawbacks of
HBSeNet. The accuracy of HBSeNet for small objects remains
lower than desired, potentially due to limitations in capturing
sufficient meaningful information of small objects besides the
receptive field may not be large enough to capture all relevant
features. In addition, while the auxiliary modules contribute
to performance, they introduce computational complexity, re-
sulting in slower training and processing speeds to be inap-
propriate for real-time applications. Future research directions
could explore techniques for small object segmentation (such
as multiscale attention mechanism and data augmentation) and
investigate methods (such as network pruning, knowledge dis-
tillation, and depthwise separable convolution) to optimize the
network architecture for faster processing while maintaining
accuracy.
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