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A Graph–Transformer Method for Landslide
Susceptibility Mapping

Qing Zhang , Yi He , Member, IEEE, Yalei Zhang, Jiangang Lu , Lifeng Zhang , Tianbao Huo ,
Jiapeng Tang , Yumin Fang , and Yunhao Zhang

Abstract—Landslide susceptibility mapping (LSM) is of great
significance for regional land resource planning and disaster pre-
vention and reduction. The machine learning (ML) method has
been widely used in the field of LSM. However, the existing LSM
model fails to consider the correlation between landslide and
disaster-prone environment (DPE) and lacks global information,
resulting in a high false alarm rate of LSM. Therefore, we propose
an LSM method with graph–transformer that considers the DPE
characteristics and global information. First, correlation analysis
and importance analysis are employed on nine landslide contribut-
ing factors, and the landslide dataset is generated by combining
remote sensing image interpretation and field verification. Sec-
ond, a graph constrained by environment similarity relationship
is constructed to realize the correlation between landslide and
DPE. Then, the transformer module is introduced to construct a
graph–transformer model that considers the global information.
Finally, the LSM is generated and analyzed, and the accuracy of
the proposed model is compared and evaluated. The experimental
results show that the environment similarity relationship graph
effectively improves the accuracy of the models and weakens the
influence of environmental differences on the models. Compared
with graph convolutional network, graph sample and aggregate,
and graph attention network models, the area under the curve
(AUC) value of the proposed model is more than 2.05% higher
under the environment similarity relationship. In addition, the
AUC value of the proposed model is more than 8.8% higher than
that of traditional ML models. In conclusion, our proposed model
framework can get better evaluation results than most existing
methods, and its results can provide effective ways and key techni-
cal support for landslide disaster investigation and control.

Index Terms—Environment similarity relationship, graph,
landslide susceptibility mapping (LSM), transformer.
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I. INTRODUCTION

LANDSLIDE disasters often appear in people’s production
and life, their strong destructive power will not only change

the topography but also cause people’s lives and property losses
[1], [2]. Therefore, it is very important to evaluate the suscepti-
bility of landslides scientifically and prevent landslide disasters
in time. Landslide susceptibility mapping (LSM) refers to pre-
dicting the spatial distribution of the probability of landslide
occurrence according to the characteristics of topography and
geomorphology in the study area [3], [4], which is of great
significance to the prevention of landslide disasters and the
planning and siting of cities.

With the rapid development of artificial intelligence and Big
Data, scholars [5], [6], [7] in LSM fields have begun to use
machine learning (ML) methods to evaluate landslide suscepti-
bility, such as multilayer perceptron (MLP) [8], convolutional
neural network (CNN) [9], and gate recurrent unit (GRU) [10].
Compared with traditional landslide susceptibility assessment
methods, ML has a more powerful feature analysis ability, which
can further improve the reliability of LSM [11], [12], [13]. In
recent years, as an important branch of ML, deep learning (DL)
has inherited and developed the advantages of ML algorithms
[14]. For landslide disaster, its formation conditions are rela-
tively complex, and the amount of data involved is also relatively
large. Theoretically, DL can better extract the formation char-
acteristics of landslide disasters, efficiently and quickly process
various landslide-related data, and more accurately assess the
probability of landslides. For example, Zhao et al. [15] proposed
a local and global feature extraction network, which combines
the advantages of CNN and transformer models. Chen et al. [16]
proposed a new hybrid framework combining landslide con-
ditioning factors with swin transformer for landslide analysis.
However, although these DL methods can obtain reliable LSM
in simple small scenes, for complex environment scenes, there
are still limitations that cannot consider the correlation between
landslide and disaster-prone environment (DPE), and lack of
feature extraction ability, resulting in a high false alarm rate of
LSM.

The graph is generally represented as G = (V, E), where V is
the set of nodes in the graph, and E is the set of edges between
nodes [17], [18]. Each edge represents the relationship be-
tween nodes [19]. Considering the complexity between landslide
and DPE, compared with a single feature sequence or image,
the graph structure has a high degree of data abstraction and
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expression ability, and can more effectively express the complex
nonlinear relationship between landslide and DPE. Graph neural
network (GNN) is a kind of models that specialize in processing
graphs and is widely used in social networks, recommendation
systems, and knowledge graphs [20], [21], [22]. Nowadays, the
GNN model has been applied in the field of LSM. For example,
Wang et al. [23] proposed an LSM method based on graph
convolutional networks (GCNs) and slope units. Zeng et al.
[24] proposed a method based on graph sample and aggregate
(GraphSAGE) and triangulated irregular network units to evalu-
ate the susceptibility of landslides in Fengjie and Fulin counties,
Chongqing. Yang et al. [25] combined graph attention network
(GAT) and extreme gradient boosting models to propose a hybrid
model for LSM. However, the graphs used in these models
are based on spatial topological relationships. Although the
graph based on spatial topological relationships can correlate
the information of nodes around the sample, at a large scale,
due to the heterogeneity of the geographical environment, the
features of many neighboring nodes are irrelevant, resulting in
the connection of many invalid edges. In addition, although these
GNN models used above have achieved good results in LSM,
they only consider the information of the neighbor nodes when
the central node aggregates the neighborhood features, but do
not consider the global information. As a result, the expression
ability of the model is limited, and the accurate generalization
of the whole graph information cannot be realized.

The prior knowledge of landslides shows similar geograph-
ical and geological environments will produce landslides with
similar characteristics regardless of the distance [24], [26]. The
characteristics of landslides can influence each other among sim-
ilar subenvironment areas. In this interrelated and influencing
environment, the clustering and correlation of similar landslide
characteristics are formed, which can better help to summarize
landslide characteristics. Therefore, the correlation between
subenvironmental regions with similar geological conditions
should be considered in LSM. Moreover, the transformer is a
neural network model based on the self-attention mechanism
that is capable of globally modeling each element in a sequence
and making connections between the elements [15], [27], [28].
The self-attention mechanism allows the transformer to process
each input sequence by focusing its attention on relevant parts at
different locations in the sequence, effectively capturing global
information [16].

In this article, we propose a graph–transformer model specifi-
cally designed for LSM. The graph–transformer can make use of
the advantages of the graph in DPE correlation and transformer
in extracting global information, which enables it to extract
landslide characteristics more comprehensively and improve the
reliability of LSM. First, landslide contributing factors (LCFs)
and historical landslide database are constructed. Second, based
on the environment similarity relationship, the directed graph
of environment consistency constraint is constructed. Then, the
transformer module is introduced to build the graph–transformer
model. Finally, the performance and results of the model are
evaluated and analyzed.

Two major research contributions come from our research.
1) We construct a directed graph that considers the correlation

between landslide and DPE. 2) We construct a graph–
transformer model that considers global information.

II. MATERIALS

A. Experimental Scene

The Bailong River Basin (BRB) is located between 103°–
105.5°E and 32.6°–34.4°N (see Fig. 1), which is one of the four
regions with high incidence of geological disasters in China.
The BRB is located in the northeastern part of the Qinghai-Tibet
Plateau, which is the edge of the eastern collision deformation
zone between the Indian plate and the Eurasian plate [29], [30].
Coupled with the influence of the north-south tectonic belt,
the geological structure of the area is very complicated, and
there are many high mountains and valleys. BRB is also located
in the middle and north section of the North-South seismic
belt in China, and many seismic belts pass through the area,
with complex fault structures, active neotectonic movement,
and frequent earthquakes [31]. In the basin, soft and hard rock
layers alternate with each other, and weak interlayers develop.
Under the action of internal and external forces such as structural
failure and weathering, the rocks are extremely broken and their
stability is extremely poor, which provides rich material basis
and conditions for the development of landslides. The annual
average rainfall in BRB is 587.2 mm, and the annual rainfall
distribution is uneven. The total rainfall from May to September
accounts for 75%–85% of the annual rainfall, mostly in the
form of continuous rainfall or heavy rain, which provides the
induced conditions for the development of geological disasters.
In addition, due to the high population density and the short-
age of residential land, human activities such as slope excava-
tion, slope leveling, and landfilling are frequent, which are not
conducive to slope stability. And because most of the traffic lines
are built along the river valley, human engineering activities
are particularly intense. In recent years, due to the combination
of extreme weather (8·12 flash flood disaster in Longnan),
earthquakes (5·12 Wenchuan earthquake, 8·8 Jiuzhaigou earth-
quake) [32], and human engineering activities, the frequency
of landslides in this area has increased significantly, which
has seriously threatened and restricted the safety of people’s
lives and property and the economic development of cities and
towns.

B. Landslide Inventory

Using multiperiod high-resolution remote sensing images, we
established a landslide database in the study area through manual
visual interpretation and detailed field investigation, combined
with unmanned aerial vehicle (UAV) images (see Fig. 2). We
identified 625 landslides, and the largest area of which was
4.4 km2. The landslide distribution is shown in Fig. 1.

C. LCFs of BRB

The development of landslides is affected by many envi-
ronmental factors such as topography, geology, hydrology, and
human activities [33], [34]. Based on the geographical condition
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Fig. 1. Location of BRB.

of BRB and the collected database, we selected nine LCFs: alti-
tude, slope, aspect, lithology, distance from faults, distance from
rivers, distance from roads, normalized difference vegetation
index (NDVI), and average annual rainfall (see Fig. 3).

The altitude, slope, and aspect are generated by using the
digital elevation model (DEM) of BRB. The DEM is from the
Geospatial Data Cloud Platform with a resolution of 30 m.1

Lithology and fault data in the study area were extracted from
1:100 000 scale geological maps of the China Geological Sur-
vey.2 The river and road network data were provided by Open-
StreetMap,3 and the Euclidean distance function in ArcGIS
software was used to generate the river network distance dis-
tribution map and road distance distribution map of BRB. Using
the Moderate-Resolution Imaging Spectroradiometer satellite
data,4 the NDVI map is generated on the environment for
visualizing images remote sensing image processing platform.
The rainfall data were obtained from the National Earth System

1[Online]. Available at: https://www.gscloud.cn/.
2[Online]. Available at: https://www.cgs.gov.cn/.
3[Online]. Available at: https://www.openstreetmap.org/.
4[Online]. Available at: https://ladsweb.modaps.eosdis.nasa.gov/.

Science Data Center,5 and the rainfall factor was obtained by
averaging the annual cumulative rainfall from 2019 to 2023.

The spatial resolution of the extracted data is different. On the
premise of ensuring that the data resolution meets the accuracy
of the result and is convenient for subsequent data process-
ing, all the LCFs are uniformly resampling to a resolution of
30 m × 30 m.

III. METHODS

First, we select nine geographical environment factors as
LCFs and carry out correlation analysis and importance analysis
of LCFs. Next, we combined remote sensing image interpreta-
tion and field verification to generate landslide datasets. Second,
the graph dataset is constructed based on spatial topological
relationships and environment similarity relationships. Then, a
graph–transformer model considering the characteristics of the
DPE and global information is constructed and compared with
GCN, GraphSAGE, GAT, MLP, CNN, and GRU models. Finally,
the generated LSM is analyzed statistically, and the accuracy of

5[Online]. Available at: https://www.geodata.cn/.

https://www.gscloud.cn/
https://www.cgs.gov.cn/
https://www.openstreetmap.org/
https://ladsweb.modaps.eosdis.nasa.gov/
https://www.geodata.cn/
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Fig. 2. Interpretation and inventory of landslide along the BRB: (a)–(c) Landslide identification via remote sensing images. (d)–(f) Field verification.
(g)–(i) UAV images. (j)–(l) Compilation of landslide inventory.

the model is compared and evaluated. The detailed flow chart is
shown in Fig. 4.

A. Evaluation of Contributing Factors

1) Colleration Analysis: To avoid the problem of model
training error and low accuracy of LSM due to collinearity
between LCFs, correlation analysis of each factor is needed to
verify its independence. In this article, the Pearson correlation
coefficient is used to measure the degree of correlation between
LCFs. The formula is as follows:

r =

∑n
i=1 (xi − x)(yi − y)√∑n

i=1 (xi − x)2
√∑n

i=1 (yi − y)2
(1)

xi and yi are the ith observation of the two variables, x and y
are the mean values of the two variables, and n is the number of
samples.

2) Relief-F: To prevent the model from learning redundant
feature information, it is necessary to further evaluate the impor-
tance of LCFs. The relief-F method is a feature selection algo-
rithm, which can assign different weights to features according
to the relevance of each feature and category [35]. Features with
weights smaller than a certain threshold value will be removed.
The formula is as follows:

Wi = Wi −
k∑

j=1

diff(Ai, R,Hi)

mk
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Fig. 3. Landslide contributing factors. (a) Altitude. (b) Slope. (c) Aspect. (d) Lithology. (e) Distance from faults. (f) Distance from roads. (g) Rainfall. (h) Distance
from rivers. (i) NDVI.

+
∑

C �=Class(R)

{
p(C)

1− p[Class(R)]

k∑
j=1

diff[Ai, R,Mj(C)

mk

}
(2)

where C denotes the sample label, p(C) is the probability of class
C, Class(R) represents the label of sample R, Mj (C) is the jth
sample of class C, and diff (Ai, R, Hi) and diff (Ai, R, Mi(C)) are
the distance functions. Finally, we obtain the factor importance
after repeating this process m times.

B. Base Models

GNN is a DL method based on graph structure, which is
widely used in molecular chemistry, recommendation systems,
and other fields. As an extension of neural networks, GNN
can handle data formats represented by graph structures. In the
graph, each node is defined by its characteristics as well as its

neighbors and relations, and the network computes the represen-
tation vector of the target node by recursively aggregating and
transforming the representation vector of the neighboring nodes.
Nowadays, the mainstream GNNs include GCN, GraphSAGE,
and GAT.

1) Graph Convolutional Network: GCN is a direct inference
learning framework (see Fig. 5), its core idea is to use the
whole adjacency matrix and convolution operation of the graph
to fuse the information of the neighbor nodes, to realize the
representation learning of the graph structure [36]. For each
node, GCN aggregates the information of its neighbor nodes by
weighted weights. The weight calculation usually considers the
degree of the neighbor node to ensure the reasonable distribution
of the contribution to the neighbor node

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
(3)
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Fig. 4. Overall workflow of our approach.

where H(l) indicates the feature matrix in the lth layer, H(0) = X;
D̃ = D + I; Ã = A+I, and I is the identity matrix; W(l) is the
weight matrix of the filter in the lth layer; σ denotes a nonlinear
activation function.

2) GraphSAGE: GraphSAGE is a typical inductive learn-
ing framework that extracts the feature information of graph
neighborhood nodes through neighbor sampling and informa-
tion aggregation (see Fig. 6). The core idea is to generate the
embedding vector of the target node by learning a function that
represents the neighbor node in aggregate [37]. First, the node
u is uniformly sampled with a fixed neighborhood size (N (u)).
Then, the feature information of the neighbor node is aggregated
by the aggregation function, that is, the representation of the
neighbor node N(u) of node u in layer l+1 (4). Finally, the concat
operator is used to concatenate it with the current representation

(hl
u)of the node, multiply it with the weight matrix W, and then

feed it to the fully connected layer with the nonlinear activation
function σ to generate the representation hl+1

u for the next step
(5)

h
(l+1)
N(u) = aggregate({hl

u, ∀v ∈ N(u)}) (4)

h(l+1)
u = σ(W · concat(hl

u, h
l+1
N(u))). (5)

3) Graph Attention Network: The core idea of GAT is to
weigh the neighbor nodes of each node through the attention
mechanism, and then aggregate the weighted neighbor nodes to
get a new representation of the node (see Fig. 7). This allows
the model to dynamically focus on different parts of neighbor
nodes, making the representation of nodes more representational
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Fig. 5. GCN model.

Fig. 6. GraphSAGE model.

Fig. 7. GAT model.
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[38]. First, the attention coefficient αij between neighbor node
i and neighbor node j is calculated. Then a new representation
hi

l+1 of the neighbor node is obtained by weighted summation
of the representation using the attention coefficient. Finally,
the pooling layer or fully connected layer is superimposed for
downstream learning tasks

eij = α
(
W

−→
hi ,W

−→
hj

)
(6)

αij = softmax(eij) =
exp(eij)∑

k∈Ni
exp(eik)

(7)

hl+1
i = σ

⎛⎝∑
j∈Ni

aijW
−→
h j

⎞⎠ . (8)

C. Graph Construction

In the graph structure, nodes represent evaluation units and
edges represent the relationship between evaluation units. To
ensure an effective correlation between evaluation units, a rea-
sonable graph G = (V, E) should be constructed.

1) Evaluation Units: The slope unit has been widely used
in the study of LSM [39], [40]. It is divided according to the
real terrain and geomorphology, which has clear geological
characteristics and can reflect the different terrain characteristics
of the landslide area relatively accurately [41]. Therefore, we use
the slope unit as the evaluation unit of LSM, and it is also a node
in the graph structure. In this article, the division of slope units
is realized by the curvature watershed method [42]. Specific
division process are as follows.

1) The elevation is filtered by means, and the mean curvature
value of each grid is solved with the filtered elevation data.

2) The flow direction data is solved according to the mean
curvature. Then, according to the flow direction data, the
depression unit is solved. Then the flow direction is taken
as the base map, and the depression is taken as the water
collection point to solve the basin. After vectorizing the
raster data of the basin, the concave geomorphic element
boundary is obtained.

3) Inverting the mean curvature data and repeating step 2 to
obtain convex geomorphic element boundaries.

4) The vector merge tool is used to merge the two types of
boundaries, that is, to obtain the slope unit.

When slope units are used for LSM, it is necessary to extract
the attribute value of each slope unit. The statistical method we
used is as follows: based on the raster data of LCFs, the regional
analysis function of ArcGIS software’s “Spatial analysis” tool
is used to extract the mean value (continuous factors) or the
majority value (discrete factors) of the raster value of LCFs
within the range of each slope unit as the attribute value of this
slope unit [43].

2) Connection Relationship Between Nodes:
a) Spatial Topological Relationships Graph Structure:

Through the Polygon Neighbors function of ArcGIS software
“Analysis Tool,” the slope units can be inputted to obtain the
neighbor units of each slope unit, and the graph based on the
spatial topological relationships can be generated (see Fig. 8).

Fig. 8. Process of graph construction based on spatial topological relation-
ships.

b) Environment Similarity Relationship Graph Structure:
First, according to the composition and induced conditions of
the landslide, the LCFs are divided into two categories: en-
vironmental factors and node characteristics. Second, to mea-
sure the consistency of the environment of nodes u and v,
cosine similarity [24], [44] is used to calculate the similarity
(Simu

E(v))of the environment factors eigenvector xu and xv.
Each geographic node u is only allowed to join nodes with the
most consistent environment class, i.e., when Simu

E(v) equal to
MAX (Simu

E(v), v � V), v is added to the candidate set N(u)
of connected nodes of u. After the environmental consistency
constraint, N(u) is still a large number of candidate nodes for
node u, and nodes with different characteristics are meaningless
to the total landslide characteristics. Therefore, it is necessary
to further calculate the similarity of node characteristics to filter
candidate nodes. Finally, cosine similarity is used to calculate
the similarity of the node eigenvector xu′ and xv′ to filter the
redundant nodes. For each node, only the candidate node with
the highest similarity is retained. That is, when Simu

N (v) equal
to MAX(Simu

N (v),∀v ∈ N(u)), v can be added to the final
neighbor set N ′(u) until the size of N ′(u) reaches η threshold,
and finally the edge from v, ∀v ∈ N ′(u) to u is generated (see
Fig. 9). In this research, the η value was set to 10.

The graph based on spatial topological relationships can be
directly generated by the topological relations of slope units, and
its neighborhood size is fixed, which is easy to calculate, but the
landslide characteristics of neighboring units are not necessarily
related. The graph based on environment similarity relationship
can cluster nodes with similar features, and can also convey
landslide information in different geographical environments.
Therefore, we choose the environment similarity relationship to
express the connection relationship between nodes.

D. Construction of LSM Model Considering Global
Information

1) Transformer: The transformer model is widely used for
natural language processing tasks such as language translation
and generation. The transformer model is designed to address
some of the problems in traditional RNN, such as the ineffi-
ciency of long sequence processing and the disappearance of
gradients [45]. Compared with RNN, the transformer model
adopts a novel structure, namely a self-attention mechanism.
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Fig. 9. Process of graph construction based on environment similarity relationship.

Self-attention mechanism is a technique used to calculate the
degree of correlation of different positions in an input sequence.
In transformer, the self-attention mechanism can be thought of
as a way to calculate the relationships between each element
in a sequence. It can compare and converge each element in
the sequence with the others without the need to loop or con-
volve the sequence (9). The encoder in the transformer model
is made up of multiple identical modules, each consisting of
two sublayers: multihead self-attention (MSA) mechanism and
feedforward neural network. The MSA mechanism can model
the input sequence, interacting information from each location
with information from other locations to get a more global
representation (11). The feedforward neural network can further
process the output of the MSA mechanism, providing a nonlinear
transformation for the representation of each position (13).

Attention(Q,K, V ) = sofmax

(
QKT

√
dk

)
V (9)

where Q, K, and V are query vectors, key vectors, and value
vectors respectively.

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (10)

MultiHead(Q,K, V )

= Concat(head1, head2, . . . ,headh)W
O (11)

where MultiHead represents the multihead attention mechanism,
Concat represents the concatenation of the results of the mul-
tihead attention mechanism, and WO is the weight matrix for
linear transformation of the concatenated results.WQ

i ,WK
i , and

WV
i is the weight moment of the query, key, and value of each

head in the multihead attention mechanism

Sublayer(x) = FeedForward(x)orMultiHead(x, x, x) (12)

LayerNorm(x+ Sublayer(x))

= LayerNorm(x+ dropout(Sublayer(x))) (13)

where LayerNorm (LN) represents the layer normalization oper-
ation and Sublayer represents the sublayer, each of which can be
FeedForward or MultiHead(x,x,x) with a residual concatenation.

2) Graph–Transformer: To solve the limitation of the feature
extraction capability of the LSM model based on GNN, we
proposed a hybrid model for LSM, graph–transformer, which
can extract global information to improve the spatial predic-
tion accuracy of landslides. The specific structure of graph–
transformer is shown in Fig. 10, which includes four key mod-
ules: structural encoding module that considers graph structure
characteristics, Hop2Token module that transfers node domain
information to sequence information, transformer encoder mod-
ule, and attention-based readout function module that considers
the influence of different neighbor nodes.

Structural encoding: In graph structure, in addition to the
attribute information of nodes themselves, the structure infor-
mation between nodes is also important for model learning.
Adjacent nodes have similar location features, while distant
nodes have different location features. The position relationship
and connection strength between nodes in the graph can be
comprehensively reflected by the Laplace matrix (Δ), and the
feature vector obtained by the decomposition of the Laplace
matrix can accurately represent the position information and
feature distribution of nodes. Therefore, we use the feature
vector obtained by the decomposition of the Laplace matrix
to express the structure position information of the graph and
concatenate it with the original attribute information matrix (X ′)
of the graph structure to obtain the feature matrix (X)

Δ = I −D−1/2AD−1/2 = UTΛU (14)

where A is the n × n adjacency matrix, D is the degree ma-
trix, and Λ, U corresponds to the eigenvalues and eigenvectors
respectively

X = X ′ ‖ U (15)

where X is the feature matrix, and X ′ is the original attribute
information matrix.

Hop2Token: After obtaining the feature matrix of the graph
structure, the feature information of the neighbors of different
hops of the central node can be aggregated by multiplying with
the adjacency matrix. Assuming that the maximum hop of the
aggregated neighbors is K, the neighbor information obtained
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Fig. 10. Framework of graph–transformer.

Algorithm 1: The Hop2Token Algorithm.
Input: Normalized adjacency matrix A; Feature matrix X;

Propagation step K
Output: Sequences of all nodes XG

1: for k = 0 to K do
2: for i = 0 to n do
3: XG[i, k] = X[i];
4: end for
5: X = AX;
6: end for
7: return Sequences of all nodes XG;

by aggregation is AKX. The implementation process is shown in
Algorithm 1.

XG represents the characteristic information matrix after each
node aggregates K-hops neighbor node information. For node u,
the aggregated K-hops neighbor information can be expressed
asSu = (x0

u, x
1
u, . . . , x

k
u). Then we mapSu to the hidden dimen-

sion dm of the Transformer with a learnable linear projection

Z(0)
u = [x0

uE;x
1
uE; . . . ;x

K
u E] (16)

where E ∈ Rd′×dm and Z
(0)
u ∈ R(K+1)×dm .

Transformer encoder: We feed the projected sequence into the
Transformer encoder. The building blocks of the Transformer
contain MSA and position-wise feed-forward network (FFN).
LN is applied before each block. The FFN consists of two linear
layers with a GELU nonlinearity

Z ′(l)
u = MSA(LN(Z(l−1)

u )) + Z(l−1)
u (17)

Z(l)
u = FFN(LN(Z ′(l)

u )) + Z(l)
u . (18)

Attention-based readout function: Considering that the neigh-
bor node has a different influence on the central node, we propose
an attention-based readout function to obtain the final represen-
tation of the central node. First, the attention coefficient between
the central and neighbor node is calculated, then the attention
coefficient is multiplied by each neighbor node, and finally, the
final representation of the central node is obtained by adding the
result of the multiplication with the original representation of

TABLE I
PERFORMANCE EVALUATION METRICS OF LSM

the central node

αk =
exp((Z0 ‖ Zk)W

T
a )∑K

i=1 exp((Z0 ‖ Zi)WT
a )

(19)

where Z0 is the node itself, Zk is its k-hop representation, Wa ∈
R1×2dm denotes the learnable projection, and i = 1, . . ., K.

The node representation is finally aggregated as follows:

Zout = Z0 +

K∑
k=1

αkZk. (20)

E. Model Validation Index

Confusion matrix is a common index to summarize the model
classification prediction results in ML [46]. It can be used to
compare the model prediction results with the real history land-
slide, so as to form an evaluation of the model learning results
[47]. True positive (TP), false negative (FN), false positive
(FP), and true negative (TN) represent the number of model
prediction results divided according to the threshold in four
cases, respectively. Using these values, the following indicators
can be calculated (see Table I).

In addition, the receiver operating characteristic curve (ROC)
is a synthesis of the confusion matrix under different thresholds,



14566 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 11. Results of LCFs analysis. (a) Results of Pearson correlation analysis. (b) Variable importance of LCFs using Relief-F.

which is widely used in the evaluation of LSM. ROC takes the
FP rate as the horizontal coordinate and the TP rate as the vertical
coordinate, reflecting the continuous change of data specificity
and sensitivity. The area under the curve (AUC) of ROC can
directly reflect the result, and the closer the value of AUC is to
1, the better the model effect is [48], [49].

IV. RESULTS

A. Analysis of Contributing Factors

Pearson correlation method was used to analyze the cor-
relation of LCFs, and the results showed that the correlation
coefficients among LCFs were less than 0.5, indicating that there
was a weak correlation among LCFs [see Fig. 11(a)]. In addition,
the Relief-F method was used to analyze the importance of
factors, and the results showed that the importance index of
LCFs was greater than 0, indicating that the selected factors had
positive effects on the development of landslide [see Fig. 11(b)].
Rainfall, which has the highest importance index, is consistent
with the leading factor of landslide development in BRB. The
above indicates that the LCFs selected in this article are both
independent and important. It can be used in the subsequent
evaluation and calculation of LSM.

B. Landslide Distribution in Different Graph
Structures and Models

To directly reflect the rationality of the constructed graph
structures and the performance of the model, we applied the same
dataset to different graph structures and models and measured
the advantages and disadvantages of different graph structures
and models by comparing the prediction results. Fig. 12 shows
the LSM on different graph structures and models, and the
natural breakpoint method [50] is used to classify landslide
susceptibility into five levels: very low susceptibility (VLS), low
susceptibility (LS), moderate susceptibility (MS), high suscep-
tibility (HS), and very high susceptibility (VHS). In addition, to
quantify the difference in results under different graph structures
and models, we calculated the proportion of each susceptibility

region in the LSM and the proportion distribution of historical
landslides in each susceptibility region.

Under the spatial topological relationships graph, the MS and
HS areas predicted by the GCN model were widely distributed,
accounting for 19.59% and 19.48% of the study area, respec-
tively, but only 44.74% of landslides were located in the VHS
areas [see Fig. 12(a)], which could not provide effective land-
slide reference information. In the GraphSAGE model, about
66.36% of the landslides were located in the VHS region, but
about 15% of the landslides were still in the MS and LS regions
[see Fig. 12(c)], and the prediction results had some false alarms.
In the prediction results of the GAT model, most of the suscep-
tibility areas are LS (29.92%), and the VHS areas are dispersed,
only 49.77% of landslides coincide with the VHS areas [see
Fig. 12(e)]. In the prediction results of the proposed model, the
VLS and VHS areas are concentrated in large areas, accounting
for 57.80% and 11.26% of the study area, respectively, and
about 62.01% of the landslides are located in the VHS areas
[see Fig. 12(g)]. In contrast, under the environment similarity
relationship graph, the LSM of the four models has been greatly
improved, and the predicted VHS areas are more consistent
with the real distribution situation. Among them, the proportion
of historical landslides in the VHS areas of the four models
is 92.11%, 74.49%, 78.60%, and 89.70%, respectively [see
Fig. 12(b), (d), (f), (h)]. The distribution trend of the VHS and
HS areas along the river was also present. This indicates that the
environment similarity relationship graph is more reasonable,
can more effectively mine the correlation between landslide and
DPE, and the LSM obtained can better reflect the actual landslide
distribution, which is of great significance for improving the
landslide susceptibility in unknown areas.

Under the same graph structure, the number of historical land-
slides shows an increasing trend with the increase of landslide
susceptibility level of the four models, which indicates that the
four models have certain positive effects on the prediction of
landslide susceptibility. However, from the distribution of HS
and VHS areas, the LSM of the proposed model is the best,
the predicted landslide area is more precise, and most of the
landslides fall in the VHS areas. In addition, compared with
the LSM of the other three models, the landslide susceptibility
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Fig. 12. Landslide distribution in different graph structures and models for both spatial topological relationships graph (left) and environment similarity relationship
graph (right). (a)–(b) GCN. (c)–(d) GraphSAGE. (e)–(f) GAT. (g)–(h) Proposed model.

TABLE II
COMPARISON OF THE GRAPH STRUCTURE AND LSM METHODS

distribution of the proposed model is more reasonable under
different graph structures, and the VHS region divided by the
model is the most appropriate to the distribution of historical
landslides. This shows that the model constructed in this article
has excellent robustness and can perform well under two differ-
ent graph structures. It can fully explore the hidden relationship
between landslides and DPE, effectively reducing the false alarm
rate of landslides. The results can provide references for future
landslide risk management.

C. Model Validation and Comparison

To reflect the influence of different graph structures on
model performance and quantify the differences between model
learning abilities, we calculated the evaluation indexes of four

models under different graph structures. Table II shows that
under the environment similarity relationship graph, the eval-
uation index results (accuracy, precision, recall, F1-score, and
AUC) of the four models are all higher than those under the
spatial topological relationships graph. Among them, the GCN
model increased by 20.65%, 15.61%, 14.34%, 18.77%, and
19.22%, and the GraphSAGE model increased by 13.49%,
12.68%, 12.07%, 10.55%, and 13.89%, respectively. The GAT
model was improved by 25.12%, 21.98%, 27.71%, 24.65%, and
27.52%, respectively, and the proposed model was improved
by 9.41%, 7.06%, 11.03%, 9.35%, and 8.90%, respectively.
This shows that the environment similarity relationship graph
can promote the learning of the model, help the model learn
the most effective features, and effectively improve the pre-
diction accuracy of the model. In addition, under the same
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graph structure, the model proposed in this article is superior to
the other three models. The calculated evaluation index results
such as accuracy, precision, recall, F1-score, and AUC, etc.,
are increased under the spatial topological relationships graph
by at least 5.91%, 11.60%, 3.24%, 3.95%, and 6.73%, respec-
tively. Under the environment similarity relationship graph, the
improvement is at least 0.63%, 6.03%, 2.28%, 0.49%, and
2.05%, respectively. This indicates that the proposed model
in this article has strong feature learning ability, can deeply
explore the hidden relationship between landslide and LCFs,
and can realize the full correlation between landslide and
DPE.

Statistical error distribution is a method to evaluate the per-
formance of a model, which can reflect the accuracy and degree
of bias of the model during the prediction process. For this
purpose, we calculate the mean squared error (MSE) and root
mean squared error (RMSE) of the four models on the testing
dataset under different graph structures. Fig. 13 shows that
under the spatial topological relationships graph, the maximum
values of MSE and RMSE are obtained by the GCN model
(0.1982, 0.4452) [see Fig. 13(a)], while the minimum values
are the model proposed in this article (0.1413, 0.3579) [see
Fig. 13(g)]. Under the environment similarity relationship graph,
the maximum values of MSE and RMSE are obtained by the
GAT model (0.1025, 0.3201) [see Fig. 13(f)], and the minimum
values are the model proposed in this article (0.0595, 0.2441)
[see Fig. 13(h)]. This shows that the proposed model has good
performance. In addition, the MSE and RMSE of the four models
under the environment similarity relationship graph are lower
than those under the spatial topological relationships graph.
It can be further demonstrated that the environment similar-
ity relationship graph can effectively improve the prediction
accuracy of the model and reduce the false alarm rate of the
model.

To prove the reliability of the proposed model in this article, it
is possible to verify the landslide disaster in the HS area predicted
by the proposed model through field investigation. In order to
better display the observation results, a landslide area that does
not appear in the landslide catalog is selected to evaluate the
accuracy of the model. Fig. 14 shows LSM and UAV photos of
the selected area. The landslide occurred in June 2024. Under
the spatial topological relationship graph structure, the proposed
model predicts that this region is VHS, and the other three mod-
els predict that the region is MS and HS. Under the environment
similarity relationship graph structure, the proposed model pre-
dicts that this region is VHS, while the other three models predict
that this region is HS. The proposed model can effectively predict
the location of landslides, which is of great significance for
landslide prevention and management. In addition, under the en-
vironment similarity relationship graph structure, the prediction
results of the four models are all better than that under the spatial
topological relationship graph structure, which further proves
that the environment similarity relationship graph structure can
weaken the impact of environmental differences on model per-
formance and effectively improve the prediction accuracy of the
model.

V. DISCUSSION

A. Advantage of the Proposed Graph Structure

In complex environmental scenes, the lack of effective cor-
relation between landslide and DPE is the main reason for the
low reliability of LSM. In this study, compared with the en-
vironment similarity relationship graph, the spatial topological
relationships graph shows lower precision (see Table II). Among
the prediction results of the four models, the LSM based on the
environment similarity relationship graph is more reasonable
than that based on the spatial topological relationships graph
(see Fig. 12). Most landslides are located in VHS and HS areas,
and only a few landslides are located in VLS and LS areas. In
addition, the models supported by the environment similarity
relationship graph show high model accuracy.

Based on the common sense of geography that “the more
similar the geographical environment is, the more similar the
geographical characteristics are” [51], it is believed that the same
type of landslide samples are close and adjacent in the envi-
ronmental characteristic space, and different types of landslide
samples are separated. In this understanding, similar geograph-
ical and geological environments, regardless of geographical
location, will form landslide samples with similar characteristics
[24], [26]. Therefore, the correlation between subenvironmental
regions with similar geological conditions should be considered
in LSM. The characteristics of landslides can influence each
other among similar subenvironment areas. In this interrelated
and influencing environment, the clustering and correlation of
similar landslide characteristics are formed, which can better
help to summarize landslide characteristics. Therefore, based on
the environment similarity relationship, this study established
a geographic association network with similarity constraints
of DPE, and defined the graph structure as the similarity of
environment and features between nodes, so as to improve the
ability of landslide characteristics induction. Specifically, first,
nodes of different geographical subenvironments are initially
divided by using the consistency of features of different ge-
ographical environmental factors, and the correlation between
subenvironment categories is established by using the similarity
of environmental characteristics. These environmental category
divisions limit the information transmission of nodes in dif-
ferent geographical environments, so that landslide character-
istics can spread in similar environments as much as possible.
Then, in each subenvironment, a specific node association re-
lationship is established by using the similarity of node fea-
ture factors, so that nodes with similar features are clustered
together.

The formation of a landslide is mainly on a specific slope,
which is determined by its own geographical and geological
conditions. Although there is a certain spatial aggregation phe-
nomenon in a large range, it is affected by the heterogeneity of
the geographical environment, that is, the geographical environ-
ment in different locations is inconsistent and the geographical
and geological conditions in adjacent spaces are inconsistent.
Therefore, there is no similar relationship between neighboring
units in the geographical space of landslides. Spatial topological
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Fig. 13. Errors in MSE and RMSE for both the spatial topological relationships graph (left) and environment similarity relationship graph (right): (a)–(b) GCN.
(c)–(d) GraphSAGE. (e)–(f) GAT. (g)–(h) Proposed model.
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Fig. 14. Analysis of model prediction results based on fieldwork. (a)–(d) LSM generated by GCN, GraphSAGE, GAT and the proposed model based on the
spatial topological relationship. (e) UAV photo. (f)–(i) LSM generated by GCN, GraphSAGE, GAT, and the proposed model based on the environment similarity
relationship. The blue and yellow lines represent the landslide boundaries.

Fig. 15. Schematic diagram of different graph structures. (a) Spatial topological relationships graph. (b) Environment similarity relationship graph.

relationships make use of the similarity of location characteris-
tics in geographic space [see Fig. 15(a)]. Its advantage is that
it can correlate the information of nodes around samples and
reduce the influence of sample deviation error. However, the
scale at which the similarity of neighboring geographical units

is very small. On a large scale, especially when the nodes of the
simplified topographic units are far apart, it is more affected by
the heterogeneous geographical environment, and the features
of many neighboring nodes are not correlated. In contrast, the
proposed environment similarity relationship graph can break
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Fig. 16. Landslide susceptibility originating from the MLP, CNN, GRU, and the proposed model. (a) LSM. (b) Evaluation indexes results. (c) AUC values.

through spatial constraints and cluster related nodes together. At
the same time, it is not only the correlation of complete character-
istics but also the correlation after environmental classification
with purpose, which is more conducive to the classification and
induction of regional landslide characteristics [see Fig. 15(b)].

B. Advantage of the Proposed Model

In this study, we propose a new LSM model that can consider
the characteristics of DPE and global information. The model
combines the advantages of graph and transformer to achieve a
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wide range of reliable LSM. In the previous studies on LSM,
scholars mostly used traditional ML models. These ML models
only pay attention to the morphological characteristics of the
landslide itself and do not fully consider the characteristics of the
distant but directly related DPE, resulting in a high false alarm
rate of the landslide. In addition, these models can obtain reliable
LSM in simple small scenes, but for complex environmental
scenes, there are still limitations of relying on sample size and
insufficient feature extraction ability, resulting in low accuracy
and reliability of LSM. Transformer is a neural network model
based on the self-attention mechanism, which can calculate
weight and position coding to obtain global information [15],
[16], [27]. Therefore, we propose to use graph and transformer
to realize comprehensive and reliable LSM. Specifically, graph
and transformer work together to enhance each other. By using
transformer, the receptive field of the graph can be extended,
including those related nodes that are far from the central node,
thus enhancing the information transmission capability of the
graph. Conversely, the graph can also help the transformer cap-
ture complex topological relationships and efficiently aggregate
related nodes from neighboring areas.

In this study, compared with the other three kinds of GNN
models, the proposed model in this article shows excellent
performance for spatial topological relationships and environ-
ment similarity relationship graphs (see Table II). To further
demonstrate the advantages of the proposed model, we compare
it with other DL models widely used in LSM, such as MLP,
CNN, and GRU. The results of the comparison are shown below
(see Fig. 16). The LSM of the four models shows the same
distribution trend on the whole, but there are great differences
in the specific distribution. The VHS region accounted for more
than 13% and the VLS region accounted for more than 60% of
the four models [see Fig. 16(a)]. Among them, the VHS region
of the CNN model occupies the highest proportion, which is
18.5%. The VLS region of the proposed model occupies the
highest proportion, which is 78.4%. The MS region of MLP,
CNN, and GRU models is above 5%. In contrast, the LSM of
the proposed model is more reasonable. The VHS areas show a
trend of distribution along the river, most historical landslides
fall into the VHS areas, and the sum of VHS and VLS areas
account for more than 92% of the study area, which indicates
that the proposed model has excellent recognition ability and can
accurately identify the landslides and nonlandslides. In addition,
to quantify the differences in the learning ability of different
models, we statistically calculated the evaluation indicators of
the four models. Compared with MLP, CNN, and GRU, accu-
racy, precision, recall, and F1-score are 10.7%, 10.32%, 10.09%,
and 9.35% higher, respectively [see Fig. 16(b)]. The AUC value
of the proposed model is as high as 0.94 [see Fig. 16(c)], which
is more than 8.8% higher than that of the other three models,
indicating that the proposed model has excellent learning ability
and can deeply explore the relationship between landslide and
LCFs, effectively improving the reliability of large-scale LSM.

MLP and GRU models accept sequential features [10], while
CNN models accept spatial features [8]. From the LSM and
evaluation indicator results of the four models, the proposed
model has the best feature learning ability, which indicates

that compared with the feature learning methods of sequence
and spatial features, the proposed method of using graph and
transformer to learn landslide characteristics is more effective
and comprehensive. This can also indirectly prove the rationality
of the proposed graph structure. The graph structure is used to
correlate landslide and DPE, which significantly improves the
reliability of the LSM and the accuracy of the model.

VI. CONCLUSION

In this article, we propose an LSM model with graph–
transformer that can consider the correlation between landslide
and DPE, and global information. The main goal of this study
is to reduce the impact of environmental differences and the
limitations of model feature extraction ability on LSM. Some
novel and significant conclusions can be drawn as follows.

1) Constructing the environment similarity relationship
graph is an effective method to realize the full correlation
between landslide and DPE. Compared with the models
based on the spatial topological relationships graph (GCN,
GraphSAGE, GAT, and Proposed model), the AUC values
of the models based on the environment similarity rela-
tionship graph are increased by 19.22%, 13.89%, 27.52%,
and 8.9%, respectively, indicating that the environment
similarity relationship graph can effectively improve the
model accuracy and reduce the impact of environmental
differences on the model.

2) The introduction of transformer module that considers
global information is an important means to improve
model performance. Compared with GCN, GraphSAGE,
and GAT models, the AUC value of the proposed model
is more than 6.73% higher under the spatial topological
relationships graph, and more than 2.05% higher under
the environment similarity relationship graph. In addition,
the AUC value of the proposed model is more than 8.8%
higher than that of traditional ML models (MLP, CNN,
and GRU). This shows that the proposed model has strong
feature mining ability and can learn landslide features
more comprehensively.
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