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Abstract—In data acquisition and transmission, hyperspectral
images are inevitably corrupted by additive noises, making it
challenging to accurately observe and recognize the materials on
the surface of the Earth. However, scholars have been addicted
to developing numerous complex methods for separable two-stage
denoising and anomaly detection (AD) tasks over the past years,
rarely paying attention to the real effect of noises for subsequent
intelligent interpretation. To this date, we propose a hierarchical
integration framework for hyperspectral simultaneous AD and
denoising (HyADD). Joint AD and denoising are mutually inte-
grated and their outputs in each iteration stimulate each other,
breaking through the respective performance bottlenecks of the
separable two-stage scheme. Inspired by spatial–spectral gradient
domain-based constraint, HyADD removes additive noises and
preserves advantageous image smoothness information to improve
intermediate detection performances in the iteration loop. Con-
versely, with the assistance of the antinoise dictionary conduction
and the subspace domain-based low-rankness, the identification of
anomalies with different features from the background can provide
effective feedback to the denoising process. The proposed algorithm
is efficiently solved by the well-designed linearized alternating
direction method of multipliers with an adaptive penalty. A com-
parison with the existing well-known AD algorithms via simulated
and real-world experiments establishes the competitiveness of the
proposed HyADD with state-of-the-art methods.

Index Terms—Anomaly detection (AD), denoising, feedback,
integration framework, linearized alternating direction method of
multipliers.
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I. INTRODUCTION

R ECENT advances in hyperspectral (HS) imaging tech-
niques have provided users with abundant spatial and

spectral information on Earth’s surface, deriving a wide range of
applications, such as superresolution [1], [2], classification [3],
[4], unmixing [5], [6], and target detection [7], [8]. Due to
abominable environmental change and unfavourable equipment
conditions, real-world noise usually exists in all the HS imaging
systems and degrades the performances of results and anal-
ysis [9]. Therefore, HS image denoising is considered as a
crucial preprocessing step for the subsequent refinement of
spectral information [10]. As a branch of HS target location,
anomaly detection (AD) aims at the separation of abnormal
objects from backgrounds. For instance, the sudden appearance
of unknown aircraft or vessels in village or wharf scenes can
be marked as anomalies or outliers. While the precise definition
of HS anomalous objects is often context-dependent, they are
typically characterized by low occurrence probabilities and a
lack of prior information [11], [12], [13]. These anomalies
usually manifest as several pixels or small objects with dis-
tinct shapes within an observation scene, and their spectral
signatures significantly differ from the surrounding background
environment.

Without the available prior information on anomalies or back-
ground, existing methodologies usually focus on the different
feature extraction for accurate distinction. As a typical statistical
AD benchmark, the classical Reed–Xiaoli (RX) algorithm was
proposed early in 1990 [14]. Based on a generalized likelihood
ratio, RX is a constant false alarm rate (FAR) detector. With
the background assumption obeying a Gaussian distribution,
the mean vector and covariance matrix of all HS samples are
calculated to estimate the Mahalanobis distance between a test-
ing pixel and the background clutter. GRX considers all the
pixels from one whole HS image, whereas local RX takes a local
region as the background [15], [16]. However, the conception
of a multivariate Gaussian distribution deteriorates the detection
performances of basic RX algorithms in practice. Subsequently,
many modified RX approaches have sprung up over the last two
decades. A nonlinear kernel RX (KRX) method was proposed
to map HS images in the feature spaces [17]. The principal
component analysis (PCA) of the background covariance matrix
was used to gain subspace RX [18]. Segment RX was proposed
via the critical factors that affect the estimated results of local
background covariance matrices [19]. A modified KRX was
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proposed by using a Gaussian background purification and an
inverse-of matrix-free model [20].

Nowadays, with the advent of machine learning and com-
pressive sensing theory, representation-based HS AD methods
have gradually become a research hotspot, specifically including
sparse representation (SR), collaborative representation (CR),
and low-rank representation (LRR). Ling et al. [21] advocated
the concept that the background is approximately represented
as a sparse linear combination of its spatial surrounding pix-
els, but anomalies cannot when they are separated from its
neighborhood. Motivated by homogeneous region-based joint
SR, Yang et al. [22] presented a robust background feature
extraction method. Vafadar and Ghassemian [23] developed a
modified CR-based with an outlier removal anomaly algorithm.
The proposed detector obtained the background estimation by
a sliding dual-window adaptively. Wang et al. [24] combined
a suitable weight learning strategy with CR to achieve a joint
objective function. Nevertheless, the above-mentioned SR and
CR approaches have a limitation of pixel-pixel detection [25].

Liu et al. [26] proved LRR enables exact recovery of potential
subspace structures even when the data are corrupted by outliers.
Without any statistical hypothesis in advance, many scholars
masterly explore the low rankness of the background and the
sparsity of anomalies. The correlation of HS bands leads to
the low rank (LR) characteristic of an unfolding matrix whose
columns are composed of the vectorized background part of
each band. The sparsity originates from a small proportion of
anomalies and a low probability of occurrence. The robust prin-
cipal component analysis (RPCA) [27] algorithm was employed
to separate an HS image into the LR and SR parts [28]. In [29]
and [30], the conception of LR and sparse matrix decomposition
(LRaSMD) has been introduced for HS AD. An LRaSMD-based
method [31] adopted the go decomposition algorithm to solve the
AD optimization with the Mahalanobis distance estimation. Xu
et al. [32] explored the background information with a new anti-
noise dictionary learning strategy and fused a sparsity-inducing
regularization into an LRR framework. Li et al. [33] designed a
global detector via LRaSMD with the assumption of the mixture
of Gaussian. Cheng and Wang [34] injected the graph and TV
regularization into the LRR formulation (GTVLRR) to preserve
the local geometrical information. With the wide application
of deep learning, Xie et al. [35] formulated the background
in a weakly supervised manner. An LRR-based dictionary was
constructed by observed training data and hidden learned data.
Wang et al. [36] proposed a novel tensor LR and sparse repre-
sentation (LRASR) method with a PCA preprocessing step to
exploit the 3-D inherent structure of HS images. This was the
first time to expand the concept of tensor LR representation in
HS AD.

In practical HS AD applications, observed images are un-
avoidably caused by a variety of noises during data acquisition
and transmission [37], [38]. A natural and intuitive pipeline to
address this issue is to remove the noise first with the subse-
quent AD procedure. When the slight denoising preprocessing
step may eliminate some of the noise, the sparse residual will
confuse the identification of anomalies. On the contrary, the
crude denoising processing destroys the image details, such as

the geometrical structure and edges of anomalies, leading to the
loss of detection accuracy. This two-stage scheme cuts off the
inherent relationship between HS denoising and AD. In addition,
existing AD models rarely analyze the explicit influence of
noise on detection performances. In Cheng and Wang’s [34]
work, many detectors are compared under different levels of just
zero-mean Gaussian noise. As the noise level rises, the detection
performances of all the algorithms gradually deteriorate. More-
over, due to the spatial TV regularization, GTVLRR appears
the most stable among all the competing detectors. However,
due to the independent denoising optimization ignored in the
iterative loop, GTVLRR hardly copes with additive noise (i.e.,
Gaussian noise, salt-and-pepper noise, deadlines, and stripes).
In this article, we mainly attend to HS AD in the presence of
additive noise. We analyze the impact of additive noise on AD
and take a coupled denoising and AD task into account in the
field of HS remote sensing (RS). This optimization policy is able
to overcome the irrelevance of two-stage denoising and AD. In
the integration iteration loop, the accuracy of anomaly locations
is improved by denoising, and simultaneously, denoising is
developed by the LRR-based AD model. The denoised HS image
and the anomaly locations are produced by an integration frame-
work. We summarize the main contributions of this study as
follows.

1) We blaze a trail for AD under additive noise in the field of
practical HS RS applications. AD is specifically analyzed
in the presence of additive noise and a coupled AD-
denoising task is mathematically formulated in a novel
integration manner.

2) We exploit spatial–spectral gradient domain-based
smoothness and subspace domain-based low-rankness to
promote denoising and AD each other. Noise removal
contributes to improving the detection performances of
anomaly locations. Assisted by a novel antinoise dictio-
nary construction, the LRR-based AD model provides
positive feedback for additive noise removal.

3) The linearized alternating direction method with adaptive
penalty (LADMAP) is employed to solve the resulting
model more effectively. The proposed method outper-
forms various two-step denoising and AD algorithms
through simulated and real-data experiments, which also
include our homemade GF5-MouMan dataset.

The rest of this article is organized as follows. Section II elabo-
rates on the motivation and study of the integration denoising and
AD. Then, the experimental results and analysis are presented
in Section III. Finally, Section IV concludes this article.

II. PROPOSED METHOD

A. Motivation

Initially, we investigate the impact of additive mixed noise
on anomaly locations and explore different AD approaches,
including classic global RX (GRX) [14], LRASR [32], and
LSMAD [31]. Additive Gaussian noise is first introduced into
a benchmark AIR-HI dataset. Each band of this HS image is
corrupted by the salt-and-pepper noise at a small proportion of
0.01. The detected outcomes from three AD approaches under
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Fig. 1. Detection performances by GRX, LRASR, and LSMAD with an additive noise or denoising cases.

the additive noise case are visually compared in the first row
of Fig. 1, revealing how additive noise affects different AD
techniques. GRX, as a Mahalanobis distance-based method,
assumes a multivariate Gaussian distribution for the background
and fails to detect anomalous objects. LSMAD, which models
the observed data corrupted by Gaussian noise, yields better
results with less noise than GRX and LRASR. The undesirable
influence of noise on AD is hardly ignored since the origi-
nal geometrical structures of the HS image background and
anomalies are contaminated by noise, ineluctably worsening the
postprocessing interpretation task.

Traditionally, denoising and AD are conducted separately in
the real HS image processing system. The second and third rows
of Fig. 1 depict the conventional two-stage HS denoising and
AD processing flowchart, where noise is first removed using
different algorithms. However, this approach has its drawbacks,
as seen with the residual sparse noise after denoising with
BM3D, which inevitably increases FARs of AD detectors. On
the other hand, denoising with BM4D removes most of the
noise but also leads to loss of image detail information and
a decrease in edge detection rates of anomaly objects. This
highlights the importance of selecting appropriate denoisers and
detectors based on the specific scene and noisy conditions in a
two-step scheme.

To address these limitations, we propose an integrated frame-
work that couples denoising and AD procedures. In this frame-
work, denoising and AD mutually constrain each other in each
iteration. AD can benefit from noise removal, while denoising
can be assisted by intermediate AD results. Specifically, in the
AD scheme, the HS image is decomposed into background and
anomalies, with anomalies having distinct spectral signatures
and statistical distributions from the surrounding background.

The identification of anomalies provides positive feedback
to enhance spatial and spectral smoothness during denoising.
This joint framework allows for the derivation of advanced
models with effective and rational constraints for denoising
and AD.

B. Simultaneous AD and Denoising Model

Fig. 2 presents the schematic diagram of the proposed
HyADD model. The input is a noisy HS image with anomalies.
The spatial–spectral TV (SSTV) of an HS tensor X ∈ Rm×n×z

is developed to remove additive noise and preserve the smooth-
ness in the spatial and spectral domains. The denoised result of
each iteration provides beneficial support for the AD procedure.
Assisted by the specific antinoise dictionary, LRR can explore
the multiple underlying subspaces and detect the outliers as well.
The exploration of subspace domain-based low-rankness and the
identification of outliers offer effective feedback to the denoising
process. Finally, the denoised result and anomaly locations are
produced together for further analysis and interpretation of
ground objects.

When HS images are often contaminated by noise, the simul-
taneous AD and denoising task in third unfolding forms can be
formulated as follows:{

Y = X+N

X = DA+ S
(1)

where Y, X, and N, S ∈ Rz×mn, D ∈ Rz×l, and A ∈ Rl×mn

are the noisy HS image, the latent clean image, additive noise,
sparse part, the background dictionary, and representation co-
efficients, respectively. The key to AD under additive noise is
to estimate the background and anomalies with the elimination
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Fig. 2. Schematic diagram of the proposed HyADD integration model.

of additive noise. Differ from the LRaSMD models [31], [32],
[34] ignoring the independent fidelity term of noise removal,
the proposed joint method is solved by minimizing an objective
function as follows:

min
X,A,S

1

2
||Y −X||2F +

1

2
||X−DA− S||2F . (2)

In general, the distribution of ground objects varies gently in
one scene. Pixels of most HS images often have similar spatial
characteristics to their neighboring pixels. High correlations
also exist between adjacent spectral bands. Therefore, relatively
smoothing characteristics of HS images usually occur in the
spatial and spectral domains. A TV method originated from
Rudin et al.’s [39] work to remove the noise of gray-level images
due to the ability to preserve edge information and enforce
piecewise smoothness. Inspired by this implementation of gray-
level images, the 2-D spatial TV norm is first used to remove
Gaussian noise of HS images in a band-by-band manner [40].
Some AD studies also adapted the band-by-band TV model to
constrain the spatial gradients [34], [41], [42], unfortunately
ignoring the correlation of nearby bands. To remove additive
noise and promote the spatial–spectral piecewise smoothness,
we incorporate an SSTV regularization [43] of X ∈ Rm×n×z

into (2)

min
X,A,S

1

2
||Y −X||2F +

1

2
||X−DA− S||2F + μ||X ||SSTV

(3)
where ||X ||SSTV = ||DhXDz||1 + ||DvXDz||1 with two dif-
ferential operators Dh and Dv along the horizontal and vertical

directions and one 1-D finite differencing Dz on the spectral
signature of each pixel.

In HS imagery, each pure endmember mainly corresponds to
one material. However, many additive pixels exist in one image
due to the mixture caused by heterogeneity and stratified distri-
bution of objects. Based on the LRR theory for the representation
of additive pixels, the underlying HS data X tends to be drawn
from a union of subspaces. The goal of this representation is to
identify the LR linear representation of X by a dictionary D.
The optimization problem (2) can be rewritten as

min
X,A,S

1

2
||Y −X||2F +

1

2
||X−DA− S||2F + μ||X ||SSTV

+ λ||S||1 + α||A||∗.
(4)

In (4), the AD and noise removal fidelity terms are constrained
individually. The sparse term S is utilized to identify anomaly
objects within the background of X. To further ensure the sep-
aration of noise from anomalies, an SSTV constraint is applied
to X. This constraint is particularly effective in isolating sparse
noise fromX, leveraging both spatial and spectral information to
enhance the separation process. This approach is advantageous
because images contaminated with sparse noise rarely satisfy
the gradient sparsity condition, which the SSTV constraint ad-
dresses effectively. In addition, choosing an appropriate dictio-
nary is vital to facilitate the LRR of the background and additive
noise removal. A new strategy for dictionary construction: A
median filter is first applied to X to get rid of the impact of
sparse noise on the background. After filtering, pixels are divided
into k clusters by k-means with the Euclidean distance. The
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basic RX algorithm is used to find the more likely background
pixels, whose detection results are lower than the others in each
cluster. Anomalies occur in the same areas of each band and
appear dense in the spectral domain. Thus, the l2,1 norm often
constrains this spectral–spatial sparsity of anomalies. However,
sparse noise, such as salt-and-pepper noise and dead pixels, tends
to exhibit stronger group sparsity compared to anomaly objects.
This characteristic makes the l2,1 norm more sensitive to sparse
noise, as it is designed to handle group sparsity. In contrast,
the l1 norm is more robust in such scenarios because it focuses
on individual element sparsity, reducing the influence of sparse
noise and dead pixels. The specific experimental comparison
between HyADD with the l1 norm and the l2,1 norm is provided
in Section III-A5.

An antinoise dictionary construction for HyADD: As a vital
role, an antinoise dictionary D should be designed before the
iteration loop. The simplest way to construct the unknown
dictionary is to directly employ the original dataY. However, the
naturally large size of Y will bring a heavy computation burden
due to the need for the singular value decomposition operation.
Another efficient approach is to select some pixels to constitute
the dictionary in a certain manner [32]. These pixels should
correspond to the material with more representation samples,
whose probability of belonging to the background material will
be higher. Meanwhile, in the mixed noise case, salt-and-pepper
noise arises with a point distribution when some of the imaging
sensors are saturated or fail to sample [44], [45]. The process
starts with a traditional median filter method to weaken the
negative influence of these sparse noises on the performance
of the background dictionary. The filtered image Ymed can be
expressed as

Ymed = med(Y) (5)

where med represents a median filtering directly applied to Y
band by band. All pixels are divided by a K-means algorithm
into C clusters Ymed = {ymed,1,ymed,2, . . .ymed,W }, where
W should be larger than the number of material classes. After
that, the classical RX detector is assigned to obtain the Maha-
lanobis distance of each test pixel and choose the background
pixels with the higher probability as the antinoise dictionary D.

C. Optimization Procedure

Based on the alternating direction method, the existing
LRR optimization often needs to introduce two auxiliary vari-
ables [26]. The matrix–matrix multiplications and matrix inver-
sions of this solver cause O(n3) computation complexity and
further a slow convergence, where n× n is the matrix size.
To overcome this defect, Lin et al. [46] proposed LADMAP
with O(rn2) complexity of solving LRR, where r is the rank
of A. LADMAP is an effective approach to solve (4) [47]. By

introducing auxiliary variables P and Q, (4) is reformulated as

min
X,A,S

1

2
||Y −X||2F +

1

2
||X−DA− S||2F + μ(||P||1

+ ||Q||1) + λ||S||1 + α||A||∗
s.t. P = DhXDz,Q = DvXDz. (6)

Equation (6) is efficiently solved by LADMAP, and the cor-
responding unconstrained augmented Lagrangian function is
expressed as follows:

min
X,A,S

1

2
||Y −X||2F +

1

2
||X−DA−S||2F +μ(||P||1+||Q||1)

+ λ||S||1 + α||A||∗ + β

2
||P −DhXDz − B1||2F

+
β

2
||Q −DvXDz − B2||2F

(7)
where B1 and B2 are two Lagrangian multipliers. The optimiza-
tion procedure of (7) is achieved by updating one variable while
fixing the others. The global optimized solution is guaranteed
since (7) is convex. Suppose that optimization is in the kth
iteration, the specific subproblems are given as follows.

1) Update P and Q: Exact all their related items from (7)

min
P

μ||P||1 + β

2
||P −DhXDz − B1||2F (8)

min
Q

μ||Q||1 + β

2
||Q −DvXDz − B2||2F . (9)

The operator Δε[x] = sgn(x). ∗ max(|x| − ε, 0) is used to
obtain the solutions

Pk+1 = Δμ/β [DhXkDz + B1,k] (10)

Qk+1 = Δμ/β [DvXkDz + B2,k]. (11)

2) Update A: The subproblem of A is equivalent to the
following constrained minimization problem:

min
A

α||A||∗ + 1

2
||X−DA− S||2F . (12)

By linearizing the quadratic termf in (12) at previous iteration
Ak and adding a proximal term, the iteration of A goes as
follows:

Ak+1 = argmin
A

α||A||∗ + 〈∇Af (Ak,Xk,Sk, βk),A−Ak〉

+
γ

2
||A−Ak||2F

= argmin
A

α||A||∗

+
γ

2
||A−Ak+[−DT(Xk −DAk−Sk)]/γ||2F

(13)
where the quadratic term∇Af is the partial differential of f with
respect to A and γ = ||D||2F .

3) Update S: The S-related subproblem is rewritten as

min
S

λ||S||1 + 1

2
||X−DA− S||2F . (14)
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Algorithm 1: HyADD Algorithm.
Input: Input matrix with noise Y0 = Y, parameter β, μ, λ,

α, K, βmax = 1010, ρ0 = 1.1,
1: Ditionaryconstruction :;

1.1 a median filter is applied to Y: Ymed = med(Y),
1.2 Ymed is divided into W clusters using K-means,
1.3 the background pixels are selected by the RX
algorithm,

2: while 0 ≤ k ≤ K or meet the convergence conditions
do

3: update Pk+1 and Qk+1 by solving (10) and (11),
respectively:
Pk+1 = Δμ/β [DhXkDz + B1,k],
Qk+1 = Δμ/β [DvXkDz + B2,k],

4: update Ak+1 by solving (13):
Ak+1 = argmin

A
α||A||∗ + γ

2 ||A−Ak+

[−DT(Xk −DAk − Sk)]/γ||2F ,
5: update Sk+1 by solving (15):

Sk+1 = Δλ[Xk −DAk+1],
6: update xk+1 by solving (17) :
7: (βDT

1 D1 + βDT
2 D2 + 2I)xk+1 =

yk + vec(DAk+1) + sk+1 + βDT
1 (pk+1 −

b1,k+1) + βDT
2 (q− b2,k+1),

8: update Xk+1 = rearrange(xk+1),
9: update the multipliers B1,k+1 and B2,k+1:

B1,k+1 = B1,k +D1Xk+1 −Pk+1,
10: B2,k+1 = B2,k +D2Xk+1 −Qk+1,
11: Update β as: β = min(βmax, ρβ), where
12: ρ =⎧⎪⎨

⎪⎩
ρ0, if βmax(

√
η‖Lt+1 − Lt‖F , ‖St+1 − St‖F ,

‖Xt+1 −Xt‖F )/‖X‖F ≤ ε2

1, otherwise ,
13: end while
14: Yk+1 = ΘXk+1 + (1−Θ)Y,
15: k = k + 1,
Output: AD map and denoised result X.

The solution of (14) is obtained as

Sk+1 = Δλ[Xk −DAk+1]. (15)

4) Update X by minimizing the vector form of X-related
subproblem as follows:

min
x

1

2
||y − x||2F +

1

2
||x− vec(DA)− s||2F

+
β

2
||p−D1x− b1||2F +

β

2
||q−D2x− b2||2F , (16)

where D1 = Dh ⊗Dz , D2 = Dv ⊗Dz , and ⊗ denotes the
Kronecker product. By setting the derivative of (16) with respect
to X to zero, we obtain the following equation:

(βDT
1 D1 + βDT

2 D2 + 2I)xk+1 = yk + vec(DAk+1) + sk+1

+ βDT
1 (pk+1 − b1,k+1) + βDT

2 (q− b2,k+1).
(17)

The algorithm for sparse linear equations and least squares
(LSQR) [48] can be used to solve (17). The solution xk+1 is
rearranged into the recovered result Xk+1. Due to AD being
regarded as the final goal of HyADD, we pay more attention to
variables related to AD and define the convergence condition as
follows:

max

⎧⎪⎪⎨
⎪⎪⎩
||Sk − Sk−1| |∞,
||Ak −Ak−1| |∞,
||Xk −Xk−1| |∞,
||Xk −D ∗Ak − Sk| |∞

⎫⎪⎪⎬
⎪⎪⎭ ≤ ε. (18)

The observation Y in each iteration with Θ (0 ≤ Θ ≤ 1) is
updated as

Yk+1 = ΘX+ (1−Θ)Y (19)

which is used to boost the denoising performances [49],
[50], [51].

The numerical iterations are outlined in Algorithm 1.
Computational complexity: Here, we briefly discuss the com-

putational complexity of HyADD. The following parts are con-
sisted of each step.

1) The computation of solving both (10) and (11) depends
on the SSTV operator, which requires about 2(zmn)2 +
2zmn.

2) Different from the expensive computation of the conven-
tional LRR solver [28], solving (13) with A of size l × z
costs 2lzmn+ 2zmn+ 2lmn+ l(mn)2 + l3.

3) Updating S requires about zlmn+ 2zmn in each itera-
tion.

4) LSQR algorithm is used to update x and its computation
costs 2(zmn)3 + zmn+ zlmn+ 2(zmn)2.

The overall computational complexity of Algorithm 1 in each
iteration is2(zmn)3 + 7zmn+ 2lmn+ 4zlmn+ 4(zmn)2 +
l(mn)2 + l3. Usually, z, l << mn, the order of complexity for
our HyADD is O((zmn)3).

Remark: Lin et al. [46] generalized ADMM by linearizing
the quadratic penalty term and has proven the convergence of
LADMAP for convex optimization with two blocks. Note that
the separable and independent variable is treated as one block.
However, as for the three-block convex function (4) of HyADD,
the extended version of the ADMM is not necessarily con-
vergent even with the strong convex assumption [52][Theorem
4.1]. Hence, we have systematically discussed the convergence
performance of the HyADD framework. Section III-A3 gives a
further illustration of the convergence analysis.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, experiments on two simulated and one real-
world HS data are carried out to verify the performance of
HyADD for two tasks. First, the denoised performance of the
proposed HyADD is analyzed with existing methods, such as
BM3D [53], BM4D [54], and TDL [55]. Second, different
HS AD approaches chosen for comparison consist of clas-
sic GRX [14], discrete wavelet transform RX (DRX) [56],
RPCA [28], LRASR [32], LSMAD [31], and graph and TV
regularized LRR (GTVLRR) [34]).
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Fig. 3. Denoising results of all compared methods on the San Diego dataset under noise Case 2.

Except for the visual observation of denoised results on
simulated experiments, we adopt two quality assessments in-
cluding the mean peak signal to noise ratio (MPSNR) and mean
structural similarity index (MSSIM). MPSNR and MSSIM are
obtained by taking the averages of the PSNR and SSIM values
between the ground truth and denoised ones, which depends on
the denoising precision along the spatial domain

MPSNR =
1

z

z∑
k=1

PSNR(X (:, :, k),X (:, :, k)) (20)

MSSIM =
1

z

z∑
k=1

SSIM(X (:, :, k),X (:, :, k)) (21)

where X (:, :, k) and X (:, :, k) denote the ith band of the refer-
ence and denoised images, and X(3)(k, :) and X(3)(k, :) are the
ith spectral signatures of two images.

Color detection maps are given in all experimental results
and analysis. The responses of pixels are reflected by the colors
ranging from blue to red. For qualitative comparisons, we intro-
duce the receiver operating characteristic (ROC) curve [57] with
pointwise confidence intervals, which reflects the compromise
between the probability of detection (PD) and FAR. The area
under the ROC curve is denoted as AUC [58] and its ideal value
is 1.

A. Simulated HS Data Experiments

HS images acquired by sensors are often plagued by vari-
ous noise sources, such as atmospheric haze and instrument
noise, which significantly degrade image quality and impact
subsequent HS applications. Thermally induced dark current,
fluctuations in power supply and atmospheric absorption can
introduce Gaussian noise [43], [59]. Salt-and-pepper noise typ-
ically occurs when some sensors become saturated or fail to
sample properly [44], [45]. For HS scanners using whiskbroom
technology (e.g., the airborne HyMap [60]) or pushbroom tech-
nology (e.g., the spaceborne EO-1 Hyperion [61]), stripes can
appear due to miscalibration [62]. More critically, if entire rows
or columns are missing due to physical damage to the scanner,
the resulting HSIs will exhibit prominent deadline noise [63].
To simulate different noisy HS images, we add Gaussian noise,
salt-and-pepper noise, deadlines, and stripes into two datasets,
including San Diego and Urban. The details of noise cases are
reported in Table I.

1) Denoised and Detection Performances. San Diego: The
San Diego dataset was captured by the airborne visible/ infrared

TABLE I
ADDED ADDITIVE NOISE IN FOUR CASES

imaging spectrometer with a spatial resolution of 3.5 m. The
image size of the whole dataset is 400 × 400. Herein, we select
one widely used subimage, which has a size of 100 × 100 × 189.
In this scene, the background refers to classes of grass, roofs,
roads, etc. On the contrary, three manual airplanes are regarded
as anomalies.

Figs. 3 and 4 present the denoising and detection outcomes
for the San Diego image under noise Case 2, respectively.
Some residual sparse noise persists in the result denoised by
BM3D, causing increased FARs of GRX, DRX, and RPCA.
Conversely, LRASR, LSMAD, and GTVLRR demonstrate ro-
bustness against noise in the denoising results shown in the
first row of Fig. 4. In Fig. 3, BM4D outperforms BM3D by
eliminating all residual noise but exhibits an over-smoothing
effect. Compared to BM3D, the FARs of the background objects
are reduced in the second row of Fig. 4. However, the edges of the
three flights appear somewhat blurred due to the oversmoothness
during the denoising process of BM4D. TDL exhibits superior
performance compared to BM3D and BM4D. GTVLRR, when
subjected to denoising by TDL, achieves the cleanest detection
map with the most prominent edges of airplanes among all
compared algorithms.

In Fig. 5, the ROC curves compare HyADD with other com-
peting approaches under noise Case 2. Among these, conven-
tional LR-based methods consistently demonstrate higher PD
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Fig. 4. Detection results of all compared methods on the San Diego dataset under noise Case 2.

Fig. 5. ROC curves obtained by different denoising and AD methods for the San Diego dataset under noise Case 2. (a) BM3D. (b) BM4D. (c) TDL.

values compared to RX-based methods and RPCA, irrespective
of the denoising technique employed. Following denoising with
BM3D and BM4D, GRX, DRX, and RPCA exhibit similar curve
trends. Notably, RPCA performs the poorest when encounter-
ing TDL among all compared approaches in Fig. 5(c). Before
reaching a FAR of 0.01, the curve of GTVLRR surpasses that
of HyADD. However, HyADD achieves a PD of 1.0 even at a
FAR of 0.03, while most others remain below 0.9.

Table II lists the AUC values of different anomaly detectors
after applying three denoisers under four noise cases. In addi-
tion, Table III presents the denoising performance of various
denoisers under these noise scenarios. Notably, TDL achieves
the second-highest MPSNR and MSSIM among all competitors.
However, GTVLRR obtains higher AUC scores than the former
methods with the support of BM4D under noise Case 4. It
is essential to note that excellent denoising performance may
not always guarantee favorable detection outcomes within the
two-step scheme. Despite achieving a lower MPSNR value,

HyADD outperforms TDL in terms of AUC score, highlighting
its effectiveness in the detection task under noise Case 1.

Urban: This dataset is obtained by the HYDICE airborne
sensor with a 10-nm spectral solution and a 1-m spatial solution
over an urban area in the USA. A subimage of 80 × 100 pixels
with 175 spectral bands is used for evaluation. The scene consists
of vast stretches of vegetation area, a construction area, and
several roads, which are treated as the background. Anomalies
refer to vehicles and roofs, whose precise positions are given in
the ground truth of Fig. 7.

In Fig. 6(a), band 170 of the Urban dataset is depicted,
showcasing various types of noise corruption. Each anomaly
occupies only a few pixels, presenting a challenge for accu-
rate detection. BM3D and BM4D fail to eliminate stripes and
deadlines, resulting in high FAR in the results of GRX, DRX,
RPCA, and LRASR under noise Case 2, as shown in Fig. 7.
Upon applying TDL, RPCA exhibits a stronger response to
outlines than the other detectors. Consistent with the visual
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TABLE II
AUC VALUES OF ALL COMPARED ALGORITHMS FOR TWO DATASETS UNDER FOUR NOISE CASES

TABLE III
DENOISING PERFORMANCES OF DIFFERENT METHODS FOR TWO DATASETS UNDER FOUR NOISE CASES
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Fig. 6. Denoising results of all compared methods on the Urban dataset under noise Case 2.

Fig. 7. Detection results of all compared methods on the Urban dataset under noise Case 2.

Fig. 8. ROC curves obtained by different denoising and AD methods for the Urban dataset under noise Case 2. (a) BM3D. (b) BM4D. (c) TDL.

observations, RPCA obtains the second-highest AUC in Table II
under noise Cases 1 and 3. Therefore, different denoisers and
detectors should be selected for different scenes and noisy
conditions for the two-scheme step. Remarkably, our HyADD
achieves appealing denoising and detection performance. Fig. 8
reports the ROC curves, which also validate the effectiveness
of the proposed algorithm. Especially, the PD value of HyADD
is always the highest and reaches 1.0 fastest among all ROC
curves.

In summary, while achieving superior denoising performance
is a critical aspect, it may not consistently translate into favor-
able detection outcomes within a two-step framework. Despite

BM4D achieving a lower MPSNR value than TDL, GTVLRR
after denoising by BM4D obtains the highest AUC score on
the Urban dataset under noise Case 2 among the two-step
schemes. The selection of appropriate denoisers and detectors
is paramount, contingent upon the specific scene characteristics
and prevailing noise conditions within a two-step configuration.
Notably, our HyADD exhibits commendable denoising and
detection efficacy, thus highlighting its proficiency in mitigating
noise-related challenges across diverse noise scenarios.

2) Parameter Analysis: In the proposed HyADD solver, four
parameters β, α, μ, and λ need to be determined. All parameter
discussion is conducted for the San Diego dataset under noise
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Fig. 9. AUC and MPSNR value curves with respect to α for the San Diego
dataset.

Fig. 10. Parameter sensitivity analysis in terms of λ and μ for the San Diego
dataset. (a) AUC values. (b) MPSNR values.

Fig. 11. Relative errors versus iterations on three datasets.

Case 2. Penalty parameter β is just related to the convergence
speed in ADMM iterations [47], [64]. β can be selected from
the range of [1,100] with an interval of 10. Parameter α controls
the strength of the LR property for the background. Fig. 9 shows
the sensitivity of two parameters to AUC and MPSNR values.
Two curves have the same changing tendency with α ranging
from 10 to 100.

Parameter λ plays an important role in controlling the strength
of the sparsity term. Parameter μ restricts the impact of SSTV
regularization on denoising effectiveness. To investigate the AD
and denoising performance gains, these parameters λ and μ are
simultaneously taken into consideration in Fig. 10. λ lies in the
range of [0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.07, 0.1, 0.2,
0.3] and μ is chosen from [0.001, 0.01, 0.05, 0.1, 0.5, 1, 2,

Fig. 12. Experimental results between HyADD with the L2,1 norm and the
L1 norm.L2,1. (a) Denoised result (PSNR: 30.55 dB). (b) Anomaly map (AUC:
0.9429); L1. (c) Denoised result (PSNR: 34.18 dB). (d) Anomaly map (AUC:
0.9748).

Fig. 13. GF5-MouMan dataset. (a) HS image. (b) Reference map. (c) Re-
sponding multispectral image.

3, 4, 5]. When λ increases from 0.001 to 0.05 and μ is varied
among [0.1, 0.2, 0.3], the AUC and MPSNR curves of the two
figs show upward trends. After λ = 0.2, the AD performances
fall off gradually and the MPSNR curves stay almost stable.
In summary, the parameter tuning of HyADD is reported as
follows.

1) Choose β as an integer from the scope of [1,100] with 10
as step size.

2) The range of α from 10 to 20.
3) λ and μ is given within [0.05, 0.2] and [0.1, 0.3], respec-

tively.
3) Convergence Analysis: We investigate the numerical con-

vergence on three datasets. Fig. 11 describes the relative errors
of (18) versus iterations. With the increasing of iteration num-
bers, the relative errors monotonically decrease first and then
keep stable, which numerically proves the good convergence of
HyADD.

4) Running Time: Table IV reported the running times of
different approaches. All of the experiments are conducted in
Matlab 2018a on the same PC with an Intel i9 CPU at 3.00 GHz
and 128 GB of memory. GRX is the fastest among the state-
of-the-art methods, but it rarely shows a satisfactory detection
performance under mixed noise. DWT RX has better computing
times and detection results than RPCA. The running times of
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Fig. 14. Denoising results of all compared methods on the GF5-MouMan dataset.

Fig. 15. Detection results of all compared methods on the GF5-MouMan dataset.

Fig. 16. ROC curves obtained by different denoising and AD methods for the GF5-MouMan dataset. (a) BM3D. (b) BM4D. (c) TDL.

TABLE IV
RUNNING TIME COMPARISON OF DIFFERENT METHODS ON DIFFERENT DATASETS
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TABLE V
AUC VALUES OF ALL COMPARED ALGORITHMS FOR THE REAL-WORLD GF5-MOUMAN DATASET

GTVLRR and HyADD are more than LRASR and LSMAD due
to the incorporation of the TV terms. In particular, joint AD and
noise removal tasks are unified into one intelligent framework.
The detected objects and denoised results are simultaneously
obtained by the proposed HyADD.

5) Comparison Between HyADD With theL2,1 Norm and the
L1 Norm: We experimentally compare HyADD with different
sparsity constraints to illustrate the effectiveness of the L1 norm
for the noisy case. Fig. 12 shows the experimental results ob-
tained by HyADD with theL2,1 norm and theL1 norm. Residual
salt-and-pepper noise and deadlines are detected as anomalies by
HyADD with the L2,1 norm, resulting in lower PSNR and AUC
values than the original HyADD. In noisy cases, sparse noise can
significantly affect the performance of L2,1-based methods. The
L1 norm mitigates this issue by penalizing the absolute values
of the coefficients, making it less influenced by extreme values
caused by noise.

B. Real-Word HS Data Experiments

The real-world GF5 data acquired by the GF5-Advanced HS
imager on 31 July 2019 was used to verify the effectiveness of the
proposed method, ranging from 390 to 2500 nm with a spatial
resolution of 30 m. The popular environment for visualizing
images is utilized to make pre-processing steps and select one
subimage of 60 × 48 × 305 for the experiment, as shown in
Fig. 13(a). In this scene, the background includes a mountain,
trees, and roads, while the manmade buildings refer to the
anomaly objects. Therefore, this subimage is named the GF5-
MouMan dataset. The reference detection map is displayed in
Fig. 13(b), whose number of anomalies is 135, with a 4.69% pro-
portion. These anomalies are manually labeled according to the
high-resolution GF6 multispectral image [shown in Fig. 13(c)]
and four common characteristics of anomalies [12], [65]: no
prior knowledge; low probability of occurrence; small spatial
size; and insignificance in spectral statistics.

The first column of Fig. 14 showcases two noisy HS bands,
with the first corrupted by Gaussian noise and the second
affected by both Gaussian noise and stripes. BM4D and TDL
demonstrate superior performance over BM3D in terms of ac-
curate Gaussian noise removal. However, BM4D exhibits more
oversmoothness, leading to a loss of detailed information below
the stripes. In contrast, HyADD effectively removes most of
the Gaussian noise and stripes while preserving clear surface
features. With the assistance of BM4D, GTVLRR exhibits the
strongest response to anomaly objects among all the two-step
schemes, as depicted in Fig. 15. Notably, the background-
anomaly separation achieved by HyADD is notably superior
to that of GTVLRR.

In Fig. 16, although GTVLRR and LSMAD deliver remark-
able performances, their PDs reach the highest value slowly.
Conversely, the PDs of HyADD reach 1.0 when FAR = 0.4,
outpacing the other algorithms. Regarding quantitative quality,
Table V presents the AUC values of seven detectors for the GF5-
MouMan dataset. Our method surpasses GTVLRR by 1.31%,
3.87%, and 5.19% after denoising by BM4D, TDL, and BM3D,
respectively, respectively. GTVLRR (after BM4D) and LSMAD
(after TDL) achieve the second-highest and third-highest AUCs
among the competing algorithms.

IV. CONCLUSION AND FURTHER ANALYSIS

In this article, we have pointed out the drawbacks of the
two-step AD-denoising scheme and the advantages of the AD-
denoising integration framework. Noise removal benefits the
exploration of subspace domain-based LR property to locate
anomalies. With the assistance of an antinoise dictionary design,
anomaly location can offer effective feedback for denoising,
especially preserving the piecewise spatial–spectral smoothness.
The HyADD algorithm is designed and solved by LADMAP to
output AD maps and denoised results simultaneously. Experi-
mental results on simulated and real-world HS datasets verify
the superior performances of our proposed method.
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