
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024 15009

Ship Identification via Adjacent-Branched Saliency
Filtering and Prior Representation-Based

Classification
Jianming Hu , Student Member, IEEE, Tianjun Shi, Shikai Jiang , Student Member, IEEE, Xiyang Zhi ,

Xiaogang Sun , and Wei Zhang

Abstract—Ship identification in optical remote sensing images
is essential for a wide range of civil and military applications,
including maritime rescue, port management, and sea area surveil-
lance. However, current studies focus mainly on ship detection or
coarse-grained ship size identification, rather than fine-grained
type identification. Moreover, interference from clouds and port fa-
cilities as well as complex conditions such as occlusion and shadows
increase the difficulty of ship type identification. To address these
problems, we propose a novel ship identification method by employ-
ing adjacent-branched saliency filtering and prior representation-
based classification strategies, which achieves high-precision type
recognition performance for large and medium-sized ships under
complex environmental interference conditions. In the candidate
region extraction stage, a multiscale feature aggregation structure
that utilizes feature map fusion in adjacent layers and receptive
field mining within the same extraction branch is presented, pro-
viding fine representation of the location and edge characteristics
of ship targets in complex scenes. In the classification stage, the
low-rank term describing interclass differences and the graph-
based regularization term describing intraclass differences are
added to the representation model as prior constraints, which can
correctly classify ships in the presence of complex environmental
interference such as occlusion and shadow. Experimental results on
two high-quality ship datasets indicate that the proposed method
realizes state-of-the-art identification performance compared with
benchmark methods.

Index Terms—Adjacent-branched saliency filtering, complex
scene, optical remote sensing, prior representation, ship identi-
fication.

I. INTRODUCTION

MARITIME ship identification is of great significance
for automatic fishery management, port rescue, marine
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traffic maintenance applications [1]. The accuracy of identifica-
tion technology directly determines the safety and timeliness of
military and civilian applications [2]. Visible light images have
rich details and textures, obvious target structure features, and
their information contained is intuitive and easy to understand,
which conforms to the daily observation habits of the human
eye. Therefore, the visible light remote sensing image has be-
come an important image data source for ship detection and
identification [3]. However, due to the wide-area imaging char-
acteristics of remote sensing images, there are usually various
environmental factors such as clouds and various port facilities
in the image scene. Ship identification in complex optical image
scenes is still a challenging task.

For ship identification in complex scenes, researchers have
proposed various strategies and models [4]. Visual saliency
model is one of the representative works [5]. It imitates the
attention mechanism of human eyes and can quickly locate
abnormal areas or points in complex scenes, having a wide
prospect in massive data processing applications. Early visual
saliency models applied traditional image attributes to high-
light salient areas, such as contrast, background prior, and
compactness characteristics. On this basis, various extraction
strategies are adopted to achieve more accurate contour high-
lighting of objects, such as frequency domain analysis, cellular
automata, random walk, and Bayesian theory. These methods
have obtained high-performance object detection and identifica-
tion performance for specific scenes. However, the approaches
via traditional strategies have a good effect for relatively simple
close-up imaging scenes, it is easy to produce a large number of
false alarms when directly applied to large-scale remote sensing
scenes. Therefore, it is urgent to present an effective strategy to
solve this issue.

As we know, the deep learning networks represented by CNN
has a strong ability to represent high-level semantic features [6],
which provide an effective framework for remote sensing image
ship detection and identification [7]. With the popularity of
deep learning technology, the saliency methods based on deep
learning network have significantly improved the performance
of region extraction and ship classification. In order to make the
network suitable for detecting ship targets of different scales and
types, feature pyramid network (FPN) [8] is widely used in the
feature extraction stage of learning-based detection models. In
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addition, many subsequent detection models have added connec-
tion channels between feature extraction branches based on the
FPN to fuse and represent multilevel target features. However,
the semantic gap between features of different levels is seldom
considered in the fusion of the current networks. In fact, the
fusion of feature maps with large resolution differences is easy
to introduce unnecessary background noise, and the fusion of
too many features may reduce the efficiency of the network in
learning target features, leading to the nonoptimal representation
of ship target features. In addition, the classification modules of
the existing detection networks are rarely designed in combina-
tion with the characteristics of the remote sensing image scene,
resulting in poor algorithms robustness for conditions such as
object occlusion and shadow. Therefore, it is urgent to design
and optimize the ship detection network structure in combination
with the characteristics of image scenes.

To address these issues, a new ship identification model via
adjacent-branched saliency extraction and prior representation-
based classification (PRC) is proposed. Specifically, at the
saliency extraction stage, we present an interactive fusion mod-
ule that only merges feature maps from adjacent layers to
effectively address semantic gap issues caused by significantly
different resolutions, achieving spatial consistency of multiscale
features. In addition, we design a multiscale information mining
module that utilizes dilated convolutions with different dilation
rates on the same extraction branch, enhancing the perception of
suspected target regions and suppress background interference.
On this basis, combining the characteristic prior knowledge of
the ship targets, a ship type classifier that is robust to complex
environmental disturbances such as occlusion and shadows is
constructed. Experimental results on high-quality public dataset
and self-built dataset demonstrate that the proposed algorithm
has excellent ship type recognition accuracy in complex inter-
ference scene.

The main contributions of this work are summarized as fol-
lows:

1) A ship identification framework combining adjacent-
branched saliency extraction and prior representation-
based classification is proposed, which can achieve high-
accuracy type recognition performance of typical ship
targets in complex sea and port scenes.

2) A novel multiscale feature aggregation module is pro-
posed, which utilizes the feature map fusion of adjacent
layers and the mining of different receptive fields in the
same extraction branch to accurately represent the location
and edge characteristics of the ship target.

3) A prior representation-based target classification module
is proposed, which can correctly classify ships in the
presence of complex environmental interference such as
occlusion and shadow.

II. RELATED RESEARCH

In this section, we first briefly introduce the development
of the salient object detection technology and point out the
shortcoming of the current methods. On this basis, we illus-
trate the solution of our method. We then review the use of

typical discriminant classifiers and clarify the difference be-
tween the proposed approach and other representative classi-
fication methods.

A. Saliency Detection Model

Ship detection and identification in complex scenes has at-
tacked considerable concern in the remote sensing field [9].
In [10], research scholar proposes a multidirectional ship de-
tection via dynamic soft label assignment strategy. In [11], re-
searchers improve the accurate direction capture of ships through
active rotating filters and complementary reconstruction of fea-
ture maps. In [12], a foreground-aware feature map reconstruc-
tion network is presented by calculating the weighted distance
of foreground weights, which can achieve accurate classification
under few-shot conditions. The visual attention mechanism of
the eyes is an important component of visual information pro-
cessing. By suppressing negligible stimuli and quickly focusing
on important regions in the image scene, it helps rapidly search
and locate the target of interest in complex background, such
as the sparsely distributed ships. Inspired by the human visual
attention mechanism, researchers have proposed several visual
saliency models for ships detection [13]. In [14], researchers
apply dual mask attention based on multidirectional feature
fusion, refining target features while suppressing background
clutter interference. In [15], researchers design a feature fusion
structure that balances the receptive fields of different backbone
layers and utilizes contextual attention strategies to enhance
target feature learning, ultimately achieving high confidence
recognition of targets in complex scenes. These models con-
centrate on mining the important and valuable information in
the salient regions, thus timely realizing the ship location in
complex scenes.

Visual saliency models can be broadly classified into top-
down methods and bottom-up methods [16] according to the
human eye visual attention mechanism. The former top-down
methods are task-driven, which require high-level priori infor-
mation such as the specific scene, objects with clear status and
unique observation condition. Such approaches belong to an
advanced cognitive process with complex modeling represen-
tations, which require a large amount of computing resources.
The latter bottom-up methods are driven by data, focusing on
mining the feature differences between pixels and surrounding
areas in terms of color, luminance, edges, etc. These methods
utilize the distinct characteristics in the spatial and frequency
domain at multiple scales as the basis for the final saliency
results. In [17], the phase spectrum of Fourier transform with low
computation complexity is applied to draw the saliency map and
a homogeneous filter is followed to obtain the suspected regions.
In [18], the phase saliency map combined with extended wavelet
transform to improve the ability of candidate extraction in the
complicates scenes. In [19], a combined saliency model is pro-
posed with self-adaptive weights generate the regions of interest
in the maritime background. In [20], a visual saliency method
is constructed to prescreen the ship candidates by the statistical
characteristics difference. It can be seen from the above methods
that the performance of traditional visual saliency models relies
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heavily on the hand-crafted feature descriptors. They can only
achieve promising detection results for certain special scenes,
and may be less effective in complex scenes such as ports
containing various artificial facilities. The rise of deep learning
network makes the feature extraction no longer rely on artifi-
cially designed descriptors. The traditional operators are grad-
ually replaced by convolutional neural networks (CNNs) with
stronger feature characterization ability, further promoting the
development of visual saliency detection. Almost all CNN-based
saliency detection methods can be viewed as an encode–decode
structure with supervised training in the form of pixel-level truth
annotation and end-to-end implementation. DHSNet [21], as a
typical saliency detection model, captures the salient objects
from a global perspective and then refines the details through a
hierarchical recurrent convolution neural network. Subsequent
approaches have been developed based on the encode–decode
structure, but gradually incorporate the multiscale structures,
multilevel structures and attention structures [22] to address the
problems of scale variant, boundary refinement, and false alarm
suppression. In [23], a multilevel feature aggregation network
is put forward to fuse multilevel feature maps into multiple
resolutions. In [24], a channel and spatial attention mecha-
nism (SAM) is embedded in the encode–decode architecture
to align the context information among the multiscale feature
maps. In [25], a pyramid attentive module and a salient edge
detection module are proposed to improve the multiscale feature
extraction capability and sharpen the boundary representation,
respectively.

Although the above methods can enhance target features in
specific applications, they ignore the semantic gap between
different extraction branches in feature integration, thus limiting
the optimal representation of target features to some extent.
Different from other works, we propose an interactive feature
fusion module that only fuses the feature maps of adjacent layers
to effectively address the semantic gap caused by the resolution
difference, which is guided by the channel attention mechanism
(CAM) to enhance the details and position information at dif-
ferent levels. Moreover, we design a single feature branch infor-
mation mining module. It applies several dilated convolutions
with different expansion rates to enlarge the receptive field, and
employs the SAM to improve the perception ability of candidate
regions and suppress the background interference.

B. Classifier in Object Detection Methods

Based on the ship suspected candidates extracted in the first
stage, the following stage comes to achieve ship discrimina-
tion through the classification model. The traditional methods
generally utilize the feature descriptors to extract the shape,
material, structure, and other general features, and then apply
the classifier to realize the object classification. The most widely
used classifiers are support vector machines (SVM) [26], sparse
representation-based classification (SRC), and improvements
based on the above models.

SVM, as a typical classifier, has a sound theoretical foundation
and is suitable for processing small sample data. In [27], a
spatial bag of visual words (BOVW) model is applied to describe

the object characteristics with scale-invariant feature transform
(SIFT) keypoints, and the final decision is made by SVM. In [28],
the composite kernel support vector is proposed to improve
the features fusion quality, which is composed of the shape
and texture features. In [29], multiple features representation
methods are combined such as multiorientation Gabor filters,
fisher vector, and BOVW to achieve the optimized feature, then
the SVM is adopted to give the posterior-probability estimation.
SVM relies heavily on the representation ability of feature
extraction operators. However, there are large intraclass differ-
ences in object characteristics affected by lighting conditions
and environmental factors, which makes SVM hard to adapt the
changeable task scenes. As an efficient multiclass classifier, the
sparse representation (SR) based methods have high robustness
and generalization. At the same time, the methods are not
sensitive to occlusion and have the potential to identify multiple
types of targets in complex scenes. In [30], the discriminative
sparse coding model is constructed with the consideration of
within-class difference and between-class difference to improve
the feature representation ability. In [31], K-singular value de-
composition algorithm is used to achieve the sparse coding with
the SIFT descriptors. In [32], the structured SR model with low
dimensions is put forward to realize a promising performance
for the inshore ship detection. The above methods can only be
applied to coarse-grained classification and cannot realize fine-
grained recognition. Therefore, we propose a SR model that fully
mine the differential and low-rank characteristics of multiclass
targets. Through integrating the regularization constraints of the
typical ship features, high-precision ship type discrimination can
be achieved even in complex port scene images.

III. PROPOSED METHOD

A. Method Overview

As illustrated in Fig. 1, we provide the architecture diagram of
the proposed method, which consists of two-stage components:
adjacent-branched mining based saliency filtering (ABSF) stage
and PRC stage. By applying the first stage, we mine the deep
semantic information of the input images combining with the
training of a large amount of data, extracting the multiscale
suspected target salient regions. To suppress the false alarm
generated by the saliency extraction part, we integrate the target
prior information into the SR model in the second stage, realizing
the ship identification with high accuracy and low false alarm
rate (FAR) in complex port scenes.

B. Adjacent-Branched Mining Based Saliency Filtering

The premise step of ship identification is to extract the sus-
pected target region, but the scale variation and various types
of ships make it tough to accurately describe the target char-
acteristics. Considering that the deep learning network has the
advantage of extracting features at multiple levels, we adopt
the typical FPN to obtain the target features at different scales.
However, the conventional FPN usually fuses the features of all
levels directly. Due to the semantic gap and structural property
difference between the feature maps on each extraction branch,
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Fig. 1. Flow of the proposed method.

Fig. 2. Structure of two proposed modules.

the direct fusion is hard to obtain the optimal representation
results. Moreover, the fusion also ignores to mine the mutual
interaction between the interlayers, which reduces efficiency of
information utilization.

To address the multiscale representation problem in ship
identification, as shown in Fig. 2, two modules are proposed
to mine the interlayer and intralayer information in the salient
region extraction stage. The first module, interlayer integration

module (IIM), enhances the edge details and semantic infor-
mation of different feature extraction branches by fusing the
feature maps of adjacent levels. The second module, intralayer
self-mining module (ISM), mines the feature information of
different receptive fields in the same extraction branch to better
capture the scale change of the target.

For the feature maps of different levels extracted by the
backbone network, due to the diversity of resolution, the edge
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details and semantic levels in each branch are different. Conse-
quently, the direct cross-level fusion is obviously not the optimal
representation of the ship target. Based on this consideration, the
proposed IIM only integrates adjacent levels. On the one hand,
this operation can reduce the computing cost and information
redundancy caused by too much map fusion. On the other hand,
it reduces the fusion difficulty and noise interference caused
by resolution difference. The fusion between adjacent feature
maps can deepen the detailed information at the shallow levels
and enhance the semantic information at the deep levels.

Specifically, suppose that the feature maps of three adjacent
levels extracted by the backbone network are Fn−1, Fn, and
Fn+1, where n ∈ [2, 3, 4]. We first perform convolution, batch
normalization, and ReLU operations on the feature maps to
reduce the channel dimension

F 1
i = ReLU (BN (conv (Fi))) , i = n− 1, n, n+ 1 (1)

where conv, BN, and ReLU represent the convolution, batch
normalization, and a kind of nonlinear activation process,
respectively.

Then, by performing the downsampling and upsampling op-
erations on F 1

n−1, F 1
n+1 respectively, we make the maps of two

branches be the same resolution scale with F 1
n , thus the fusion

of multibranch feature maps can be written as

F 2
i = ReLU

(
BN

(
conv

(
F 1
n

)
+Ds

(
F 1
n−1

)
+Us

(
F 1
n+1

)))

(2)
where Ds and Us represent the downsampling and upsampling
operations, respectively.

Similarly, the fusion of other branches Fn−1 and Fn+1 can be
calculated as

F 2
i−1 = ReLU

(
BN

(
conv

(
F 1
n−1

)
+Us

(
F 1
n

)))
(3)

F 2
i+1 = ReLU

(
BN

(
conv

(
F 1
n+1

)
+Ds

(
F 1
n

)))
. (4)

The interaction of adjacent feature layers can improve the edge
details and semantic representation in different levels. Moreover,
the fusion of multilevels F 3

i is carried out on the basis of the
enhanced features. It is worth putting out, a residual learning
architecture is introduced to improve the efficiency of network
optimization

F 3
i = ReLU

(
BN

(
conv

(
F 2
i

)
+Ds

(
F 2
i−1

)
+Us

(
F 2
i+1

)))

(5)

F 4
i = ReLU

(
BN

(
F 3
i

)
+ F 1

i

)
. (6)

Since each channel of the fused feature contribute differently to
the final ship recognition, inspired by CBAM [33], we apply the
CAM to assign different weight coefficients along the channel
dimension. The CAM automatically obtains the significance of
each channel through learning, and strengthens the edge details
and semantic information after reassigning channel weights.
We aggregate spatial dimension information through average
pooling and global pooling, and then achieve the weight vectors
through shared multilayer perceptron (MLP). The final output

F output
i is calculated as

F output
i = ReLU

(
MLP

(
AvgPool

(
F 4
i

))

+MLP
(
MaxPool

(
F 4
i

))
. (7)

Due to the scale diversity of ships, there are differences in the
salient regions size and feature representation corresponding to
various targets. In order to make better use of the multilevel
feature map information fused by the IIM part, we propose the
ISM part to optimize the characteristics of different receptive
fields. Unlike the SPP and ASPP networks which are only added
at the deepest level, the ISM part processes the feature maps at
all levels after fusion, so as to better mine the information with
different scales and ensure the feature representation ability for
diverse target types.

Specifically, suppose the input feature map in the ISM part
is Fj . In order to gain a variety of receptive fields, we apply
dilated convolution to extract the multiscale features. Actually,
the dilated rate parameters help the conventional convolution
expand the receptive field, and make the network have better
feature extraction ability without extra computation complexity.
Here, we use the 3 × 3 dilated convolution with the dilated rate
of 3, 6, and 9, respectively. The dilated convolution with the rate
of n is formulated as

F 1n
j = dconvn (Fj) (8)

where dconv means the dilated convolution operation.
In fact, due to the complexity of the distribution of port scene

elements, partial shadows and shore facilities may be extracted
as the salient regions of the ship. Therefore, it is necessary to
allocate different significant contributions to regions in differ-
ent positions. Based on this consideration, we introduce the
SAM [33] to better utilize the extracted multiscale features. By
generating a position-weighted mask, specific regions of interest
are enhanced with irrelevant background regions attenuated. We
explore the spatial correlation between features by using average
pooling and max pooling along the channel dimension. Then a
7 × 7 convolution is used to embed the neighboring information
into the weights. The feature map obtained after the dilated
convolution and the SAM operation is computed as

Ftmp = concat
(
MaxPool

(
F 1n
j

)
,AvgPool

(
F 1n
j

))
(9)

F 2n
j = ReLU (conv (Ftmp)) (10)

where concate(·) represents the concatenation of the correspond-
ing feature maps.

Finally, the features of different scales are fused by channel
splicing and the 1 × 1 convolution operation. It is worth noting
that we additionally introduce a 1 × 1 convolution branch to
ensure the original scale information

F output
j = conv

(
concat

(
F 23
j , F 26

j , F 29
j , conv (Fj)

))
. (11)

After the above steps, we apply the minimum bounding rectangle
to mark all potential salient regions. It should be noted that this
component can generate potential target regions like the classical
region proposal network (RPN), but the RPN structure is rela-
tively simple, with only two branches that do not involve feature
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refinement and complementarity. Unlike it, the proposed ABSF
adopts the neighboring feature fusion strategy to effectively uti-
lize semantic information of multilevel feature maps, improving
the representation ability of the target. In addition, considering
that each channel of the fused features contributes differently to
the final ship recognition, we introduce the attention mechanism
to reassign weights to the extracted channels, enhancing the
edge details of the target meanwhile suppressing the interference
of background clutter. Both strategies can improve the binary
classification ability of potential target regions, thus enabling
more accurate segmentation of targets and backgrounds than
the original RPN.

C. Prior Representation-Based Classification

After obtaining the region slices of the suspected ships, it is
necessary to design a discriminant classifier to effectively dis-
tinguish different types of ships. As we know, the direct feature
extraction on different slice images easily leads to insufficient
feature discrimination ability, that is, the extracted features may
be effective for some specific targets and difficult to distinguish
other types of targets. Therefore, the idea of direct feature
extraction has limitations in the multiclass ship identification
tasks.

Aiming at the multiclass ship identification in complex port
scene, we propose a SR based strategy to design the multiclass
ship classifier. The essential idea of the proposed approach is
to construct a mathematical representation model based on the
sparse structure of the solution, realizing the signal decompo-
sition under the constraint of sparse regularization. In fact, the
typical SR theory is proved to be independent on a specific pow-
erful feature. Moreover, this method shows excellent robustness
to complex environmental conditions, such as occlusion and low
contrast. In addition, this method is easy to introduce the prior
information of the target, which is conducive to improving the
accuracy of identification. Based on the above advantages of SR
theory, we seek to design new regularization constraints com-
bining with the port application scene and realize the accurate
discrimination of ship types in complex environment.

The typical SR method is to find an overcomplete dictionary
for the samples with ordinary dense representation through task
learning (as shown in Fig. 3), and transform the samples into the
form represented by a few atoms. Given a training sample set
X = [x1, . . . , xi, . . . , xp], the SR on the training set is regarded
as a mathematical optimization problem, which is defined as

min
B,αi

p∑

i=1

‖xi −Bαi‖22 + λ‖αi‖1 (12)

where xi represents the ith sample in the training set, B is
a dictionary matrix that needs to be learned, αi is the sparse
coding coefficient, and λ is a regular parameter greater than 0.
Actually, ‖xi −Bαi‖22 represents the l2 norm which constrain
the reconstruction error and ‖αi‖1 is the l1 norm constraint on
the coefficient αi.

Fig. 3. Typical samples for dictionary learning.

Given a test data x̂, according to the ordinary SR method, the
form of SR is

α̂ = argmin
α

‖x̂−Bα‖22 + λ‖α‖1. (13)

The classification error on the test data is

ek(x̂) = ‖x̂−Bx̂k‖22 (14)

where x̂k is the coefficient vector related to the kth class target.
For multiclass target identification, especially the similarity

between some ship categories is high, such as different types
of aircraft carriers, the discrimination information between dif-
ferent types directly affects the precision of the representation
model. Moreover, the ordinary reconstruction error term is de-
scribed only by the l2 norm ‖xi −Bαi‖22 directly, which may
be difficult to fully describe the fitting error between data, thus
it is significant to establish an improved regularization term.
Consequently, we propose a data training based reconstruction
error regularization term terr. By constraining the projection
vector via a semisupervised training strategy, we reduce the
discrimination error of the projection representation model on
the training set, thus improving the discrimination ability of the
learned projection vector between ships and the environmental
background, and at the same time improving the learning effi-
ciency of the projection vector.

In addition, considering that the artificial facilities in the
port scene have a large amount of redundant information, to
reduce the complexity of calculation, we present a low-rank
regularization term tlr based on the local characteristics of the
background of the training images. Besides, due to the possible
occlusion and illumination changes in the port scene, ships of the
same class may show diversified characteristics. Therefore, it is
essential to consider a regularization term and learn the intraclass
difference. we introduce a new discriminant regularization term
tid. Based on the above analysis, then the SR optimization issue
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can be extended to

min
B,αi

{λ1terr(xi, B, αi) + λ2‖αi‖1 + λ3tlr(αi) + λ4tid(αi)}
(15)

where λ1, λ2, λ3, and λ4 are tradeoff parameters to adjust the
impact of each item.

As for the reconstruction error term terr(xi, B, αi), inspired
by the research work [30], to ensure the fitting accuracy of
SR, three reconstruction error constraints should be met in
the reconstruction process. First, the sample xi should be well
represented by the dictionary B. Second, xk, the sample of the
kth category, can be well expressed by dictionaryBk. Third, xt,
the sample of the tth category, should not be well expressed by
dictionary Bk. Therefore, the reconstruction error constraint is
defined as

teer (xi, B, αi) = ‖xi −Bαi‖2F +

N∑

k=1

‖xk −Bkαk‖2F

+

N∑

k=1

N∑

t=1,t �=k

‖Btαk‖2F (16)

where ‖ · ‖2F is the Frobenius norm andN is the number of ship
types to be distinguished. Obviously, by applying the supervised
constraint of the reconstruction error, we make the representa-
tion model learn the interclass distinguishability.

As for the low-rank regularization term, we apply this con-
straint to the final coding coefficient αi, making the model learn
the shared atoms from different directions and reduce the influ-
ence of discriminant atoms from specific category dictionary.
Nevertheless, the rank minimization issue is a NP hard problem
mathematically, we then apply the trace norm ‖αi‖∗ to solve it
indirectly.

With regard to the constraint of intraclass difference, we adopt
a graph-based regularization term to solve this issue

min
G

∑

p,q

Gp,q ‖αi,p − αi,q‖2F =
1

2
trace(αTLα) (17)

where αi,p and αi,q are two samples in the same class. Gp,q

represents the similarity graph of these two samples. Moreover,
whenGp,q → ∞,‖αi,p − αi,q‖2 → 0.L is the Laplacian matrix
by L = D −G and D = diag(sum(G, 1)). Through this regu-
larization term, we can utilize the local similarity structure of
samples to learn intraclass differences. Moreover, this learning
can further enhance the optimization and updating of the repre-
sentation model.

When dealing with the slices generated by saliency network,
we need to apply the multiscale matching idea to classify
each slice image. Suppose the scale set S = [1, 2, . . ., s], the
learning-based representation model of different types of ships
is ψi=1,...,N .

Then, we obtain the category of test slice image by calculating
the classification error

Lsr,class = argmin
k

ek(ψ, xS). (18)

Fig. 4. Representative samples in the considered dataset.

We define the overall loss function of the proposed network as

Ltotal = Lsre,class + Lsre,reg + Lsr,class (19)

where Lsre,class and Lsre,reg represent the class prediction loss
and the position regression loss in the salient region extraction
stage, respectively. Lsr,class represents the class prediction loss
generated by the SR-based classification stage. By constraining
the overall loss of training images, we make the proposed
network learn the features of different types of ships that are
conducive to class recognition.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

1) Datasets Description: In order to verify the performance
of the proposed method, two datasets are selected for per-
formance analysis. The first one is the public high-quality
HRSC2016 dataset [34], and the second one is a dataset we
established based on typical optical satellite images. Moreover,
inspired by the HRSC2016 and FGSCR [35] datasets, the scenes
we selected for the second dataset images are mainly famous
military ports such as Norfolk Naval Base, San Diego Naval
Base, and Murmansk harbor. The second datasets contain 2212
optical remote sensing images and 3067 ship instances in total,
of which 1565 images are obtained from Google Earth, and
the rest are captured from Worldview-3, Jilin-1, and Pleiades
satellite images. The image resolution of the two datasets is
about 0.4 to 2 m and the image size is mainly distributed in 800
× 800 to 1800 × 1800 pixels. Some typical samples of the two
datasets are shown in Fig. 4. Considering the number and relative
uniformity of ship instances, we only label eight representative
categories of large and medium-sized warships. The categories
and instance numbers of selected ships are shown in Table I.

2) Evaluation Metrics: In our method, the extraction of
saliency map and the classification of suspected target slices are
the key steps. Therefore, we first conduct ablation experiments
to evaluate the effectiveness of these two modules. The widely
used precision and recall metrics are employed to measure the
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TABLE I
CATEGORIES INFORMATION AND INSTANCE NUMBERS OF TYPICAL SHIPS

performance of saliency model. These metrics are defined as

precision =
|S ∩G|
|S| (20)

recall =
|S ∩G|
|G| (21)

where S andG represent the predicted saliency map and ground
truth.

In order to measure the overall performance of ship identifi-
cation, the mean average precision (mAP) and the FAR [3] are
employed to measure the overall performance of the proposed
algorithm. They mainly characterize the application ability of
the algorithm from the accuracy and error probability terms.
The two metrics are defined as

AP =
Nci

Nr
× 100%,mAP =

∑K
i=1APi

K
(22)

FAR =
Ndf

Ndc
× 100% (23)

where K is the number of ship categories, Nci and Nr are
the correctly identified ship number and the real ship number,
respectively. Similarly,Ndf andNdc are the detected false alarm
number and the detected candidate number, respectively.

3) Implementation Details: All the experiments are carried
out on the workstation with an Nvidia RTX 2080 GPU. The
implementation of the proposed algorithm is based on PyTorch
framework. The typical pretrained ResNet-50 [36] is selected as
the backbone to extract different levels of features of the input
image. During the training process, the epoch we set is 300
and the train batch size is 4. In our experiments, the stochastic
gradient descent (SGD) strategy is applied to calculate the loss
function in the training stage and update the model parameters.
The learning rate starts from 0.001, and the weight decay and
momentum are assigned to 0.0005 and 0.9, respectively. Besides,
the training of classifier is mainly based on the slice images
of FGSCR dataset. In order to improve the generalization of
images, we have performed data augmentation operations on
these training data such as rotation, clipping, and brightness
change.

B. Performance Analysis

1) Ablation Analysis: In order to verify the necessity and
effectiveness of the proposed modules, the ablation experiments

are carried out. In the first group, the proposed learning-based
saliency model is compared with several advanced saliency
extraction methods, including the Amulet [23], MLMS [37],
GRoIE [38], CFPN [39], BASNet [40], and DMT [41] methods.
In the second group, the performance of the proposed SR-based
classifier is compared with that of typical classification compo-
nents. In the third group, ablation experiments are conducted to
investigate the impact of different modules on ship recognition
performance.

Fig. 5 shows the maps provided by the proposed learning-
based saliency model and three typical salient region extrac-
tion methods. From the visual effect of saliency maps, we can
find that the proposed method can highlight the potential areas
more evenly and finely. Specifically, Amulet method effectively
highlights the ships in two typical scenes with good lighting
conditions in the HRSC dataset, but it is difficult to eliminate the
interference of port facilities. In addition, for the scene images
with shadow interference and densely docked conditions in the
established dataset, it is difficult to highlight all ships. CFPN
method can highlight the target with strong contrast, but it is
difficult to comprehensively capture the ships with low contrast
in the images. DMT method can accurately detect the ships and
basically remove the interference of port facilities for typical
scene images in HRSC dataset. On the second dataset, this
method can effectively detect low contrast ships under cloud
shadow, but it is difficult to accurately distinguish the edge
contour of all ships for densely docked ships. The method we
proposed correctly extracts all targets in complex scenes, and the
extracted edge contour is more refined than that of several typical
methods compared. This is mainly because we have adopted a
multilevel feature extraction architecture, which can effectively
capture multiscale target features in complex scenes. In order to
more intuitively represent the processing effect of each method
on two dataset images, the quantitative precision–recall curves of
these saliency models are given in Fig. 6. From the comparison
of the curves, we can find that our algorithm has the largest
area of the precision–recall curve, which indicates the proposed
algorithm achieves an optimal overall evaluation performance.

In order to verify the effectiveness of the proposed classi-
fication model, we compare its performance with six typical
object classification methods. The comparison methods include:
Fourier HOG with linear SVM [20], Rotation-Invariant De-
scriptor with Gaussian SVM [42], LBP with SVM [43], MD-
DCM [44], and LSRTN [45]. The first three methods apply
feature extraction combined with the classical SVM classifier
to achieve target classification and false alarm suppression. The
last two methods design detection operators to directly extract
ship targets.

The candidate salient regions extracted by first module are
used as the input of various classification algorithms, and the
average precision and false detection rate are applied to evaluate
the ship classification and false alarm suppression performance
of various algorithms. The results of different classification
models are shown in Table II. It can be found from the table
that the proposed prior representation-based method can obtain
the highest mAP and the lowest FAR values. The first three
methods are all based on spatial domain features to extract



HU et al.: SHIP IDENTIFICATION VIA ADJACENT-BRANCHED SALIENCY FILTERING AND PRIOR REPRESENTATION-BASED CLASSIFICATION 15017

Fig. 5. Comparison results of the proposed method and several advanced saliency models on the two datasets (Columns 1–2 from the HRSC2016 dataset, Columns
3–4 from the established dataset). (a) Input image. (b) Amulet. (c) CFPN. (d) DMT. (e) Proposed method. (f) Ground truth.

candidate regions and then adopt SVM for classification. These
methods have relatively poor performance in image slices for
complex sea and sky scenes, mainly because their detection
performance strongly depends on the precision of spatial domain
feature operators. In fact, due to the failure to effectively mine
the differences between similar ships and the fine edge features
of targets in low contrast scenes, these methods have poor
discrimination ability for ships with similar spatial distribution
characteristics. Although the MDDCM method employs a deep
network to learn target features, it only uses contrast features to
extract targets in the spatial domain, making it difficult to adapt

for ship target classification in highly contrast dynamic changing
images, resulting in a relatively high FAR. The LSRTN method
extracts scene features based on low-rank sparse decomposition
theory, and has strong distinguishing capability for low-contrast
targets. However, this model seldom considers the similarity
between different ship classes, it is difficult to have high robust
classification capability for ships in complex scenes such as
partial cloud occlusion and shadow, limiting the target classifi-
cation performance to some extent. The proposed classification
method, on the one hand, characterizes the supervised recon-
struction error of the salient regions of background interference



15018 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 6. Precision-recall curve of different saliency extraction models on the
two datasets: (a) Curve on the HRSC2016 dataset. (b) Curve on the established
dataset.

TABLE II
PERFORMANCE COMPARISON RESULTS OF DIFFERENT CLASSIFICATION

MODELS

and ship targets, thus effectively characterizing the differences
between the two types of elements. At the same time, it combines
the regular items of the similarity graph to learn the intraclass
differences between the original samples. Compared with other
methods, the recognition accuracy is significantly improved and
the background interference is effectively suppressed.

In order to visually and objectively illustrate the impact of
the proposed modules on ship recognition performance, Ta-
ble III presents the effects of sequentially adding and combining
different modules on the final recognition performance. For
the convenience of comparison, faster R-CNN is chosen as
the basic framework. Upon encountering constraints within the
Faster R-CNN detection architecture, the implementation of
the original ResNet50 and ResNet101 yields mAP scores of
74.30% and 76.02%, respectively. Through the results of these
mAP indicators, it can be found that incorporating the ABSF
module into the faster R-CNN framework can improve the mAP
to 77.36% and 78.64%, respectively. Further refinement through
the integration of the PRC module on the ResNet50 extraction
structure elevates the mAP to 79.56%, manifesting a substantial
performance augmentation relative to the baseline detection
architecture. Consequently, the aforementioned ablation studies
substantiate the efficacy and utility of the introduced modules.

When the faster R-CNN detection framework is limited, the
AP values obtained by configuring the original ResNet50 and
ResNet101 as the multiscale extraction module are 68.52 and
69.38, respectively. From the AP measure, we can find that
when we embed the multiscale dilated convolution module into
the faster R-CNN detection framework, the AP value reaches
70.72. After further strengthening the characterization with the
attention-based feature enhancement module, the final AP value

reaches 72.68, showing a significant performance improvement
compared with the original detection framework.

2) Algorithm Performance Comparison: To verify the effec-
tiveness and robustness of the proposed model, we compare the
proposed approach with nine representative object identification
models on the two datasets, including typical faster R-CNN [46],
YOLOv4 [47], RetinaNet [48], YOLOv7 [49], R2CNN [50],
RRPN [51], R3Det [52], S2A-Net [53], ReDet [54], ROOD [55],
AEDet [56], and Ofcos [57]. These methods are recognized as
excellent models in the object recognition applications. It is
worth noting that the first four methods are networks designed
for general object recognition, and the last five are models used
for ship target recognition in remote sensing images in recent
years.

To clarify the application effect of different recognition meth-
ods, the faster R-CNN, R3Det, and ReDet are selected for result
comparison display. The identification results of different mod-
els on the HRSC2016 dataset are given in Fig. 7. Specifically,
on the HRSC2016 dataset, faster R-CNN method is robust to
images containing shadow interference through deep network
training. However, due to the lack of fine extraction strategies for
multiscale features, it is easy to generate erroneous recognition
and misses detection for docks with similar target characteris-
tics and ships with relatively low contrast to the surrounding
environment. R3Det method applies a multiscale feature skip
connection strategy, which can better utilize target features with
different sampling levels compared to faster R-CNN. Therefore,
it effectively identifies partially occluded ship targets (as shown
in the second scene of the cth row), and the overall confidence
level of recognition is also improved. The ReDet method basi-
cally detects all ships, but there are certain limitations on the
discrimination performance of destroyers, frigates, and cruis-
ers with similar shapes and lengths. Our method has the best
recognition performance because it considers the discrimination
degree of different types of targets and focuses on the differences
of ships with the same category.

For the established dataset, as shown in Fig. 8, in the first scene
where ships are densely arranged, the considered three methods
all fail to detect relatively small-scale submarines, and they
have errors in determining the types of multiple destroyers and
frigates. In contrary, despite a missed detection, the recognition
quantity and accuracy of our method are still superior to other
algorithms compared. In the second scene, for ships obscured by
thin clouds, the three comparative methods all detect the position
of the objects, but there are errors in the judgment of the type
of the targets, and our method can correctly identify the ships.
In the third scene with local shadows, although the considered
three methods all detect multiple submarine targets, they all miss
detection for targets in the shadow of the dock. Our method takes
into account the mining of target multiscale information and the
learning of target uniqueness features, thus correctly identifying
all ship targets. The quantitative evaluation results of the two
datasets are further demonstrated in Tables IV and V. Comparing
the recognition results of different types of ships, it can be
found that the recognition probability of submarines is relatively
low, while that of aircraft carriers, destroyers, and cruisers is
relatively high. This is mainly because submarines with small
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Fig. 7. Identification results obtained by our method and the baseline approaches on the HRSC2016 dataset. (a) Input image. (b) Faster R-CNN. (c) R3Det.
(d) ReDet. (e) Proposed method. (f) Ground truth.
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Fig. 8. Identification results obtained by our method and the baseline approaches on the established dataset. (a) Input image. (b) Faster R-CNN. (c) R3Det.
(d) ReDet. (e) Proposed method. (f) Ground truth.



HU et al.: SHIP IDENTIFICATION VIA ADJACENT-BRANCHED SALIENCY FILTERING AND PRIOR REPRESENTATION-BASED CLASSIFICATION 15021

TABLE III
EVALUATION RESULTS OF ABLATION EXPERIMENTS ON THE HRSC DATASET

TABLE IV
QUANTITATIVE EVALUATION RESULTS ON THE HRSC2016 DATASET

TABLE V
QUANTITATIVE EVALUATION RESULTS ON THE ESTABLISHED DATASET

size and similar appearance to the sea color are more difficult to
identify types, while aircraft carriers and amphibious ships with
large and medium size are easier to perceive. Moreover, the
overall recognition accuracy of the Whidbey island-class ship is
low due to the small number of training samples, which makes
it difficult to fully train the network model. In addition, it can
be found from the evaluation index results that our algorithm
obtains the highest average accuracy and the lowest FAR on
the two datasets. Based on the above analysis, it can be con-
cluded that our method can achieve state-of-the-art performance
compared to other methods in complex scenes, and has better
robustness to scene elements such as shadows, occlusion, and
dense arrangement.

V. CONCLUSION

In this article, we propose a ship identification method via
adjacent-branched saliency extraction and prior representation-
based classification, which is capable of achieving high-
accuracy type recognition performance for typical ship targets
in occlusion and shadow application scenes. First, a feature
extraction network based on adjacent branch fusion is utilized
to extract suspected salient regions, which consists of IIM and
ISM module. By applying the extraction structure, feature maps
with small semantic differences are fused to enhance the edge
details and semantic information of multiscale ships, signifi-
cantly highlighting candidate target regions with relatively less
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false detection. Then, a classification method based on SR
learning is proposed, which can integrate the low-rank and
intraclass characteristic prior into the classification strategy,
effectively improving the classification performance under com-
plex environmental interference conditions. Finally, extensive
experiments are conducted on the HRSC2016 dataset and the
established dataset, the superiority of the proposed method is
verified through a comparison with representative identification
methods.
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