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TIMF-Net: Temporal Interaction and Multiscale
Fusion Networks for Remote Sensing

Change Detection
Shuo Wang, Zhiqing Zheng , and Jinjiang Li

Abstract—In recent years, the field of remote sensing change
detection (RSCD) has experienced transformative advancements
through the application of convolutional neural networks (CNNs).
However, inconsistencies in image quality, noise, and pseu-
dochanges caused by variations in illumination, climate, and sur-
face conditions due to different acquisition times pose significant
challenges. Addressing these issues, this study increases traditional
RSCD methodologies by introducing a novel temporal interaction
and multiscale fusion network (TIMF-Net). TIMF-Net incorpo-
rates a temporal interaction and difference enhancement module
(TIDEM) that effectively extracts and augments change informa-
tion within images. This module deeply integrates temporal infor-
mation through a weighted fusion strategy, not only capturing the
juxtaposition and superposition relationships between images but
also unraveling complex feature representations to ensure accurate
alignment and coupling of features across different periods. Addi-
tionally, we propose a multiscale global-aware (MSGA) module,
which attends to both local details and global contextual informa-
tion, integrating pixel-level features and demonstrating heightened
sensitivity to multiscale changes such as path alterations, water
fluctuations, and agricultural variations. TIMF-Net outperforms
mainstream and state-of-the-art methods on three datasets, achiev-
ing an F1 score of 91.96% and intersection over union (IoU) of
85.12% on the LEVIR-CD dataset, an F1 of 93.37% and IoU of
87.56% on the WHU-CD dataset, and an F1 of 87.12% and IoU of
77.19% on the GZ-CD dataset, with 27.64 M Params and 42.8 G
FLOPs.

Index Terms—Attention mechanism Transformer, building
change detection (BCD), dual graph-convolution module, high-
resolution remote sensing (RS) images.

I. INTRODUCTION

B ITEMPORAL remote sensing change detection (RSCD) is
a pivotal concept within the discipline of remote sensing,
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involving the analysis of satellite imagery captured over a
specific terrestrial area at two distinct temporal points. The
crux of this concept rests on the utilization of paired remote
sensing imagery—constituting a time series dataset comprising
a baseline (or reference) image and a subsequent comparison
image. The baseline image embodies the state of the region at
the initial time point, whereas the comparison image reflects the
status at a later time point. Through the comparative analysis
of these two images, discernible variations in land use [1],
[2], [3], [4], vegetation cover [5], urban expansion [6], [7],
aquatic changes [8], impacts of disasters [9], [10], and shifts
in ecological environments can be identified and quantified.

RSCD constitutes a pivotal analysis of satellite imagery cap-
tured over a specific terrestrial domain at two distinct time points.
This analytical approach seeks to output a binary image delin-
eating the changed regions [11], as depicted in Fig. 1. It tran-
scends mere segmentation, engaging in a sophisticated process
of feature identification. Change detection (CD) inherently deals
with multiple input images, escalating computational demand
exponentially with image quantity, hence the computational
load typically exceeds that of simple image segmentation tasks.
Moreover, discerning pivotal from negligible features is crucial
when analyzing temporal remote sensing images, particularly as
factors like vegetation growth, seasonal transitions, or lighting
variations could induce disparities in feature appearance. Accu-
rate detection hinges on identifying and concentrating on truly
pertinent features.

RSCD encounters numerous challenges. Precise spatial reg-
istration is required for accurate alignment of images from
different periods, compounded by the need for meticulous ra-
diometric correction to account for radiometric discrepancies,
thus ensuring the reliability of analysis. Furthermore, the com-
plexity and variability of land surface features, due to diverse
natural environments and anthropogenic activities, add to the
difficulty of identifying genuine changes. The phenomenon of
pseudochanges warrants vigilance; as seasonal shifts, atmo-
spheric conditions, cloud cover, or inherent image noise could
all mislead change signals. Thus, the selection and extraction of
suitable features are critical, directly influencing the accuracy
and efficiency of CD. These challenges necessitate continual
solutions post-image correction, with new CD algorithms being
proposed and applied over decades. Initially constrained by
computational hardware capabilities, such as GPUs, CD tasks
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Fig. 1. Flowchart of RSCD in dual time zones CD. Satellite images taken at
two different time points are fed into the TIMF-Net network to generate a binary
change map. The unchanged areas are shown in black and the changed areas are
shown in white. Yellow circles indicate detected changes and red circles indicate
unchanged features in the scene. The main purpose here is to detect changes in
buildings.

predominantly utilized traditional machine learning methods
like random forests [12], decision trees [13], and support vector
machines [14] for bitemporal image CD and pixel classification,
generating CD results. While these traditional methods have
realized significant achievements across multiple domains, they
exhibit evident weaknesses in handling complex targets and en-
vironmental noise within images, especially limited in accuracy
for target recognition and detection. Nonetheless, these early
studies laid the groundwork for subsequent breakthroughs with
deep learning technology.

The advent of deep learning technology has significantly ad-
vanced remote sensing image processing. Previously, CD relied
heavily on algebraic operations to analyze data differences,
suitable for low-resolution data. With technological progres-
sion, CNN-based methods began to supplant traditional algo-
rithms [15], [16], exhibiting immense potential, particularly in
processing high-resolution images and excelling in capturing
rich and abstract local contextual features, thus becoming a
driving force for domain exploration [17]. Beyond CNNs, other
models like GANs [18] and GCNs [19] have entered the realm of
CD, optimizing data modeling and feature extraction. Some ex-
cellent ways of mixing pixels are also shown [20].There are also
many advanced deep learning methods [21], [22], [23].These
algorithms, with their stellar performance, have promoted end-
to-end change recognition in remote sensing data, streamlining
the processing workflow. Deep learning has not only achieved
tremendous strides in algorithmic innovation but also displayed
characteristics of low resource occupancy in resource utiliza-
tion [24], [25], [26].

With the evolution of Transformer models [27], their unique
self-attention mechanism plays a pivotal role in RSCD. Capable
of capturing global contextual information, Transformers com-
prehend interpixel relationships across the entire image [28],
[29], enabling significant performance enhancements in pro-
cessing multiscale features and fusing multitemporal remote

sensing data. Transformers have also refined the model’s ca-
pability to discern boundaries of change areas. For instance,
BIT [30] has enhanced CD accuracy and boundary preci-
sion via Transformers, augmenting semantic feature informa-
tion. Their flexible architecture allows for integration with
other technologies, suited for monitoring complex and dynam-
ically changing terrestrial environments, set to transform tra-
ditional RSCD methods, offering more efficient and accurate
solutions.

Current CD approaches often emphasize feature extraction
from single images or rudimentary differential feature extrac-
tion [31], neglecting the spatial feature interaction of bitemporal
change images, leading to some information wastage and feature
loss. Moreover, when contending with large-scale scene changes
and disturbances such as lighting discrepancies, the reliability,
robustness, and multilevel difference capture capacity for detect-
ing various scale targets require comprehensive consideration.
Hence, an efficient and effective model is necessitated, one that
consistently focuses on the capture of differential and scale-
diverse feature characteristics. Feature interaction facilitates the
propagation of information between bitemporal images, aiding
the shared spatial information. At last, considering the imbalance
conundrum between foreground and background categories,
especially on local and global feature information, it becomes
imperative to concentrate attention on mutually guiding change
areas. By propagating local and global features of bitemporal
images to one another, the model can regulate attention distri-
bution while maintaining its features, thereby better managing
spatiotemporal feature differences.

In order to solve the above problems, we propose a new
temporal interaction and multiscale fusion network (TIMF-Net)
network, as shown in Fig. 2. Specifically, we used PVTv2 [32]
for single image feature extraction, and the PVTv2 model im-
proves the robustness and effectiveness of the model by virtue
of its multiscale feature fusion, optimized computational effi-
ciency, and the attention mechanism, which is much better com-
pared to the original Transformer’s superior performance and
wider application potential, and also surpasses the traditional
CNN [33] model in global context understanding and feature
capture. In addition, we propose a novel feature interaction
fusion method: temporal interaction and difference enhancement
module (TIDEM). TIDEM not only considers the superposition
and difference information between two feature maps but also
incorporates the multiplicative relationship and optimal value in-
formation between them. Inspired by the need for temporal data
processing, particularly the surface changes observed in remote
sensing imagery, TIDEM enhances the recognition accuracy and
efficiency of remote sensing imagery under complex environ-
mental conditions by reinforcing multiple feature interactions
between time points. For example, the multiplication operation
helps to reinforce persistent significant changes, while the max-
imum operation helps to resist episodic noise or environmental
disturbances. The combined use of these methods improves
detection accuracy and reduces false alarms and missed de-
tections. Furthermore, TIDEM enhances the difference of the
four feature fusions after global and local feature extraction and
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Fig. 2. Illustrates the proposed method framework. Utilizing the PVTv2-b1 algorithm, basic features are extracted from a pair of remote sensing images.
Subsequently, at the corresponding feature levels, TIDEM module engages in feature temporal interaction and enhancement. The enhanced features are then
captured by the MSGA module to incorporate multiscale feature information, thereby improving the accuracy of CD. Finally, the refined change map is obtained
through polishing by the DA module.

redistributes the weights of dual-time image features, allowing
the model to utilize complete information from different time
points rather than relying on a single data source. This ap-
proach increases the information available for decision-making
and helps form a more comprehensive judgment of change.
Subsequently, we designed a multiscale global perception mod-
ule, multiscale global-aware (MSGA), addressing the need for
multiscale and detailed feature representation in remote sensing
images. MSGA combines pixel-level attention and multiscale
channel attention, emphasizing the local and global parts of the
image regarding change and subtle change capture. The channel
attention mechanism further refines the feature weights at each
scale, enhancing the network’s ability to understand and process
important features at the pixel level. Finally, the proposed de-
coding attention (DA) module strengthens the model’s ability to
perceive critical change regions. The introduction of the atten-
tion mechanism at the decoding stage enhances the model’s sen-
sitivity to spatial features, making it more accurate and effective
in recovering image details, especially when dealing with fine
and complex targets. In summary, the main contributions are as
follows.

1) We have developed a module named TIDEM, which
enhances feature interaction through various operations,
significantly improving the detection capabilities and ac-
curacy for terrestrial changes. Ultimately, by stacking dif-
ference enhancement and attention-guided strategies, we
have achieved precise and effective recognition of change
information in remote sensing imagery.

2) We introduced an MSGA module, which, through the
extraction of interactive information across channels and
scales, effectively captures key features at different detail
levels within the image. Furthermore, through a pixel-level
attention mechanism, this module models and focuses on
the significant pixels involved in changes within remote
sensing imagery.

3) We designed a DA module that notably enhances the
spatial feature discrimination and target detail restoration
capabilities during the crucial decoding phase.

The rest of this article is organized as follows. Section II
briefly reviews related work. The details of our proposed frame-
work are described in Section III. Comprehensive experimental
evaluations are conducted in Section IV. Finally, Section V
concludes this article.

II. RELATED WORK

A. Traditional CD Methods

Over the past few decades, CD has rapidly advanced to meet
the diverse demands of various application scenarios. This evo-
lution has seen a transition from basic algorithmic approaches
to more sophisticated machine learning methods, representing
significant progress in the field. The primary task of RSCD
involves analyzing disparities between remote sensing images
captured at different points in time to discern terrestrial alter-
ations. Typically, this process entails comparing two images,
often through direct subtraction, and then determining areas of
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Algorithm 1: TIMF-Net.
Input: X1,X2.(bitemporal image)
Output: O.
// Step1 : Use the PVTv2-b1 to fuse multiscale features in
the encoder

for i in 1,2 do
for i in 1,2,3 do
Xi,j = PVT(Xi);

end
end
// Step2 : Use the TIDEM module to Calculate the feature
Interaction

for i in 1,2,3 do
Xm = TIDEM(Xm,1, Xm,2);
// Step3 : Use the MSGA module
X ′

m = MSGA(Xm,1, Xm,2);
end
// Step4 : Use the DA module
Xn = DA(X ′

2, X
′
3);

X ′
n = DA(X ′

1, Xn);
// Step5 : obtain the result
O = Conv(X ′

n)

change based on the variance in pixel values within the resul-
tant differential image, typically set by predefined thresholds.
For instance, Mahmoudzadeh [34] utilized threshold-based CD
methods, wherein they compared remote sensing images from
two different time periods and evaluated pixel value changes
based on predetermined thresholds. Coppin et al. [35] employed
spectral and spatial information extracted from remote sensing
images, such as texture and morphology, in conjunction with
machine learning algorithms or empirical models to identify
changes. Similarly, Swain and Davis [36] conducted land cover
change analysis using multispectral remote sensing data, em-
ploying image classification to compare images from different
time periods and subsequently discern changes based on vari-
ations in classification results. While these traditional methods
have been essential in RSCD research, they often fell short in
fully leveraging the complex information inherent in remote
sensing data, leading to inadequate accuracy and robustness in
CD.

With time, the application of machine learning technology
in RSCD has become increasingly widespread, significantly
enhancing the automation and accuracy of CD. For instance, Bo-
volo and Bruzzone [37] applied support vector machines for un-
supervised CD in large-area multitemporal images, effectively
assessing the damage caused by tsunamis. Gómez et al. [38]
utilized the random forest method for land cover classification
of optical remote sensing time series data. Liu and Chen [39]
classified feature vectors using the K-nearest neighbors algo-
rithm to determine the change status of each pixel, evaluating
the algorithm’s performance by comparison with actual change
images. Despite the efficiency and accuracy improvement of
machine learning technology [40] in the remote sensing field,
challenges such as insufficient generalization ability, poor model

interpretability, high sensitivity to data quality and feature se-
lection, and dependence on substantial computational resources
remain.

B. CNN Methods

Since their introduction, convolutional neural networks
(CNNs) [41] have demonstrated their powerful capability in
image processing and computer vision fields, particularly in
feature extraction. CNNs, with their unique convolutional layer
structure, can effectively learn useful feature representations
automatically from raw images, which is particularly important
in processing complex remote sensing imagery. The complexity
of remote sensing images, including but not limited to their
high dimensionality and rich geographical information features,
necessitates a powerful tool capable of capturing and under-
standing this complexity, for which CNNs have been widely
applied [42].

In RSCD, CNN feature fusion technology has proven its sig-
nificance in enhancing detection accuracy and efficiency. CNN
feature fusion integrates data from different time points, sensors,
or scales of remote sensing images, deeply mining and utilizing
the complex spatial and spectral information contained within
these data. For example, processing multitemporal images with
CNNs can effectively capture subtle features of terrestrial
changes over time, thereby improving CD accuracy [43]. Fur-
thermore, fusing features from optical and SAR images not only
enhances the model’s ability to recognize different types of land
cover but also improves detection performance under complex
environmental conditions (e.g., cloud coverage) [44]. Multiscale
feature fusion techniques, such as integrating deep and shallow
features in CNNs, further enhance the capture of surface detail
changes [45], allowing the model to understand both the global
structure and local details of images. Recent advancements in
deep learning have introduced new feature fusion strategies,
such as attention-based methods, focusing the network more on
regions with significant changes [46], [47], thus, improving the
accuracy and robustness of CD tasks. These advancements not
only propel the development of RSCD technology but also offer
new directions and methods for future research in remote sensing
image processing and analysis. Despite significant progress in
current research in handling multitemporal remote sensing data,
where images from different time points contain crucial clues
for change information, existing methods have not effectively
fused information from these different time points, leading to
inaccurate recognition or missed detection of change areas.

C. Transformer-Based Models

The application of the Transformer model in the field of RSCD
has made significant progress in recent years. Its self-attentive
mechanism is widely recognized as particularly effective in
capturing long-range dependencies in image sequences, which
is especially important for analyzing remotely sensed data over
time [48]. The Transformer model shows great potential in CD
tasks due to its high efficiency in processing remotely sensed
data and its sensitivity to subtle temporal changes. Yuan [49]
et al., by combining a novel network with UNet architecture
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and Transformer model, this combined approach exploits the
powerful feature extraction capability of UNet and the global
self-attention mechanism of Transformer in order to overcome
the limitations of traditional CNN networks in modeling global
dependencies. Xu et al. [50], based on the Transformer’s remote
sensing image CD method, significantly improved the ability to
distinguish pseudochanges and the overall detection accuracy by
introducing visual tokenization, progressive visual Transformer,
and multimodule fusion. In addition, efficient Transformer vari-
ants are being developed to adapt to the processing needs of
large-scale remote sensing data and reduce the computational
cost while maintaining high detection performance.

In recent years, the fusion of CNNs and Transformers has
demonstrated advanced performance in RSCD tasks. For ex-
ample, Chen et al. [30] introduced the BIT network, which
incorporates Transformer encoders and decoders for model-
ing spatiotemporal context and feedback into the pixel space.
Specifically, the BIT module first utilizes a Transformer en-
coder to model spatiotemporal context based on abstract feature
mappings from CNNs. In another study, Feng et al.’s [51]
ICIF-Net combined the strengths of CNNs and Transformers
through internal scale-cross interaction and interscale feature
fusion, effectively capturing local and global features and ad-
dressing alignment issues caused by downsampling operations
in traditional networks.

III. METHODOLOGY

A. Framework Overview

At the core of our study, we meticulously elaborate on the
network’s key architectures, including the TIDEM module, the
MSGA module, and the DA module, as illustrated in Fig. 2. The
details are as follows.

We have selected the PVTv2-B1 from the Transformer archi-
tecture as our core backbone network, owing to the PVTv2’s
design philosophy highly aligning with the requirements of
CD tasks: the sensitive capture of subtle but crucial changes,
effective handling of objects of various scales, and robustness to
environmental changes (e.g., lighting variations, seasonal tran-
sitions). Specifically, for PVTv2-B1, we applied multiscale fea-
ture mappings with channel numbers of 64 × 64, 128 × 128, and
320 × 320 in its first three stages, providing a solid foundation
for capturing and processing change phenomena across various
scales. Building upon this foundation, we employ the temporal
interaction and difference enhancement (TIDEM) module to
precisely process and fuse the differences in bitemporal features
at different levels. The coupled features processed by TIDEM
are then fed into the MSGA module, where features at multiple
scales are comprehensively enhanced and contextually adjusted,
while retaining key geographic and environmental information.
Finally, through the DA module, we process and integrate infor-
mation from different levels, facilitating interactive processing
of the encoder input feature maps. The learning process is then
supervised by a deep supervision mechanism, specifically, each
deep supervision layer outputs a result processed through up-
sampling and convolution, culminating in an accurate prediction
image generated via argmax operation.

Fig. 3. Illustrates the fusion interaction process. T1 and T2 represent feature
images from different time points, and Fusion denotes the result of the fusion
interaction.

B. Temporal Interaction and Difference Enhancement Module

In RSCD tasks, relying solely on simple difference operations
or dimensional concatenation often results in interference from
seasonal changes or lighting effects, making it difficult to accu-
rately capture subtle changes. Existing time interaction methods
also do not fully utilize the temporal dimension information.
Considering the influence of irrelevant factors such as atmo-
spheric conditions and cloud cover when calculating difference
images using bitemporal images, which may disrupt the numer-
ical changes in the image pixels and affect the analysis of dif-
ferences between the two images, we propose a time interaction
and difference enhancement framework incorporating a fusion
interaction module (FIM) and a difference enhancement (DE)
module. This framework enhances the diversity and expressive-
ness of features through four interaction techniques. The first
method involves channel stacking to capture features common
to both the baseline and subsequent images, allowing models or
algorithms to access the complete data from both time points for
a more comprehensive analysis of change. The second method
uses multiplication operations, It naturally suppress static or un-
changed background information by producing relatively small
products for areas without significant changes. The third method
employs absolute value subtraction to highlight areas with sub-
stantial changes, ensuring that regions with only minor changes
are naturally suppressed. The fourth method utilizes a maximum
value operation, It can resist disturbances caused by shadows or
uneven lighting. These factors typically do not produce high
values in images, so the maximum value selection naturally
ignores these lower readings. Additionally, important features
such as the edges of buildings or the boundaries of water bodies
are often more prominent due to higher reflectance. By fusing
these four types of features, we enhance the complementarity of
the features. As shown in Fig. 3, we use a heatmap to vividly
demonstrate the results of each interaction operation in the
shallow features, providing a more intuitive display of how the
DE module can perform feature extraction and enhancement,
Following this, global and local feature weights are derived and
assigned to both the baseline and subsequent images to suppress
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Fig. 4. Illustrates the process of the difference enhancement module.

irrelevant information and highlight change features, thereby
enhancing performance in complex environments, as illustrated
in Fig. 4.

This module takes the scene features captured at two distinct
time points T1 ∈ RH×W×C and T2 ∈ RH×W×Cas input, where
C denotes the number of channels and H and W denote the
height and width, respectively. First, each scale feature T1

and T2 of the PVT output is processed twice through a 3 × 3
convolution module for shallow feature deepening, as shown in
the ConvBlock of Fig. 2 After processing, the outputs of the
convolutional layers are connected back to the original inputs
T1 and T2 via residual concatenation (where R denotes ReLU
and B denotes BatchNorm2d), which can be articulated by the
following, resulting in the enhanced features X1 ∈ RH×W×C

and X2 ∈ RH×W×C :

X1 = R (B (Conv 3× 3 (T1)))×2

X2 = R (B (Conv 3× 3 (T2)))×2 . (1)

Subsequently, through the FIM, as depicted in Fig. 3, we process
features X1 and X2 by performing channelwise concatenation,
elementwise multiplication, elementwise absolute difference,
and feature maximization operations, which can be articulated
by (2), yielding four features Xc, Xm, Xd, and Xmax, each
with dimensions∈ RH×W×C . These four features are then fused
along the channel axis, and a 3 × 3 convolution operation scales
them back to the original number of channels to produce Xf ∈
RH×W×C , as represented by (3)

Xc = R (B (Conv 1× 1 (Concat (X1, X2))))

Xm = X1 ×X2

Xd = |X1 −X2|
Xmax = Max (X1, X2) (2)

Xf = R (B (Conv 3× 3 (Xc, Xm, Xd, Xmax))) . (3)

Next, feature Xf ∈ RH×W×C is introduced into the DE unit,
as shown in Fig. 4, where feature Xf is further refined and
enhanced through both local and global attention mechanisms.
In the local attention branch, channel compression is achieved
by 1 × 1 convolutional layer, batch normalization and relu ac-
tivation function are used to improve the nonlinear expressive
power, and then the number of channels is recovered by 1 × 1
convolutional layer to obtain Xf1 ∈ RH×W×C . In the global
attention branch, adaptive average pooling is used to generate
global features to capture the overall spatial distribution statistics
of the scene, and the same channel compression and recovery
is performed to obtain Xf2 ∈ RH×W×C . The two branches are
then each fused by an additive operation with initial features
T1 and T2. Subsequently, the features ∈ RH×W×C obtained by
fusing the two branches through additive operations are fused
with the initial features T1 and T2 using the Sigmod function
and they use residuals to obtain Xf1

′ ∈ RH×W×C and Xf2
′ ∈

RH×W×C . Subsequently, the bidimensional temporal features
are spliced in the channel dimensions, and the spatial resolution
of the feature maps is reduced by using a 3 × 3 convolution to
maintain the spatial resolution of the feature maps to get Xf

′.
as expressed in (4). This methodology not only preserves the
original feature information but also enhances its representa-
tion, thereby improving the detection capability for changes,
effectively highlighting key information while suppressing
background noise

X ′
f1

= δ (Xf1 +Xf2)× T1 + T1

X ′
f2

= δ (Xf1 +Xf2)× T2 + T2

X ′
f = R

(
B
(
Conv3× 3

(
Concat

(
X ′

f1
, X ′

f2

))))
. (4)

Ultimately, featureXf is fused with the channel-reduced feature
through residual connections, further enriching the diversity and
information content of the features. The module outputs the
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Fig. 5. Depicts the process of the MSGA module, involving pixel-level fusion of features xt and xs obtained through multiscale and channel fusion.

result Xs ∈ RH×W×C processed by TIDEM through a 1× 1
convolution layer.

C. Multiscale Global-Aware Module

Multiscale and global awareness are two commonly employed
concepts in computer vision and image processing. Multiscale
processing involves considering an image at various scales
during its analysis. Objects and environmental features with
multiscale characteristics in remote sensing and natural images
often contain rich scene information. Global awareness typically
describes a characteristic of image processing and computer
vision algorithms capable of perceiving and understanding the
entire image or global contextual information provided. In re-
mote sensing image analysis, focusing solely on local informa-
tion may overlook the interconnections between distant objects,
failing to accurately comprehend the global semantic informa-
tion of the image. Hence, we propose MSGA, incorporating
convolution kernels of varying receptive fields and fusing fea-
ture maps from different scales. Concurrently, a channel atten-
tion mechanism is introduced, capturing relationships between
channels across the global context and adjusting the feature
responses of each channel. By fusing multiscale global feature
information with the original feature information at the pixel
level, diverse dimensions, including color, texture, and shape,
are extracted. The amalgamation of these pieces of information
aids in better distinguishing different types of land cover, espe-
cially in complex terrestrial environments. In summary, MSGA
enables the model to capture key feature information in crucial

areas within remote sensing imagery, enhancing the accuracy
of CD.

Within MSGA, we designed a parallel structure, as illustrated
in Fig. 5, treating the channel attention module and the multiscale
module as two concurrent processing streams. Initially, the
feature map is fed into the channel attention module, undergoing
average pooling and max pooling, followed by passage through
two 1 × 1 convolution layers (equivalent to two fully connected
layers) for each channel. As demonstrated in (5), nonlinearity is
introduced between the first and second fully connected layers
via the relu activation function. After processing through the
second fully connected layer, the outputs of the two channel
attention groups, Xs1 and Xs2, are summed to produce l1 ∈
RH×W×C

Xs1 = Conv1×1 (R (Conv 1× 1 (AvgPool (Xs))))

Xs2 = Conv1×1 (R (Conv1× 1 (MaxPool (Xs))))

l1 = Xs1 +Xs2. (5)

The feature map data is then input into the multiscale module,
which defines a series of convolution layers of varying scales.
This includes variations in convolution kernel sizes, such as
5 × 5 grouped convolutions, 1 × 7 grouped convolutions, and
7 × 1 grouped convolutions, among others. These convolution
operations are independently computed across channels to ex-
tract spatial relations for each channel individually. The out-
come from the 5 × 5 convolution layer, along with the results
M1,M2,M3 obtained from three different convolution opera-
tions, are processed in parallel across the channel dimension, as
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indicated by the following:

M = GConv 5× 5 (Xs)

M1 = GConv7× 1(GConv1× 7(M))

M2 = GConv11× 1(GConv1× 11(M))

M3 = GConv13× 1(GConv1× 13(M))

l2 = B (Conv1×1 (Concat (M,M1,M2,M3)) . (6)

Subsequently, the information from different channels is com-
bined and normalized through a 1 × 1 convolution layer and
normalization, where the resultant outputs l2 ∈ RH×W×C and
l1 ∈ RH×W×C are summed to generate the feature fusion Xt ∈
RH×W×C . Features Xt and Xs are initially augmented with a
new dimension X ′

t ∈ R1×H×W×C and X ′
s ∈ R1×H×W×C , and

then concatenated along this new dimension, as depicted in (7),
forming a feature map stack encompassing two time points. This
provides the model with a novel perspective for a more nuanced
understanding and analysis of remote sensing data. Here, Re
denotes Rearrange, which merges the temporal axis with the
channel axis∈ R1×H×W×(C×2), offering a tensor for subsequent
convolution layers as input

X ′
t = Unsqueeze (Xt)

X ′
s = Unsqueeze (Xs)

R = Re (Concat (X ′
t, X

′
s))

l3 = GConv7× 7(R)

Xt = δ (l3)×Xs +Xs. (7)

A 7 × 7 grouped convolution is utilized to process this merged
feature map, producing the final attention-weighted feature map
l3 ∈ RH×W×C . Each channel is assigned a weight through the
δ function, effectively reweighting the features by multiplying
the weights with the input features themselves. This captures
extensive contextual information to compute attention weights
for each pixel, dynamically assessing the importance of each
pixel within the image. This approach enhances the model’s
capability to capture and analyze the nuanced changes in land
cover between two time points. Finally, information fusion and
residual connections with the outputs of the two modules and
the original features not only enhance the focus on significant
features but also dynamically adjust feature representations
while preserving the original information. This improves the
model’s capacity to process complex data and enhance predictive
performance.

D. DA Module

In the task of RSCD, it is imperative to integrate both low-
level features, rich in spatial details providing precise spatial
localization information, and high-level features, offering robust
classification and recognition capabilities with an understanding
of semantic information of objects. Hence, through resolution
fusion—merging features of different resolutions–the model
can simultaneously leverage spatial granularity and semantic
comprehension, thereby enhancing the performance of the task.

We have developed a dual-source attention block and spatio-
temporal coordinate awareness fusion module, capable of deeply
merging decoded features across different levels, emphasizing
key information from a high receptive field, and ensuring the
prominence of crucial information while suppressing nonessen-
tial details. This not only augments the model’s focus but also
improves the representativeness of features.

In response, we introduce a novel DA module, as depicted
in Fig. 6. Within the DA, we incorporate a dual-source atten-
tion (DSA) block and a spatio-temporal coordinate awareness
fusion module. Initially, we input features of both high and low
resolutions into the DSA. The first step involves deconvolving
feature Xh ∈ R

H
2 ×N

2 ×(C×2)nd passing feature Xl ∈ RH×W×C

through a 1 × 1 convolution layer followed by normalization,
then summing them and applying the nonlinear activation func-
tion to obtain feature C. Subsequently, feature C s processed
through a 1 × 1 convolution layer and δ function, and multiplied
by the input X ′

h to produce the output X ′′ ∈ RH×W×C of the
DSA, as shown in (8). This weighted mechanism enhances fea-
tures with higher weight values at corresponding locations while
suppressing those with lesser attention values, highlighting key
areas of the feature. This approach aids in better preserving the
detailed information of the original image, thereby improving
task-specific performance

X ′
h = B (DeConv (Xh))

C = R (X ′
h +Xl)

X ′
h = δ(B(Conv1× 1(C)))×X ′

h. (8)

Next, features Xl and X ′′
h are concatenated along the channel

dimension, and a combination of a 1 × 1 convolution layer,
batch normalization, and activation layer yields the fused feature
D ∈ RH×W×C , facilitating feature extraction and spatial infor-
mation processing, as illustrated in (9). The result is then input
into the spatio-temporal coordinate awareness fusion module
for adaptive average pooling operations with respect to height
Xx ∈ RH×W×1 and width Xh ∈ RH×1×W . The two feature
values are then dimensionally concatenated and sliced, pro-
cessed through a 1 × 1 convolution, and δ to derive the attention
map’s weights. Features Xl and X ′′

h are adjusted using attention
weights to produce Xl1, X ′

h1, and the features are elementwise
added and passed through a 1 × 1 convolution group and D for
a residual connection to obtain the final result Xn ∈ RH×W×1.
This preserves the original feature information while incorpo-
rating attention-enhanced areas of focus

D = R (B (Conv 1× 1 (Concat (X ′
h, Xl))))

Xx = AvgPoolx(D), Xh = AvgPoolh(D)

Xn = R (B (Conv 1× 1 (Concat (X ′
h1, Xl1)))) +X ′

h. (9)

By paying attention to the features at each coordinate, the
decoder learns to balance between varying degrees of detail
and semantics, aiding in restoring the original input scale while
retaining more useful information. Finally, an upsampling and
convolution block, as shown in the following, outputs the final
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Fig. 6. DA module.

prediction image Xout ∈ RH×W×1:

X ′
n = Un samplex (Xn)

X ′′
n = R (B (Conv 3× 3 (X ′

n)))

Xout = B (Conv 3× 3 (X ′
n)) . (10)

E. Loss Function

In the field of RSCD, the application of the cross-entropy
(CE) loss function offers significant advantages. As a method
to measure the discrepancy between the predicted probability
distribution and the actual distribution, the CE function precisely
calculates the inconsistency between model outputs and true
labels, effectively guiding the learning process of the model.
Its primary advantage lies in providing continuous and sensitive
feedback, ensuring accurate CD in the complex scenarios of
remote sensing imagery. Particularly in handling highly imbal-
anced class distributions, the CE function increases focus on
minority classes by penalizing incorrect predictions, driving the
model towards optimization and thereby enhancing the overall
performance of RSCD tasks. The loss function is defined as
shown in the following:

L =
1

H0 ×W0

H,W∑

h=1,w=1

l (Phw, Yhw) (11)

where l(Phw, y) = − log(Phwy) denotes the CE loss, Phw and
Yhw represent the labeled and predicted pixel values, respec-
tively. In our network architecture, we employ a deep supervision
multiscale loss function strategy, optimizing model performance
through the introduction of three different scale auxiliary losses.
Based on historical experience, the weights of these auxiliary

losses have been meticulously adjusted to 0.5 and 0.2, the aim
is to achieve model optimization by further distributing the
different losses of the deeply supervised output with different
weight values, respectively. Consequently, the comprehensive
loss function L of the model can be described as illustrated in
(12). The formulas used here for Loss1,2,3 are all computational
procedures shown in (11)

L = Loss1 +0.5Loss2 +0.2Loss3 . (12)

IV. EXPERIMENTS

A. Datasets

To confirm the superior performance of TIMF-Net, we con-
ducted tests on three bitemporal RSCD datasets.

The LEVIR-CD [52] dataset, a new large-scale remote sens-
ing building CD dataset, comprises 637 pairs of high-resolution
(0.5 m/pixel) Google Earth image pairs, each measuring 1024 ×
1024 pixels, with a temporal span of 5–14 years documenting
significant land use changes, especially in building growth. This
dataset covers various types of buildings, including villas, high-
rise apartments, small garages, and large warehouses, focusing
on changes related to buildings, both growth and decay. LEVIR-
CD contains 31 333 independent building change instances, aim-
ing to provide a new benchmark for evaluating CD algorithms,
particularly those based on deep learning. The 637 image pairs
were processed and randomly cropped to obtain nonoverlapping
images with a resolution of 256 × 256 pixels. These images were
then allocated to the test, training, and validation sets in a 2:7:1
ratio.

The WHU-CD [53] dataset, developed by Wuhan Univer-
sity, aims to advance CD technology in the remote sensing
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field, with a particular emphasis on surface changes during
urbanization processes. It meticulously records the urban ar-
chitectural changes following the magnitude 6.3 earthquake
in Christchurch, New Zealand, in 2011. By including high-
resolution remote sensing image pairs before and after the earth-
quake, WHU-CD offers firsthand visual material for researchers
to analyze and understand the impact of natural disasters on
urban infrastructure. Large image pairs were segmented into
256 × 256 pixel blocks, randomly divided into 6096 for training,
762 for validation, and 762 for testing.

The GZ-CD [54] dataset is a high-resolution satellite imagery
CD dataset with a spatial resolution of 0.55 m/pixel, covering
images of the outskirts of Guangzhou, China, from 2006 to
2019. A total of 19 pairs of images of seasonal changes, with
resolutions ranging from 1006 × 1168 to 4936 × 5224 pixels,
reflecting seasonal variations. These images were collected
through the Google Earth service. We also uniformly segmented
the images into 256 × 256 sizes. These blocks were randomly
divided into training, validation, and test sets: 2834, 400, and
325, respectively.

B. Implementation Details and Evaluation Metrics

1) Implementation Details: The model was built using
Python 3.7 and PyTorch 1.13.1, trained on a machine with 12 G
memory NVIDIA RTX 2080Ti. The network batch size was
10. The CE loss function was employed as the loss function.
AdamW was used as the optimizer, with an initial learning rate
of 0.001, weight decay of 0.01, and beta values of (0.9, 0.999).

2) Evaluation Metrics: To facilitate comparison with other
advanced methods, we selected five evaluation metrics: F1, IoU,
Precision, Recall, OA. Among these, F1 score and IoU are the
primary metrics, defined as follows:

F1 = 2
Precision-Recall

Precision + Recall

Precision =
TP

TP + FP

Recall =
TP

TP + FN

IoU =
TP

TP + FN + FP

OA =
TP + PN

TP + FN + FP
. (13)

C. Contrast Experiment

In the contemporary research landscape, particularly with
the ongoing advancements in RSCD technology, the adoption
of cutting-edge deep learning strategies has become a pivotal
pathway for significantly enhancing detection precision and
efficiency. To demonstrate the superior performance and high
accuracy of our model—TIMF-Net—in RSCD tasks, we metic-
ulously compared it against several models that have achieved
breakthrough accomplishments in this field. We conducted com-
parative experiments using the same general parameters and
environment, ensuring an identical number of epochs. These

models include three dual-stream network structures based
on classical convolution: early fusion convolutional encoder
(FC-EF), fully convolutional Siamese networks for difference
(FC-Siam-Di), and fully convolutional Siamese networks with
concatenation (FC-Siam-Conc); three advanced methods that
incorporate deep convolutional network attention mechanisms:
IFNet, Siamese nested U-Net (SNUNet), DMINet; two in-
novative approaches using Transformer technology: BIT and
ChangeFormer; along with two unique models that merge the
advantages of CNNs and Transformers: feature transformation
network (FTN) and ICIF-Net. The following text briefly outlines
the core concepts of these nine models, revealing their contri-
butions and distinguishing features in the realm of RSCD.

FC-EF [55] is a convolutional encoder structure designed
for early fusion, specifically tailored to process paired input
images. By fusing the features of paired images at an early stage
in the input layer, FC-EF can effectively capture and utilize
the correlational information between these images, thereby
enhancing processing efficiency and model performance.

FC-Siam-Di [55] is a dual-stream network structure based on
a fully convolutional network, aimed at detecting changes by
computing differences between paired remote sensing images.
This model deeply extracts features from images of two different
times, then processes these features to identify changed areas
between the images.

FC-Siam-Conc [55] is a fully convolutional dual-stream net-
work designed for RSCD. Unlike other versions, FC-Siam-Conc
employs a concatenation approach to process paired remote
sensing images after feature extraction.

IFNet [56] is a deep learning framework designed for feature
fusion and analysis of images, especially in fields like remote
sensing image processing and CD. It captures rich spatial in-
formation through multiscale convolutional kernels, achieving
deep integration of image features.

SNUNet [57] is a deep learning architecture specifically de-
signed for complex image segmentation and CD tasks, espe-
cially in the analysis of remote sensing images. Based on the
classic U-Net architecture and employing nesting techniques,
it effectively enhances the capability to capture features of
remote sensing images and the precision in identifying change
areas.

FTN [58] leverages the Swin Transformer as a core feature
extraction tool, effectively capturing rich multiscale feature
information. By combining a pyramid structure with progres-
sive attention modules, FTN accurately processes and analyzes
multilevel information extracted from the backbone network,
focusing meticulously on changed targets.

BIT [30] is a Transformer model for processing bitemporal
images, which translates images into semantic tokens to effec-
tively capture spatio-temporal context. Utilizing the encoder–
decoder of Transformer, BIT significantly enhances CD perfor-
mance with minimal computational resources, even based on a
simple ResNet18 structure.

ChangeFormer [29] is a dual-stream network based on Trans-
former technology for remote sensing image CD, demonstrating
superior performance by integrating multiscale details, surpass-
ing traditional fully convolutional network frameworks.
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TABLE I
RESULTS OF INDICATORS ON THE LEVIR-CD DATASET FOR EACH

COMPARISON METHOD

ICIF-Net [51] combines the advantages of CNNs and Trans-
formers through a Conv Attention module to facilitate interac-
tion between local and global features and employs attention
mechanisms for cross-scale fusion, effectively integrating mul-
tiresolution information. Ultimately, it outputs precise results
through a change prediction head, showcasing a new perspective
on combining CNNs and Transformers.

DMINet [59] combines self-attention and cross-attention in a
single module and introduces a joint-attention (JoinAtt) module
across time and uses subtraction and join operations to achieve
aggregation of multilevel feature differences. This is designed
to improve processing efficiency and optimize the feature inte-
gration process.

AERNet [60]: This network enhances feature extraction of
changes in building structures by using an attentional mecha-
nism to refine edge details. This approach helps to identify and
analyze building changes more accurately, especially in complex
remote sensing images.

SRCNet [61]: This network for CD in remote sensing images,
aiming to fully utilize the spatial relationships in dual-temporal
images. It contains two key modules: the perception and inter-
action module, which improves the accuracy and robustness of
feature extraction through the cross-branch perception mecha-
nism.

On the LEVIR-CD dataset, as illustrated in Table I, we
compared TIMF-Net against other exemplary models, finding it
significantly outperforms the existing advanced models across
multiple crucial performance metrics. It is particularly notewor-
thy that our model exhibits superior Recall, F1, IoU, and OA
scores compared to others, with the most critical F1 and IoU
metrics standing at 91.96% and 85.12%, respectively, markedly
surpassing the second-ranked ICIF-Net by increments of 0.78%
and 1.27%. Furthermore, it also achieves higher Recall and OA
rates than ICIF-Net by 0.58% and 0.06%, respectively. Overall,
our model demonstrates superiority over other advanced algo-
rithms on the LEVIR-CD dataset, a success attributable to our
MSGA module, which offers significant advantages in both local

and global processing across various scales, particularly in edge
analysis and the detection of large buildings. The data in Table I
corroborates the feasibility, effectiveness, and superiority of
TIMF-Net. Among models utilizing pure Transformer or ResNet
as their backbone network, selecting PVTb2 as the backbone
has yielded conspicuous results. Fig. 7 provides an intuitive
comparison of each model, presenting a visual representation of
the differences between generated images and the ground truth
(GT) across different settings. This not only showcases visible
changes along the edges of large buildings but also whether the
model can detect small buildings that are difficult to recognize.
We utilized four colors for visual representation in the images:
black for TN, white for TP, green for FN, and red for FP,
where TN represents true negatives, TP true positives, FN false
negatives, and FP false positives. Six images depicting buildings
of various architectures and styles were selected for comparison.
In Fig. 7(a)–(f), our model notably outperforms others, with
the smallest proportion of red and green areas and the highest
similarity to the actual GT images. Fig. 7(a) and (b) displays
two sets of images featuring buildings with closely spaced,
intricately detailed edges, where our method distinctly excels
in accurately identifying small gaps between buildings while
maintaining the integrity of their edges, unlike the nine compar-
ative methods that exhibit various edge detection errors or fail to
accurately detect narrow areas, resulting in a significantly larger
proportion of green and red areas. Fig. 7(c) and (d) features two
sets of images after large building changes, demonstrating our
method’s ability not only to recognize the overall appearance
and complete features of large buildings but also to accurately
identify some small buildings outside the large building areas,
a feat other methods fail to achieve, lacking completeness and
often missing or incorrectly identifying small buildings. Fig. 7(e)
and (f) showcases two sets of small building scenarios, where
our method’s superiority in the integrity and accuracy of small
targets is evident compared to other models. These comparative
images unequivocally prove our model’s outstanding global and
local advantages on the LEVIR-CD dataset over other models.

On the WHU dataset, as demonstrated by the results presented
in Table II, TIMF-Net achieves an F1 score of 93.37%, an IoU
of 87.56%, an OA of 99.38%, and a Recall of 91.45%, all
surpassing the metrics of other models. Compared to the second-
ranked FTN model, TIMF-Net’s performance is superior, with
a 1.21% higher F1 score, 2.11% higher IoU, 0.21% higher
Recall, and 0.01% higher OA. This exceptional performance
highlights TIMF-Net’s distinct superiority in processing the
WHU dataset. Upon in-depth analysis, we attribute its success
to the effective integration of multitemporal feature informa-
tion by TIMF-Net and its innovative feature fusion technology
that precisely captures the details of change areas. TIMF-Net’s
success in showcasing the impact of natural disasters on urban
infrastructure, especially in complex urban environments and
diverse land cover types, lies in its ability to accurately identify
minor changes and effectively suppress irrelevant information.

Visual comparisons in Fig. 8 clearly reveal TIMF-Net’s
significant progress on the WHU dataset over other models.
Particularly in Fig. 8(a), TIMF-Net successfully avoids mis-
judgments caused by pseudochanges, capturing target changes
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Fig. 7. We compare TIMF-Net with other models in the LEVIR-CD dataset for difference, and use colors such as red and green to interpret the changes, so as to
more intuitively reflect the differences between images of different models and real images, in which white represents TPs, black represents TNs, red represents
FPs, green represents FNs. We chose (a)–(f) pictures to show the visual comparison results of different images in different models.

Fig. 8. We compare TIMF-Net with other models in the WHU-CD dataset for difference, and use colors such as red and green to interpret the changes, so as to
more intuitively reflect the differences between images of different models and real images, in which white represents TPs, black represents TNs, red represents
FPs, green represents FNs. We chose (a)–(f) pictures to show the visual comparison results of different images in different models.

more completely and accurately, whereas other models often
miss key change areas or erroneously mark changes in roof
colors as areas of change. In the cases of large building changes
displayed from Fig. 8(b)–(e), TIMF-Net significantly surpasses
competing models in maintaining target integrity and accuracy,
especially evident in its ability to finely recognize large-area
change targets. Similarly, in scenarios involving small targets,
as shown in Fig. 8(e) and (f), TIMF-Net also significantly
outperforms other methods in edge detection and maintaining
target integrity,validating its efficiency in detail processing and
small target recognition. These visual results not only highlight
TIMF-Net’s technical advantages but further prove its applica-
tion potential and practical value in the field of RSCD.

On the GZ-CD dataset, the results presented in Table III
showcase the exceptional achievements of our model in core
performance metrics, notably outperforming the closely follow-
ing FTN method by a margin of 1.54% in F1 score and 2.4%
in IoU, while also maintaining a leading position in precision,
recall, and oa, with only slight differences compared to the
FTN method. Despite minor shortcomings in individual metrics,
our model demonstrates the most outstanding performance both
theoretically and practically, showcasing superior results on the
GZ-CD dataset. Through a detailed comparative analysis from
Fig. 9(a)–(f), we selected six groups of contrast images with
significant changes in lighting and seasons. Our model con-
sistently outperforms other methods across various scenarios.
In the experiments with significant lighting changes shown in
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Fig. 9. We compare TIMF-Net with other models in the GZ-CD dataset for difference, and use colors such as red and green to interpret the changes, so as to
more intuitively reflect the differences between images of different models and real images, in which white represents TPs, black represents TNs, red represents
FPs, green represents FNs. We chose (a)–(f) pictures to show the visual comparison results of different images in different models.

TABLE II
RESULTS OF INDICATORS ON THE WHU-CD DATASET FOR EACH COMPARISON

METHOD

TABLE III
RESULTS OF INDICATORS ON THE GZ-CD DATASET FOR EACH COMPARISON

METHOD

Fig. 9(a) and (d), other methods failed to detect the changes in
targets, whereas our approach, despite some detection blur, was
still able to identify changes in building clusters. In Fig. 9(b),
our model demonstrated precision and finesse in edge detection
of large targets undergoing significant changes, highlighting
its mastery over complex scenes. In the detection of small
buildings as displayed in Fig. 9(c), our technology overcame
the effects of seasonal changes and made progress in handling
detailed edge processing. Even in the detection of slender target
changes shown in Fig. 9(f), while our model exhibited some
limitations, it still closely matched the actual changes better
than other methods, showcasing its exceptional capability in
capturing subtle variations.

Through experiments across three datasets, we have evi-
denced the superiority of TIMF-Net over other methods, show-
casing its distinct advantages in the field of RSCD. Detailed
comparative images in Fig. 10 further demonstrate our method’s
superiority in handling both fine targets and large-area target
edges, robustly supporting TIMF-Net’s status as an efficient and
reliable CD tool, capable of delivering accurate and consistent
results in a variety of complex environments. The outstanding
performance of our method across different datasets can be
attributed to its innovative temporal interaction and difference
enhancement techniques, especially its ability to effectively
integrate bitemporal features and suppress irrelevant informa-
tion for refined processing of remote sensing images. Despite
TIMF-Net’s clear advantages over other methods, there remains
room for improvement, such as in handling blurred edges and
complex structures as shown in Fig. 9(a) and (f), indicating areas
for further efforts.

Computational and parameter counts: In the summary in
Table IV , we compare in detail the parameter counts, com-
putational costs, and F1 scores and IoU metrics of the various
approaches. Our TIMF-Net model achieves a balanced per-
formance among many competing schemes with a parameter
count of 27.64 M and a computational volume of 42.8 G with a
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Fig. 10. We made a difference comparison between the more detailed images in the comparison images in the three datasets, and we could clearly observe the
changes in the edge region. The images of LEVIR-CD are from Fig. 6(e), the images of WHU-CD are from Fig. 7(e), and the images of (f) GZ-CD are from Fig.
8(c) and (f).

TABLE IV
COMPLEXITY AND NUMBER OF PARAMETERS WITH THE VALUES OF F1 AND IOU ON THE THREE DATASETS

TABLE V
ABLATION EXPERIMENTS WERE PERFORMED ON TIDEM; TIDEM’S FIM AND

DE WERE ABLATED, AND F1 AND IOU WERE SHOWED ON THE THREE

DATASETS

training time of 296.3 s. Despite maintaining a moderate level of
resource consumption, our approach significantly outperforms
other approaches in terms of effectiveness, especially in F1 score
and IoU metrics far outperforming more resource-consuming
approaches such as FTN, ChangeFormer, and so on.

Noise learning: In order to further verify that the method
has better anti-interference and robustness, we use Gaussian
white noise with 10 db interval for 10–30 db variable addition
before image preprocessing, and test it on all the comparison

Fig. 11. Different Gaussian noise.

experiments and TIMF-Net, as shown in Fig. 11, which can be
intuitively observed that the F1 scores of our method in different
phases of the noise are better than the other methods, reflecting
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TABLE VI
ABLATION EXPERIMENTS OF OUR METHOD WERE PERFORMED ON THREE DATASETS; THE TIDEM, MSGA, AND DA MODULES WERE ABLATED AND THE

VALUES OF F1 AND IOU WERE CALCULATED

the fact that TIMF-Net has the best performance and highest
robustness against noise effects.

D. Ablation Experiment

To validate the indispensability of each module in our method,
we conducted ablation experiments on the TIDEM, MSGA, and
DA modules, demonstrating the efficacy and innovation of our
approach. The results, as shown in Table VI, provide a detailed
evaluation.

In the modification of the TIDEM module, we initially re-
placed the FIM module with a basic channel fusion strategy,
employing 1 × 1 convolutional kernels for channel dimension
adjustment. This ensured that while simplifying the model’s
structure, the original channel scale was maintained. The pur-
pose of this step was to remove the original complex fusion
interaction module, simplifying it to a basic fusion process of
bitemporal feature maps, and concurrently omitting elementwise
multiplication, elementwise absolute difference calculations,
and feature maximum value selection operations. Moreover,
the DE module was removed, indicating that when processing
fused features, the model would no longer distinguish between
global and local information. To ensure fairness in the ablation
experiments, weights were assigned to the fused features through
the Sigmoid function, maintaining consistency with the original
weighting method. Results shown in Table V independently
evaluated the ablation effects of the FIM and DE modules.
Removal of the FIM module alone, due to the lack of diver-
sified feature fusion, resulted in a decrease in performance and
accuracy in surface CD across three datasets. Specifically, the
F1 scores decreased by 0.18%/0.24%/0.36%, while the IoU
metrics decreased by 0.3%/0.3%/0.63%, respectively. When the
DE module was removed independently, the absence of global
and local information in the fused features allowed some noise
to emerge, leading to a performance decline across the datasets.
Specifically, F1 scores decreased by 0.15%/0.16%/0.46%, while
IoU decreased by 0.22%/0.44%/ 0.51%, respectively. For the
comprehensive ablation of the TIDEM module, both modules
were simultaneously removed to fully assess the contribution
of the TIDEM module to the overall detection performance of
the model. By executing similar steps as in the single-module

ablation, we aimed to meticulously explore the role and impact
of the TIDEM module as a whole within the model. According to
data presented in Table VI, the absence of the TIDEM module’s
processing led to the model’s inability to effectively identify
complete target changes, causing a significant discrepancy be-
tween the generated images and those processed by our method.
The F1 scores decreased by 0.39%/1.19%/2.71%, and IoU de-
creased by 0.67%/2.07%/4.15%. This difference is attributed
not only to the reduction in parameters but more importantly
to a severe decline in the model’s ability to capture key change
information, when the TIDEM module was added separately
to the baseline model, F1 increased by 3.75%/9.66%/8.1%
and IoU increased by 4.54%/14.01%/11.84%. Therefore, the
absence of the TIDEM module directly impacts the model’s
ability to interpret complex change scenarios, resulting in a dual
loss of precision and robustness in CD accuracy in practical
applications, further confirming the importance of the TIDEM
module in enhancing the overall performance of the model.

In the ablation experiments on the MSGA module, we re-
moved the global and multiscale modules and the pixel attention
module.The MSGA module is unique in its ability to integrate
feature maps at different scales, capture both the global field of
view and the detail level information, and effectively protect the
edge information from being lost through a fine pixel-level ex-
traction mechanism. This integrated processing strategy ensures
that the model is able to balance overall coherence with local
detail accuracy when processing complex images. The removal
of the MSGA module had a significant negative impact on the
model performance. Specifically, on the three different datasets,
the F1 score went down by 0.34%/0.55%/1%, while the IoU met-
rics were even lower by 0.41%/0.6%/1.58%. In the benchmark
model No.7, the F1 score increased by 2.87%/8.36%/5.49%,
while the IoU metrics decreased by 4.35%/12.14%/6.45%.
These data not only show reveal that the model’s ability in global
consistency, multiscale fusion processing, and detail capture is
significantly weakened in the absence of the MSGA module. In
MSGA, in order to demonstrate that pixel attention can better
capture the nuances and important information in the image,
we removed the pixel attention module, as shown in No. 2
of Table VII, and it can be clearly observed that the F1 score
decreased by 0.12%/0.24%/0.82% and the IoU decreased by
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TABLE VII
ABLATION EXPERIMENTS OF OUR METHOD WERE PERFORMED ON THREE

DATASETS; THE MSGA AND PIXEL FUSION MODULES WERE ABLATED AND

THE VALUES OF F1 AND IOU WERE CALCULATED

TABLE VIII
ABLATION EXPERIMENTS WERE PERFORMED ON TIDEM; TIDEM’S DSA AND

SCF WERE ABLATED, AND F1 AND IOU WERE SHOWED ON THE THREE

DATASETS

0.21%/0.2%/0.76%. Besides, in No.3 and No.4 of Table VII,
in order to prove that MSGA is superior to other multiscale
modules, two types of traditional multiscale modules, ASPP [62]
and FPN [63], are selected for comparison, and according to the
experimental results, a single traditional multiscale module lacks
sufficient mechanisms to integrate these features effectively, and
shows a drop in both F1 and IoU compared to MSGA. The
MSGA module not only improves the performance index of
the model, but also provides the model with the depth ability
to understand and process complex images, which is of great
significance to enhance the practical application value of the
model.

In the ablation experiment on DA module, we removed the
DSA block and spatio-temporal coordinate-aware fusion mod-
ule, which fuses the features of different layers at the same
time coordinate information integration processing, cohesion
of the main features of different layers to prevent the loss of
key features. After removing the modified module, according to
Table VI, we can clearly observe that the parameters of
the dataset have been reduced, in which the F1 scores
have been reduced by 0.26%/0.39%/0.76%,and the IoU by
0.41%/0.6%/1.58%. In Benchmark Model No.7, with the ad-
dition of the DA module, F1 is up 1.26%/6.96%/2.04%, IoU
is up 1.77%/10.41%/1.07%. In order to further demonstrate
the advantages of the modules, we conducted separate ablation
experiments for the DSA module and the spatio-temporal coor-
dinate perception fusion module, as shown in Table VIII No.1,
in the DSA ablation, we chose to remove this module, the DSA
integrates the information from the high and low sensory fields
to emphasize the most important features in the scale. We can
see the F1 score was reduced by 0.12%/0.16%/0.2% and the
IoU was reduced by 0.21%/0.2%/0.23%. In the spatio-temporal
coordinate-aware fusion SCF module ablation experiments, as
shown in Table VIII No.2, we also removed the entire module,
which focuses on features at each coordinate that can be learned

Fig. 12. LEVIR-CD dataset’s ablation study outcomes.

Fig. 13. WHU-CD dataset’s ablation study outcomes.

to tradeoff between varying levels of detail and semantics, and
the F1 score reduced by 0.09%/0.15%/0.2%0.27% and the IoU
by 0.15%/0.27%/0.31% after removing the module. These data
not only visualize the exact magnitude of the decrease in perfor-
mance metrics, but more importantly, they reflect the model’s
significantly diminished ability to capture and maintain critical
feature information after the loss of the DA module.

In our ablation experiments across three datasets, No.1 shows
results without the TIDEM module, No.2 without MSGA, No.3
without DA, and our reflects the full model’s results. Fig. 12 pro-
vides visual results on the LEVIR-CD dataset, showing the im-
pact of different ablation experiments in specific areas (marked
with red boxes). These visualizations clearly show that each
ablation experiment introduced specific issues. For instance, the
results of Experiment No.1 demonstrated a complete failure to
detect targets in the first set of samples, while only a few targets
were detected in the second set. Although Experiment No.2 de-
tected some targets in the first set of samples, there were missing
integrity and edge information, with small targets undetected in
the second set. The results of Experiment No.3, similar to No.2,
showed slightly finer edge detection but still failed to capture
building changes within the red box areas. The detection results
for the second set of samples showed some improvement over
other ablation experiments but still lacked in detecting small
targets. Fig. 13 presents the ablation experiment visual results
on the WHU-CD dataset, with two sets of samples emphasizing
performance in detecting large-area targets. Results indicated
that experiments No.1 and No.2 encountered significant infor-
mation loss in detecting large-area targets and capturing edge in-
formation in the first set of samples, leading to numerous missed
detections. In the second set of samples, both experiments also
displayed similar issues of information loss. Compared to the
first two, experiment No.3 showed slight improvement, manag-
ing to vaguely identify building outlines, though edge detection
performance was not particularly outstanding, with some false
detections in the first set of samples. Fig. 14 displays the visual
outcomes of ablation experiments conducted on the GZ-CD
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Fig. 14. GZ-CD dataset’s ablation study outcomes.

dataset, with two sets of samples selected to showcase significant
edge features. The results revealed that experiment No.1 failed to
accurately identify the integrity of target areas in the first sample
and performed poorly in edge recognition in the second sample.
For Experiment No.2, both samples exhibited evident mistakes
in edge judgment, displaying significant recognition errors. In
contrast, Experiment No.3 showed better performance in the
second sample, accurately capturing edge information, though
it also encountered edge detection errors in the first sample.

In the series of ablation experiments conducted on the TI-
DEM, MSGA, and DE modules, we observed that the removal
of any module significantly reduced the model’s performance
across three datasets, specifically manifested in the decline of
F1 scores and IoU metrics. Comparative analyses in Fig. 12–
13 illustrate how the removal of these key modules greatly
diminished the output quality of the model. Specifically, the
absence of the TIDEM module weakened the model’s capability
to extract and enhance image change information, resulting in
substantial information loss; the lack of the MSGA module
affected the model’s clarity and precision in identifying edge
details, showing inadequacies in local detail representation; and
the removal of the DE module hindered the model’s ability to
effectively fuse information across different levels, leading to
missed detections. These comprehensive experimental results
underscore the importance of each module in enhancing the
model’s ability to capture image features, process information
fusion, and maintain the integrity of key information, confirming
their indispensable role in improving model performance.

V. CONCLUSION

In this article, we introduced an innovative TIMF-Net aimed
at enhancing the CD capability in bitemporal remote sensing im-
agery. We meticulously designed three key modules: the TIDEM
module to strengthen temporal interaction information within
images, the MSGA module to achieve pixel-level comprehen-
sive integration at the global channel and multiscale levels, and
the DE module to perform multilevel feature map fusion on
spatial coordinates. Working together, these modules not only
efficiently extract and enhance change signals in images but
also deeply integrate information across the temporal dimension
through precise weighting strategies. TIMF-Net exhibited out-
standing performance on three benchmark datasets, achieving
industry-leading metrics in F1 scores and IoU, showcasing its
superior generalization capability. Nonetheless, we also recog-
nize that the model has not yet reached optimal performance
in certain aspects. In the future, we plan to further enhance the

model’s ability to learn from blurry and subtle feature informa-
tion and to optimize the network structure. Specifically, we aim
to incorporate the concept of diffusion models to better focus
the model on targets and improve outcomes while optimizing
parameters. This will help advance RSCD technology, achieving
more precise surface monitoring and analysis.
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