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Dynamic Context-Aware Pyramid Network for
Infrared Small Target Detection

Xiaolong Chen , Jing Li, Tan Gao , Yongjie Piao, Haolin Ji , Biao Yang , and Wei Xu

Abstract—Detecting faint and diminutive infrared targets devoid
of clearly defined shape and texture details in intricate surround-
ings remains a formidable challenge within the domain of target
detection. Current methodologies employing deep neural networks
and pooling operations can easily cause small target loss, resulting
in suboptimal detection outcomes. To address these issues, we
design an innovative dynamic context-aware pyramid network.
It comprises three core modules: dynamic context modulation
(DCM), dynamic pyramid context (DPC), and shuffle attention fu-
sion (SAF). Specifically, the DCM module is designed to adaptively
capture diverse-scale information from input images, adapting to
various target dimensions, and enhancing the feature representa-
tion capabilities crucial for effective target detection. Subsequently,
the DPC module adaptively captures multiscale features and better
utilizes contextual information by aggregating multiple DCM mod-
ules. This facilitates the retention of essential semantic information
about small infrared targets within deeper network layers. Finally,
through the designed SAF module, we facilitate the exchange
of information within the same layer and establish correlations
between different layers, ensuring the fusion of shallow spatial
positional information and deep semantic information to enhance
the overall detection performance. Furthermore, comprehensive
ablation studies are conducted to substantiate the efficacy of the
designed modules within the proposed network architecture. Si-
multaneously, we conducted a comparative analysis of the proposed
network algorithm against several state-of-the-art methodologies
for infrared small target detection, employing multiple evaluation
metrics. The results consistently demonstrated the proposed model
attains superior detection performance on the publicly available
IRSTD-1 k, SIRST-Aug, and NUDT-SIRST datasets.

Index Terms—Context-aware pyramid, deep learning, dynamic
convolutional, infrared small targets, shuffle attention (SA).

I. INTRODUCTION

INFRARED imaging is capable of penetrating rain and fog
interference, providing clear images of targets in low-light
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conditions, and maintaining excellent concealment [1]. Conse-
quently, as a significant research focus within computer vision,
infrared small target detection technology has found widespread
practical utilities across various domains, such as early warning
systems, medical imaging, maritime rescue, and space target
monitoring [2], [3]. Nevertheless, in contradistinction to visible
light imaging, the infrared image is beset by intrinsic limitations,
most notably lower contrast and resolution. The considerable
distance between infrared sensors and the targeted objects results
in these objects typically occupying only a few pixels within
the image, thereby exacerbating the challenges associated with
extracting features. Moreover, infrared targets lack discernible
shape and texture, while being compounded by a lower signal-
to-noise ratio, often causing them to be submerged in intricate
backgrounds and sensor-generated noise, as depicted in Fig. 1.
Consequently, the development of robust and efficient method-
ologies for detecting diminutive targets represents a highly
significant research topic within the realm of target detection.

Presently, infrared diminutive target detection algorithms can
be broadly categorized into two major classes: multiframe and
single-frame methods. The multiframe method leverages both
temporal and spatial information from multiple images to detect
targets, but often exhibits high complexity and low execution
efficiency, rendering it impractical for real-time end-to-end de-
tection [4]. In contrast, single-frame detection methodologies
employ techniques such as target enhancement or background
suppression to extract features, such as grayscale, contrast, and
gradients from infrared images, thereby enabling target detec-
tion. Traditional single-frame detection strategies encompass
three primary paradigms: background suppression to heighten
the discernibility of small targets [5], [6]; augmentation of con-
trast between the background and target neighborhood regions
to achieve direct detection [7], [8], [9], [10]; and the segregation
of the linear superposition of target and background images by
formulating the detection problem as a matrix optimization and
decomposition problem [11], [12], [13], [14]. However, these
methods often rely on prior models, necessitating manual pa-
rameter adjustment, exhibit limitations in recognizing nuanced
scene changes, and manifest sensitivity to hyperparameters.
Consequently, when real-world scenarios change, these methods
yield detection outcomes that lack stability and robustness.

In recent years, many excellent deep learning-based methods
have emerged in the field of remote sensing image interpretation,
such as large kernel sparse convnet weighted by multifrequency
attention [15], multistage information complementary fusion
network [16], and spatial–spectral perception network [17].
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Fig. 1. Example of submerged infrared small targets.

Meanwhile, the proliferation of publicly available datasets [18],
[19], [20] and the evolution of deep learning within the realm of
computer vision have propelled a heightened focus on the ap-
plication of convolutional neural networks (CNNs) for diminu-
tive target detection. Numerous inventive detection algorithms
grounded in the principles of deep learning have emerged in re-
sponse to this pursuit. Liu et al. [21] were pioneers in introducing
a CNN-based algorithm for the detection of infrared faint and
diminutive targets. Notably, in intricate scenarios where small
targets coexist with elements, such as buildings, interfering ob-
jects, and sky, the performance of deep learning-based detection
algorithms is typically superior to that of conventional detection
methods. By improving the signal-to-noise ratio in segmentation
results and extracting spatial and frequency contexts, Zhang
et al. [22] proposed a novel Dim2Clear network (Dim2Clean) for
infrared small target detection. Due to the low contrast between
small targets and noisy backgrounds in infrared images, Zhang
et al. [23] also proposed a model with feature compensation
and cross-level correlation, a thermodynamics-inspired multi-
feature network [24], and a novel RKformer model with an
encoder-decoder structure [25]. Dai et al. [26] contributed an
asymmetric context module (ACM) designed to accentuate the
semantic information of small targets through the utilization
of multilevel features. The attention-guided pyramidal context
network (AGPCNet) [19] applied attention mechanisms for
feature enhancement during deep feature processing. Aiming
at the low computational efficiency of existing models, Zhang
et al. [27] designed a novel wavelet regularized soft channel
pruning method to establish an efficient IRPruneDet model.
Nevertheless, the model performance is encumbered by an abun-
dance of hyperparameters necessitating experimental tuning,
resulting in weak generalization across diverse datasets. Wang
et al. [28] introduced an internally attention-aware network
designed characterized by a coarse-to-fine strategy to suppress
false alarm sources. Zhang et al. [20] devised edge blocks and
bidirectional attention aggregation blocks inspired by Taylor
finite differences, providing a mathematical underpinning for
the precise delineation of target shapes. Li et al. [29] developed
a dense nested attention network (DNANet) that comprehen-
sively integrates context information for small targets through

multilevel feature enhancement and fusion. To address the issue
of imbalance between backgrounds and small targets, Yang
et al. [30] designed an adaptive threshold focal loss function,
which automatically adjusts the loss weights to enhance the
learning capability of small target features. Wu et al. [31]
proposed an interpretable infrared dark target detection deep
network (RPCANet) by converting the small target detection
task into sparse target extraction, low-rank background estima-
tion, and image reconstruction. Despite the strides made by these
CNN-based methodologies in enhancing small target detection,
extant networks grapple with challenges including inadequacies
in feature representation, target loss, and low detection accuracy.

In conclusion, the detection of faint and diminutive targets
is challenged by factors, such as limited pixel occupancy,
indeterminate shapes, unclear contours, complex background
variations, and low resolution. To address these challenges, an
effective detection model not only recurrently exploits intralayer
channel and spatial information but also incorporates cross-layer
feature fusion strategies to establish mutual connections between
feature representations from different layers. Drawing inspira-
tion from prior research [32], [33], we propose a novel solution
named the dynamic context-aware pyramid network (DCAPNet)
to address the aforementioned issues. The network designed
to enhance detection efficacy without increasing computational
complexity, integrates a DPC module and an SAF module.
Through these modules, DCAPNet establishes inter-element
correlations, resolves conflicting information interference, and
augments semantic information of small targets, thereby im-
proving overall detection performance.

This article makes several significant contributions as follows.
1) We replace the traditional pyramid pooling operation with

the DCM module, which not only prevents the loss of
detailed target information but also dynamically captures
multiscale information. This adaptation makes the pro-
posed DCAPNet algorithm more suitable for situations
with complex background variations.

2) An innovative dynamic pyramid context (DPC) module
is introduced in this study, leveraging a dynamic context
modulation (DCM) module for the adaptive enhancement
of contextual information across multiple hierarchical fea-
tures. The fusion of original features with representations
from multiple DCM modules is employed to acquire in-
formation on distinct scales in infrared images, thereby
enriching the substantive content and semantic informa-
tion of feature representations.

3) A meticulously designed shuffle attention fusion (SAF)
module is presented to effectively suppress redundant
and conflicting information, while concurrently fusing
detailed and semantic information. This module not only
focuses on intralayer channel and spatial information but
also facilitates feature fusion in both the bottom-up and
top-down directions. The resulting comprehensive feature
integration significantly enhances the detection perfor-
mance of the proposed model.

The rest of this article is organized as follows. Section II
provides a concise overview of related work. Section III elab-
orates on the network structure of the proposed DCAPNet. In
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Section IV, we present the relevant experimental results and
make quantitative and qualitative analyses. Section V is the
discussion section. Finally, Section VI concludes this article.

II. RELATED WORKS

A. Pyramid Structure

In addressing the issue of insufficient scale variation, the
construction of a multiscale pyramid structure is a prevalent
strategy within the domain of object detection. The CNN-based
feature pyramid network [34] is a top-down network structure
with lateral connections, capable of producing multiscale feature
representations. And the feature representation of each layer
is predicted individually. Nonetheless, the intrinsic semantic
disparities among features of disparate scales necessitate care-
ful consideration. The direct fusion of features across scales
introduces copious redundancies and conflicting information,
thereby diminishing the expressive capacity of multiscale repre-
sentations. The atrous spatial pyramid pooling (ASPP) module,
initially propounded in DeepLabV2 [35], consists of four par-
allel dilated convolution modules with varying rates, aiming to
acquire a dense receptive field and extract multiscale contextual
information. In DeepLabV3 [36], improvements were made to
the ASPP module by adjusting the dilation rates and introducing
global pooling operations for the purpose of capturing global
features. Subsequently, DeepLabV3+ [37] opted for the substi-
tution of standard convolutions in ASPP with depthwise convo-
lutions to reduce parameter volume and enhance computational
efficiency. However, the utilization of such dilated convolutions
has been associated with information loss of small targets,
engendering grid artifacts and boundary effects. Furthermore,
the pooling pyramid network module proposed in PSPNet [38]
comprises four parallel adaptive pooling channels. This module
endeavors to capture multiscale contextual information through
divergent pooling operations but may incur some loss of fine-
grained details.

B. Attention Mechanism

Given the limited availability of discriminative features for
small targets, the task of detecting diminutive targets remains a
formidable challenge within the domain of computer vision [39].
Therefore, introducing the attention mechanism enables CNN
to concentrate more on important information in the images,
thereby improving the detection performance and generalization
capability of the network. The self-attention mechanism [40]
emerges as an adaptive strategy for discerning interdependencies
between elements by calculating their relative importance. An
intricate variant of this, the multihead attention mechanism [41],
employs multiple self-attention matrices and associated weight
matrices for weighted aggregation and concatenation of re-
sults, thereby augmenting the expressive power of the mode.
SENet [42] evaluates the importance levels of each channel to
elevate the capability of the network in feature representation.
Similarly, the CBAM [43] module integrates spatial attention
and channel attention and deftly directs focus toward pivotal

Fig. 2. Overall architecture of DCAPNet, which incorporates a DPC module
and two SAF modules into a U-Net (the red and blue lines represent upsampling
and downsampling operations, respectively, while stage and upstage represent
the feature layers after downsampling and upsampling, respectively, red and
blue lines represent upsampling and downsampling operations, respectively).

image regions while disregarding less consequential areas. Con-
sequently, how to apply attention mechanisms to accentuate re-
gions housing small infrared targets remains an exigent concern
demanding meticulous investigation and resolution.

C. Infrared Small Target Detection

Various researchers have proposed numerous detection net-
works tailored for the identification of small objects within the
visible light spectrum in recent years [44], [45]. However, the
direct application of these networks to infrared small target
detection tasks may lead to inaccurate results, primarily arising
from the bounding box detection methods used in visible light
images that significantly differ from those suitable for infrared
small targets. Nevertheless, the recent proliferation of publicly
available infrared small target datasets has catalyzed a paradigm
shift in infrared small target detection techniques, transitioning
from traditional handcrafted feature extraction algorithms to
more advanced machine learning and deep learning method-
ologies. Concurrently, the CNN-based pixel-level segmentation
methods [46], [47] have been employed for infrared small target
detection tasks, yielding notable detection outcomes in various
instances, such as ACM [26], TBC-Ne [48], and DNANet [29].
However, the issue of information loss concerning small targets
persists in deep networks, resulting in diminished robustness
when confronted with complex background variations and the
dynamic, faint nature of small targets. The intricacies surround-
ing information loss in the context of small targets within deep
models underscore the ongoing imperative to refine and advance
detection methodologies for infrared small targets.

III. METHODOLOGY

In this section, we first provide a detailed exposition of the
overall framework of the proposed DCAPNet, as illustrated
in Fig. 2. Subsequently, we introduce the components of the
dynamic contextual modulation module. Following that, we
elaborate on how the DPC module integrates the multiscale
features generated by the DCM module. Finally, we employ
the SAF module to effectuate a bidirectional fusion of low-level
and high-level features. The section aims to provide a nuanced
understanding of the structural intricacies of the proposed model
and its interplay of components.
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Fig. 3. DCM module.

A. Network Architecture

Due to the scarcity of pixels and the diminutive size of
infrared targets, a multiscale representation proves to be an effi-
cacious method for extracting features pertinent to small infrared
targets. While prior methodologies, such as the utilization of
dilated convolutions to expand the receptive field [19], have
been employed to construct multiscale representations, these
convolutional operations bring forth a substantial computational
burden and are prone to inducing information loss within local
neighborhoods. The two-stage network needs to generate a large
number of region proposals, and the network layer number is
large and the calculation amount is large, which makes it easy
to lose small targets in the process of feature extraction. The
one-stage network does not have the step of generating region
proposals, and the running speed is fast, which can meet the
real-time requirement of detection. Meanwhile, in order to pre-
vent small targets from being lost in deep networks and realize
efficient end-to-end detection, we select a one-stage detector. To
confront these challenges, this study proposes a DCAPNet, the
overarching architecture of which is illustrated in Fig. 2.

Considering that small targets occupy a very small proportion
in the infrared image and most of the images are redundant
background regions, we adopt the DCM module to replace
the traditional pooling operation in the pyramid, which can
prevent the loss of target information. Meanwhile, since the
target lacks texture information and is extremely weak, we
propose a DPC module that aggregates multiple DCM mod-
ules. As shown in Fig. 3, the context-aware filter embeds rich
content and high-level semantic information, and can adapt to
the input image to capture different size information inside the
image. Each DCM module can handle proportional changes
related to input size. Therefore, the DPC module that aggregates
multiple DCM modules is a dynamic convolution module. This
module adaptively learns suitable convolution kernels to better
utilize contextual information and capture multiscale semantic
information, thereby adaptively learning information of different
sizes in the image. Aiming at the problem that small targets
are easily submerged by complex changing backgrounds and
easily lost in deep networks, the idea of information exchange
at the same level and the combination of high- and low-level
features is put forward. For this purpose, we design an SAF
module that aggregates local and global information and fully
fuses multilayer features to retain and highlight small infrared
targets in the high-level features.

DCAPNet is composed of a backbone convolutional network,
an innovative DPC module, and two innovative SAF modules.
The DPC module consists of multiple existing DCM modules.

The SAF module consists of a shuffle attention (SA) module
and an original bidirectional asymmetric fusion (BAF) module.
Upon receiving an infrared image as input, DCAPNet initiates
a feature extraction process using a ResNets network as the
backbone, yielding the feature map denoted as X ∈ RW×H.
Subsequently, the DPC module adaptively subdivides semantic
information to generate a multiscale contextual understanding.
Finally, the SAF module facilitates the effective fusion of se-
mantically enriched deep-layer features with spatially refined
shallow-layer features, culminating in the acquisition of more
precise spatial and positional information pertinent to small
infrared targets.

B. Dynamic Contextual Modulation Module

As shown in Fig. 3, the DCM modules adaptively acquire spe-
cific ratio representations correlated with input feature images.
The red dashed box in the figure is referred to as the context-
aware filter. The filter is adaptively generated from the contextual
information of the input feature mapX ′ ∈ RW×H×C , whereW ,
H , and C denote the width, height, and channel number of the
feature map, respectively. In comparison to traditional filters,
these adaptive filters encompass rich contextual information and
elevated semantic acumen. They are capable of better adapting
to the input feature map, capturing diverse size information
of the input image, thereby exhibiting heightened adaptability
and flexibility. Therefore, we apply them to representations at
different feature scales for multiscale learning. In the following,
we present a detailed exposition of the DCM module.

Initially, the feature map X ′ ∈ RW×H×C extracted from the
backbone network is bifurcated into two distinct branches for
subsequent processing. In branch one, the map X ′ undergoes a
1× 1 convolution aimed at channel dimensionality reduction,
thereby simplifying the feature map to Fk(X

′) ∈ RW×H×C ′
,

where C ′ (C ′ ≤ C) denotes the channel count in the simplified
feature map, and k signifies the convolution kernel size. Branch
two sequentially executes adaptive average pooling operations
and 1× 1 convolution operations on the input feature map,
generating a filter Gk(X

′) ∈ Rk×k×C ′
with a kernel size of k.

The subsequent fusion of feature maps from both branches is
achieved through a depthwise convolution operation, yielding a
feature map tailored to a specific scale

Sk = Fk(X
′)⊗Gk(X

′) (1)

where the symbol ⊗ denotes the depthwise convolution
operation. Finally, the 1× 1 convolution operation is performed
on Sk to fuse the channel information of the upper and lower
branch feature maps, so as to obtain the specific scale feature
map S ∈ RW×H×C ′

output by the DCM module.
Based on the analysis provided previously and the information

depicted in Fig. 3, it is evident that in a DCM module with a
specific filter kernel size k, the generation process of a k × k
context-aware filter unfolds as follows: initially, an adaptive
average pooling operation is executed on the map X ′ to derive
a k × k region based on contextual information, succeeded by
a subsequent 1× 1 convolutional processing step. Remarkably,
this filter necessitates only a single 1× 1 convolution operation.
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Fig. 4. DPC module.

Consequently, we can employ multiple DCM modules with
context-aware filters featuring distinct kernel sizes to replace
the traditional pooling operation, generating multiscale feature
representations. This module utilizes dynamic multiscale filters
for semantic segmentation, preventing the loss of target detail
information while dynamically capturing multiscale details.

C. DPC Module

The pyramid pooling module is adept at constructing global
scene prior information on the ultimate layer feature map within
deep neural networks, thereby mitigating the loss of contextual
information across diverse subregions [38]. However, pooling
operations inherently lead to the loss of nuanced details. There-
fore, we construct a DPC module after the deepest feature layer,
which can dynamically obtain multiscale context information
by using context-aware filters with different convolution kernel
sizes.

The prime objective of the DPC module lies in the aggre-
gation of multiscale feature representations emanating from
multiple DCM modules, as illustrated in Fig. 4. First, we
perform feature extraction on the image X via convolutional
operations in the backbone network, yielding the feature map
X ′. Subsequently, we concurrently execute DCM modules with
multiple filters featuring distinct kernel sizes k. Following
1× 1 convolutional processing, the dimension-reduced results
S = [SK1 , SK2 , SK3 , . . .] are obtained, where K represents the
kernel size of the context-aware filter. The feature maps [Si]
generated by multiple DCM modules are then concatenated
with the map X ′ extracted from the backbone network. Finally,
channel information from the aggregated feature is processed
through a 1× 1 convolutional operation, yielding the output
result M of the DPC module. Thus, DCM modules of different
scales form a contextual pyramid module.

D. SAF Module

Deep neural networks excel at extracting advanced semantic
information for small targets. Nevertheless, diminutive targets
occupy only a limited number of pixels and lack intrinsic infor-
mation, and targets may be susceptible to loss in deep layers of
the network. Therefore, how to prevent the reduction or even loss
of the fine detail information of the target in the deep network
becomes a critical concern. Simultaneously, features of different
scales exhibit significant semantic differences. The direct fusion
of different scale features will introduce a surfeit of redundant
and conflicting information, which will diminish the capability
of multiscale expression. As shown in Fig. 6, to address these
challenges, we propose an SAF module that consists of an

SA module and a BAF module. The SA module effectively
integrates channel and spatial attention mechanisms, preventing
minute target features from being submerged in conflicting in-
formation while emphasizing the most salient regions of targets.
Meanwhile, the BAF module consists of a bottom-up local
attention modulation branch and a top-down global attention
modulation branch, aiming to fuse spatial detail and semantic
information. In addition, as illustrated in Fig. 2, the proposed
SAF module bidirectionally integrates information from each
downsampled feature layer, preserving both target semantic con-
text and detailed information, effectively addressing the issue of
small target loss. Subsequently, we provide detailed descriptions
of the SA module and the BAF module.

SA module: the attention mechanism enables neural networks
to focus more on finding relevant and significant information in
the input data for the current output while suppressing irrelevant
information, thereby enhancing the performance and general-
ization capability of the network. Zhang et al. [32] proposed
an efficient Shuffle unit, which is an ultralightweight attention
mechanism effectively integrating spatial and channel attention
types. As depicted in Fig. 5, this unit not only augments the
efficacy of network feature representation but also accelerates
computational speed by mitigating model complexity and reduc-
ing network parameters. We combine the SA module with the
BAF module to fully exploit the spatial and channel dependen-
cies of features across low and high-level networks to enhance
the representation ability of target features and suppress conflict
information and noise.

Assuming the input feature map is denoted as x ∈ Rw×h×c,
where c, w, and h, respectively, represent the channel number,
height, and width of the mapx, SA partitions the input map into g
groups along the channel dimension: x = [x1, x2, · · ·, xg], xk ∈
Rw×h× c

g . For each group of subfeatures xk, we need to generate
distinct importance coefficients through the spatial and channel
attention modules, so that they gradually learn specific semantic
features. The subgroup xk is subsequently bifurcated along the
channel dimension into two branches: xk1, xk2 ∈ Rw×h× c

2˜g .
The upper branch is dedicated to channel attention feature
learning: to be as lightweight as possible, we employ global
average pooling (GAP) to first capture global information within
the subfeature xk1, yielding the channelwise statistical map
denoted as l ∈ R1×1× c

2˜g . Subsequently, a series of operations
involving a scaling transformation function Fc ∈ R1×1× c

2˜g and
a sigmoid activation function are executed in turn. Finally, an
elementwise multiplication is performed between each subgroup
feature xk1 and the computed attention map to generate the
result x′

k1 ∈ Rw×h× c
2˜g representing the channel branch. The

computational process for generating channel attention features
is delineated as follows:

l = Fgp(xk1) =
1

w × h

w∑

i=1

h∑

j=1

xk1(i, j) (2)

x′
k1 = σ (Fc(l)) · xk1 = σ (W1l + b1) · xk1 (3)

where σ(·) represents the sigmoid function, W1 ∈ R1×1× c
2˜g

and b1 ∈ R1×1× c
2˜g are the parameters of l scaling and moving,



CHEN et al.: DYNAMIC CONTEXT-AWARE PYRAMID NETWORK FOR INFRARED SMALL TARGET DETECTION 13785

Fig. 5. SA module (σ(·) = sigmoid(·), Fc(x) = Wx+ b).

Fig. 6. SAF module.

respectively. The lower branch is dedicated to learning spatial
attention features, which is more concerned with the crucial
factor of “where,” complementing the emphasis of channel
attention on “what.” In the implementation, the group norm
(GN) [49] is first applied to process the input subfeature xk2.
Subsequently, feature representation of l is enhanced through
a scaling transformation function Fc ∈ R1×1× c

2˜g . Finally, an
elementwise multiplication is performed with the bifurcated
sub-feature xk2, resulting in the output of the spatial branch
denoted as x′

k2 ∈ Rw×h× c
2˜g . This process can be described as

follows:

x′
k2 = σ (Fc (GN(xk2))) · xk2

= σ (W2GN(xk2) + b2) · xk2 (4)

where W2 and b2 are parameters of shape R1×1× c
2˜g . Follow-

ing this, the outputs from the upper and lower branches are
intricately concatenated to generate a feature map x′

k with the
equivalent number of channels as the subfeaturexk , as expressed

by the following equation:

x′
k = [x′

k1, x
′
k2] ∈ Rw×h× c

g . (5)

Next, all the subfeatures x′
k obtained after parallel processing

are aggregated to produce a feature map of the same scale as the
feature x. Ultimately, information exchange between different
groups on the channel is realized through the “channel shuffle”
operator in ShuffleNet v2 [50].

BAF module: shallow features retain spatial details of the tar-
get while deep features have rich semantic information. There-
fore, ensuring the extraction of deep semantics for targets while
retaining fine-grained details is a pivotal challenge. ACM proved
that the BAF module performs better than the top-down feature
fusion module. The module comprises a bottom-up mechanism
that handles low-level detail information using a pointwise local
channel attention mechanism and a top-down mechanism that
addresses high-level semantic information using a global chan-
nel attention mechanism. Assuming the low-level features are
denoted as Xl and the high-level features as Xd, with Xd being
resized to match the dimensions of Xl through convolution.
The computation formulations for the global channel and spatial
attention mechanisms of this module are expressed by (6) and
(7), respectively,

L (Xd) = σ(�(W2δ(�(W1xd)))) (6)

G (Xl) = σ(�(PWConv2(δ(�(PWConv1(Xl)))))) (7)

where δ, σ, and � represent the rectified linear unit, the sig-
moid function, and batch normalization, respectively. PWConv
denotes pointwise convolution [51]. xd is the channel statistics
obtained by GAP: xd = 1

H×W

∑H,W
i=1,j=1 Xd[:, i, j]. However,

the module inadequately utilizes intralayer feature information,
making the detailed information of the target susceptible to being
overwhelmed by background noise.

To solve problems, such as the loss of fine details in small tar-
gets, interlayer information redundancy, and insufficient feature
fusion, we incorporate the SA module into the BAF module to
construct the SAF module. The SA attention modulation of the
details and semantic information of the target is performed by
the SAF module. Modulation facilitates the flow of spatial and
channel information within the same layer, ensuring that fine
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details of the target are preserved without being obscured by
noise. Concurrently, the SAF module employs a local point at-
tention mechanism and a global channel attention mechanism to
perform a cross-layer fusion of distinct features, which ensures
the integration of deep semantics and shallow spatial positional
information.

Given the high-level feature Xd and the low-level feature
Xl hey share the same scale after upsampling, as illustrated in
Fig. 6. First, the SA module independently processes the input
high-level and low-level features to obtainXd

′ andXl
′. Then, the

top-down global channel modulation module and the bottom-up
local point attention module are executed in parallel to obtain the
feature maps Xd

′′ and Xl
′′. The calculation process is defined

in (8) and (9), respectively

Xd
′′ = L(Xd

′) = L(SA(Xd)) (8)

Xl
′′ = G(Xl

′) = G(SA(Xl)) (9)

where L(·), SA(·), and G(·) denote global channel modulation,
SA modulation, and local point attention modulation, respec-
tively. Subsequently, the Xd

′ and Xl
′ are added and restored

to the scale of W ×H × C, and then the product with the
processed feature maps Xd

′′ and Xl
′′ pixel by pixel to gain the

final output feature Z ∈ RC×H×W

Z = δ (W (Xl
′ +Xd

′))⊗Xl
′′ ⊗Xd

′′

= δ (W (SA(Xl) + SA(Xd)))⊗ L(SA(Xl))⊗G(SA(Xd))
(10)

where ⊗ represents elementwise multiplication.

IV. EXPERIMENTS AND ANALYSIS

We systematically assess the proposed DCAPNet through
both qualitative and quantitative analyses in this section. We
commence by elucidating the details of the network implemen-
tation. Following that, we elaborate on the experimental setup,
encompassing baseline methods, datasets, and evaluation met-
rics. Subsequently, to assess the effectiveness of each constituent
module within DCAPNet, an exhaustive ablation study is carried
out. Finally, we subject our DCAPNet to both subjective and ob-
jective comparisons with various classical detection algorithms.

A. Implementation Details

We converted the diminutive target detection task into a
semantic segmentation problem, utilizing the U-Net network
architecture with ResNets [52] as the segmentation backbone.
The devised network architecture incorporates the SoftIoU [53]
function as the designated loss function, and optimization is
achieved via stochastic gradient descent with weight decay
coefficients and momentum set to 0.9 and 0.0004, respectively.
The experimental setup specifies a batch size of 8, an initial
learning rate of 0.05, and a total of 50 training iterations for the
network. Furthermore, we implement a poly decay strategy for
learning rate reduction, wherein the learning rate is multiplied by
(1− iter

total_iter )
0.9 after each iteration. The computational frame-

work for all network algorithms is instantiated on a computa-
tional system featuring an Intel Core i9-10900 CPU @ 2.80 GHz

and Nvidia GeForce RTX 3070 GPU. And the implementation
is conducted utilizing the PyTorch framework.

B. Experimental Settings

Datasets: Given the restricted scale of the publicly accessible
SIRST dataset [26], consisting of a mere 427 infrared images, we
leverage the augmented SIRST dataset, denoted as SIRST-Aug,
as introduced by Zhang et al. [19]. The augmented dataset
comprises 545 testing images and 8525 training images. Fur-
thermore, we evaluate the detection capabilities of the proposed
DCAPNet using the IRSTD-1 k dataset [20] and the NUDT-
SIRST dataset [29], which feature diverse target shapes, sizes,
and scenes. The image sizes of the three datasets are different,
which cannot match the infrared data of the actual scene, making
it difficult for the network to uniformly process. To address the
variance in image sizes between the two datasets, we fix the
input size of DCAPNet images to 256× 256, aligning them
more closely with the dimensions of real-world infrared images.

Baseline methods: In Section IV-D, we compare DCAPNet
with several classical and state-of-the-art algorithms that have
gained prominence in recent years. These comparative methods
encompass eight traditional approaches: Tophat [5], MaxMe-
dian [6], LCM [7], MPCM [8], PSTNN [13], and SRWS [14].
In addition, four deep learning-based methods are included in
the comparison: ACM [26], DNANet [29], AGPCNet [19], and
RPCANet [31].

Evaluation metrics: As we model the diminutive target detec-
tion task as a semantic segmentation issue, we employ classical
metrics from semantic segmentation to assess the detection
efficacy of the proposed DCAPNet on both datasets. These met-
rics include F-measure, mean intersection over union (mIoU),
precision, and recall. F-measure and mIoU, respectively, reflect
the ability of the network to balance precision and recall and
describe target shapes, defined as follows:

Fmeasure =
2× Precsion × Recall

Precsion + Recall
(11)

mIoU =
# Area of Overlap

# Area of Union
. (12)

Simultaneously, to achieve a more nuanced and equitable
evaluation between deep learning models and traditional al-
gorithms, we incorporate the specialized metric of normalized
intersection over union (nIoU), specifically tailored for the as-
sessment of infrared small target detection

nIoU =
1

N

N∑

i

TP[i]
T [i] + P [i]− TP[i]

(13)

where TP, T , P , and N represent true positive rate, true, posi-
tives, and the total number of samples, respectively. In addition,
the receiver operating characteristic (ROC) curve is employed to
depict the variation trend of the true positive rate (TPR) relative
to different false positive rates (FPRs)

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

(14)



CHEN et al.: DYNAMIC CONTEXT-AWARE PYRAMID NETWORK FOR INFRARED SMALL TARGET DETECTION 13787

TABLE I
ABLATION STUDY OF EACH MODULE IN DCAPNET

TABLE II
ABLATION STUDY OF DCM MODULE SCALE

where TN, TP, FP, and FN represent true negatives, true posi-
tives, false positives, and false negatives, respectively. The area
under the curve (AUC) is utilized as a quantitative metric to
evaluate the detection capabilities of different models.

C. Ablation Study

To scrutinize the rationality and efficacy of the con-
stituent modules within DCAPNet, we conduct an ablation
study by constructing variant networks with diverse module
configurations.

The effectiveness of backbone, DPC, and SAF: we opted to
compare the performance of pretrained ResNet-18 and ResNet-
34 as backbone architectures to prevent the disappearance of
target features in deeper layers. In addition, we incorporated
DPC and SAF modules into each backbone network separately to
validate the impact of the two modules. As presented in Table I,
the results highlight the maximum values, denoted in red bold
font, with the maximum values for each backbone indicated
in black bold font. Analysis of the testing outcomes on two
datasets elucidates that the inclusion of both DPC and SAF
modules augments network detection performance, even under
constant backbone architectures. Furthermore, the simultaneous
addition of both modules attains optimal performance, underlin-
ing their synergistic impact on detection accuracy. Conversely,
when confronting disparate backbone architectures, the deeper

ResNet-34 backbone exhibits a propensity for suboptimal small
target detection. This observation underscores the pivotal role
of backbone depth in influencing detection efficacy, particularly
evident in scenarios where small targets are at risk of being
overshadowed within the intricate network hierarchy.

The effect of DCM size in DPC: In this investigation, we
designate the internal kernel scale within the DCM as a pivotal
parameter, aiming to assess the influence of various DCM scales
on the model. Employing DPC modules equipped with DCM
modules of varying scales, we conduct a comprehensive compar-
ative analysis, meticulously evaluating the performance across
diverse DCM kernel scale configurations, as shown in Table II.
Table II showcases several distinct DCM kernel scale combina-
tions, namely (2), (3), (5), (2,3), (3,5), (2,3,5), (3,5,6), (2,3,5,8),
and (3,5,6,8). Each element within these groups corresponds
to the scale of the filtering convolutional kernel in the DCM
module, with the number of elements indicating the count of
DCM modules. The outcomes presented in Table II illustrate that
the incorporation of multiscale feature learning yields superior
outcomes compared to single-scale approaches, attributing the
superiority to the increased contextual information contained
in multiscale features. In addition, a positive correlation is
observed between the quantity of DCM modules within the DPC
module and the concurrent enhancement in network perfor-
mance. Strikingly, the apical performance is consistently real-
ized in configurations featuring four distinct kernel sizes across
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TABLE III
ABLATION STUDY OF SAF MODULE

TABLE IV
PARAMETER SETTINGS FOR THE COMPARED METHODS

both datasets. The maximum and second-maximum values in the
table are respectively highlighted in red bold font and black bold
font, providing a clear delineation of the most salient outcomes.
This study illuminates the influence of DCM scales on network
performance, underscoring the significance of multiscale feature
learning and emphasizing the role of the DCM module config-
uration in optimizing the effect of neural networks.

The effectiveness of SA block and BAF block in SAF: In
Table III, we present a meticulous evaluation of four distinct
configurations: the singular integration of the SA module, the
BAF module, the exclusion of both SA and BAF modules, and
the proposed SAF module. These configurations are devised to
elucidate the individual and combined impacts of SA and BAF
blocks on network performance. The results in Table III under-
score that both SA and BAF modules independently enhance the
feature representation capability of the network. Notably, the
findings reveal that the amalgamation of SA and BAF blocks
within the SAF module yields superior detection performance.
The superiority can be ascribed to the distinctive capability of
SAF modules to not only integrate feature information within the
same layer across spatial and channel dimensions but also fuse
feature representations from higher and lower levels across both
dimensions. The maximal values in the table are highlighted in
red bold font. The study provides a comprehensive assessment of
the distinct contributions of SA and BAF modules, emphasizing
the synergistic benefits of their combination within the proposed
SAF module.

D. Comparison With the State of the Art

To further substantiate the detection capabilities of the pro-
posed DCAPNet, we conducted a comprehensive evaluation
through both quantitative and qualitative comparisons with the
state-of-the-art methodologies on the IRSTD-1 k, SIRST-Aug,
and NUDT-SIRST datasets. The parameters of the compared

methods follow the settings specified in their respective papers,
as delineated in Table IV.

1) Qualitative comparison: Figs. 7 and 8 illustrate the qual-
itative comparison results of our algorithm with the other ten
advanced methodologies on the IRSTD-1 k, SIRST-Aug, and
NUDT-SIRST datasets. In Fig. 7, the delineation of detection
outcomes is symbolized by distinct bounding box colors: red
signifies accurately detected target regions, yellow highlights
regions indicative of false-positive identifications, and blue rep-
resents regions where targets were missed. The upper left region
of the detection results is annotated with the respective detection
method.

The meticulous examination of Figs. 7 and 8 reveals in-
sights into the performance characteristics of various detection
methodologies on the SIRST-Aug, IRSTD-1 k, and NUDT-
SIRST datasets. Among the traditional techniques, the Tophat
and MaxMedian methods based on background suppression
exhibit susceptibility to noise interference, resulting in pro-
nounced noise artifacts and background clutter in their respective
detection outputs. LCM and MPCM relying on local contrast ex-
hibit limited capabilities in suppressing complex backgrounds,
leading to the elevated presence of clutter in the detection images
and consequently generating a notable number of false positives.
Although the two methods based on optimized PSTNN and
SRWS have relatively few false positives, when the target and
background are similar, both are significantly suppressed, re-
sulting in missed detection. Critically, these traditional methods
generally provide only approximate target localization without
accurate segmentation of the target region. These traditional
methods rely heavily on manually extracted features, which
cannot completely filter out the complex changing background
and cannot adapt to the change of target size, so it is easy
to produce a large number of false alarm regions in complex
scenes. In contrast, deep learning-based methods universally
outperform traditional methods in detection performance. The
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Fig. 7. Qualitative detection results of four infrared scenes by various detection methods. (a) Scene I. (b) Scene II. (c) Scene III. (d) Scene IV.
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Fig. 8. 3-D visualization of qualitative results of four infrared scenes by various detection methods. (a) Scene I. (b) Scene II. (c) Scene III. (d) Scene IV.

superiority stems from the adaptability of deep learning methods
to variations in complex backgrounds and target sizes present
in both datasets, which is beyond the adaptability of manually
designed features and prior knowledge incorporated into tradi-
tional methods. However, deep learning methods such as ACM
tend to produce false positives due to their only fusion of details

and high-level semantics, ignoring potential semantic conflicts
arising during the fusion process. DNANet, AGPCNet, and RP-
CANet exhibit some false alarm regions due to not considering
the multiscale feature representation and the information loss
problem it generates. Conspicuously, our proposed DCAPNet
model demonstrates superior precision in target detection and
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TABLE V
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS

segmentation, with minimal occurrences of missed detections
and false positives. The heightened performance is attributed to
the adaptive multiscale feature learning facilitated by the DPC
module and the SAF module, enabling DCAPNet to adeptly ac-
commodate variations in target shape, size, and diverse complex
scene categories.

2) Quantitative comparison: For a precise evaluation of the
detection performance of DCAPNet, we employ numerical
methods for objective evaluation. Table V presents the results of
the quantitative comparisons between DCAPNet and ten other
advanced detection methods. The maximum value for each met-
ric is highlighted in red bold font, while the second-maximum
value is indicated in blue bold font. It is noteworthy that one max-
pooling operation in the first downsampling stage was removed
due to discrepancies in the input image size of the original ACM
(480×480) compared to the size discussed in Section IV-B of this
article. Remaining consistent with the parameters of the original
paper, we retrained four other CNN-based detection algorithms
using the datasets and input image size specified in this study.

It is evident from Table V that our proposed DCAPNet model
demonstrates the best performance across two datasets, achiev-
ing the highest metrics of mIoU, nIoU, and F-measure at 0.9274,
0.9416, and 0.9623, respectively. In contrast to conventional
algorithms, our method exhibits a significant enhancement in
performance metrics. Due to the challenging scenarios present
in the SIRST-Aug, IRSTD-1 k, and NUDT-SIRST datasets,
including diverse target sizes, varying background complexi-
ties, and dynamic signal-to-noise ratios. DCAPNet effectively
leverages the advantages of deep learning algorithms by learning
highly discriminative semantic features from diverse training
data, thereby achieving robust target detection results. Tradi-
tional algorithms, such as LCM and PSTNN, heavily rely on
prior knowledge and necessitate manual parameter adjustments
to adapt to diverse scenarios. Notably, while LCM achieves a
high AUC, reaching 0.9737 on the IRSTD-1 k dataset, its per-
formance across the other three metrics is lower. The disparity
indicates that while LCM attains a heightened detection rate, it
also encounters a substantial FPR, leading to a relatively high
AUC but lower detection accuracy.

The DCAPNet model consistently exhibits superior per-
formance compared to four other CNN-based methods. The
achievement can be ascribed to the proposed DPC module and
SAF module, which effectively preserve and enhance the feature
responses of targets within the deep layers, thereby contributing
to the improved detection performance of the model. Primarily,
the network conducts dynamic multiscale feature learning at
the deepest layer of feature extraction, reducing the loss of
contextual information caused by pooling operations and better-
capturing information at multiple feature scales. Subsequently,
attention modulation and fusion mechanisms are applied to
the low-level details and deep-level semantics of small targets,
preventing the submergence of crucial target features within the
conflicting information. In essence, the prowess emanates of
DCAPNet from its holistic integration of dynamic multiscale
feature learning and stochastic attention modulation techniques,
collectively fortifying its capacity to discern and highlight salient
features of infrared small targets amidst deep-layer network
responses.

We plot the ROC curves for various methods, utilizing TPR
and FPR, respectively, represented on the vertical and horizon-
tal axes, as illustrated in Fig. 9. Combining the AUC values
with the ROC curves reveals that, as FPR increases, DCAPNet
consistently maintains the highest detection probability and
AUC values. The observation underscores the proposed model
effectively suppresses background information, mitigates noise
interference, and exhibits optimal comprehensive detection
capabilities.

To further validate the detection efficiency of the proposed
method, we calculate the parameter quantity and inference time
for ten detection methods, as shown in Table VI. Although our
designed model shows the best performance on other evaluation
metrics, the network parameters increase by 5.15 M compared
to the AGPCNet model. The reason is that our proposed DPC
module combines four DCM modules, integrating multiscale
information of images, enhancing the feature representation of
small targets, but also increasing the complexity of the model.
It can be seen from the table that Tophat and MaxMedian
require the least inference time among traditional algorithms, but
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Fig. 9. ROC curves of 11 infrared small target detection methods. (a) SIRST-Aug dataset. (b) IRSTD-1 k dataset. (c) NUDT-SIRST dataset.

TABLE VI
PARAMETER QUANTITY AND INFERENCE TIME FOR 11 DETECTION METHODS

their detection performance is relatively poor, and they cannot
adapt to complex environments. Among deep learning-based
algorithms, the inference time of our method is second only to
the ACM network, which can process images in real-time while
maintaining better detection performance.

V. DISCUSSION

In summation, the proposed model in this article exhibits
heightened capabilities in both target detection and segmenta-
tion. Initially, elaborate ablation experiments were conducted
to validate the soundness and efficacy of the introduced mod-
ules, encompassing the role of the backbone, the selection of
DCM scales, and the impact of SA attention and BAF modules.
Subsequently, we compared DCAPNet with ten other advanced
detection algorithms, conducting qualitative and quantitative
analyses of the experimental outcomes from both subjective
and objective perspectives, respectively. Qualitative experimen-
tal results underscore the limitations of traditional detection
algorithms, which incorporate diverse prior knowledge such as
structural tensors, local contrast, and regularization terms. These
methods exhibit limited adaptability to variations in targets and

scenes, resulting in a notable propensity for generating false pos-
itives and missed detection. Concurrently, the mIoU, nIoU, and
F-measure metrics of traditional methods differed significantly
from those based on deep learning, as delineated in Table V.
The discrepancy is attributed to the fact that classic traditional
detection algorithms primarily focus on locating targets rather
than precisely segmenting them. Consequently, owing to their
heavy reliance on manually tuned parameters, traditional meth-
ods are susceptible to noise interference, thereby constraining
their generalization capability and exhibiting inferior detection
performance in contrast to their deep learning counterparts.

Within the realm of deep learning-based methods, the ACM
approach merely integrates detailed information and high-level
semantics, neglecting the distinctions between targets and back-
grounds and lacking focused attention on target regions. The
DNANet model exhibits a complex design but fails to exploit
multiscale contextual information effectively. AGPCNe gener-
ates a considerable amount of conflicting information during the
feature fusion process, potentially resulting in the loss of details
related to target features. RPCANet may lead to missed detec-
tions in small and complex situations. The diverse experimental
results presented in Section IV-D collectively substantiate the
robustness of the proposed DCAPNet model across various com-
plex backgrounds and its more accurate detection capabilities.

Nevertheless, the persisting challenge lies in the circumstance
where small targets occupy only a limited number of pixels
and wield relatively minor weights in the loss function, further
research is imperative in future work to delve deeper into this
aspect. As shown in Table VI, our proposed module increases
the number of network parameters, making our network more
network parameters than other networks. Therefore, we will
continue to explore how to reduce model complexity and refine
the application of attention mechanisms within the proposed
framework.

VI. CONCLUSION

To enhance the precision of small target detection in infrared
images, this article introduces a novel approach termed the
DCAPNet designed specifically for detecting weak small targets
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in the infrared spectrum. To tackle the issue of target loss in
deep networks, we formulate a DPC module that assimilates
multiple DCM modules. The construction enables the adaptive
learning of multiscale features related to targets, thereby ef-
fectively augmenting the context information for small targets.
Subsequently, we design the SAF module to extract and apply
interpixel correlation information within the same layer features,
preventing target information from being submerged in semantic
conflict during feature fusion. The module fully incorporates
the shallow positional information and deep semantic features
of the target, accentuating the target features in different layers
while concurrently suppressing extraneous background infor-
mation. In addition, the impact of each module is verified by
ablation studies, and objective quantitative as well as subjective
qualitative comparisons are conducted with ten other detection
approaches. Across the SIRST-Aug, IRSTD-1 k, and NUDT-
SIRST datasets, DCAPNet consistently exhibits superior per-
formance compared to other methods, manifesting heightened
robustness in the face of diverse and complex backgrounds. The
methods based on graph signal processing and graph neural
network require less labeled data [54], [55], [56], [57], and can be
applied to infrared small target detection in the future to further
reduce the dependence of the model on the amount of data.
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