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Abstract—Remote sensing image change detection is a valuable
technology for analyzing the earth observation data. It has signifi-
cant application value in resource monitoring, disaster assessment,
and urban planning. However, current change detection methods
have not fully explored the interrelationships between bitemporal
data, and the extraction process of change information lacks prior
guidance and constraints. Therefore, it is easy to produce missed
detections and false alarms when facing complex backgrounds and
variable objects in remote sensing images. To tackle such issues,
we propose a cross-scale guided high-order feature interaction
change detection network for dual temporal images. Specifically,
a cross-scale guided dual encoder–decoder backbone is proposed
to constrain the reconstruction process of change objectives, and
guide geometric prior to optimize the representation of target
structures. Next, an efficient high-order feature interaction module
is designed, employing multilevel receptive fields to enhance the
perception ability for multiscale features. Moreover, we construct
a bitemporal feature alignment fusion module, which decouples
and filters out the interference of background pseudo changes
through interactive perception of spatial–temporal differences.
Comprehensive experimental validation is undertaken on four
representative change detection datasets (LEVIR-CD, WHU-CD,
DSIFN-CD, and S2Looking). The findings demonstrate that the
network demonstrated state-of-the-art performance.

Index Terms—Change detection, cross-scale guidance, feature
bidirectional interaction, remote sensing.

I. INTRODUCTION

CHANGE detection is a process by which the state dif-
ference of a geographical area is determined through

remote sensing revisiting and observing [1]. Change detection
technology is widely used in disaster damage assessment [2],
urban expansion [3], agricultural pest monitoring [4], and nat-
ural resource management [5]. Capturing change information
of interested objects on the earth’s surface is a highlight in
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Fig. 1. Bitemporal VHR optical remote sensing images. The red box repre-
sents target texture and shadow change, the green box indicates the coupling
effect of observation angle and shadow, the yellow box displays targets with
diverse scales, and the red circle shows register deviation. (a) T1 images.
(b) T2 images. (c) Ground truth. (d) Register accurate samples. (e) and (f) register
deviation samples.

remote sensing monitoring research. In recent decades, very
high resolution (VHR) optical remote sensing satellites (such as
Quickbird, WorldView-3, Gaofen series) have the advantages of
space-based observation perspective and high revisit frequency.
The increasingly rich multitemporal VHR optical remote sens-
ing image data brings greater opportunities for change detection
applications [6], [7].

Challenges still persist in change detection of VHR optical
remote sensing images. First, the scenes in optical images are
more complex, and background changes such as illumination
intensity and shadows interfere with target edge extraction, as
the content in red box of Fig. 1. Second, the discrepancy in
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observation angles of bi-temporal images inevitably results in
a spatial displacement, and these spatial–temporal differences
are prone to false changes, as illustrated in the red circle in
Fig. 1. Moreover, the above two problems are often coupled with
each other, further increasing the spatial-temporal differences
of the background and the instability of changing information,
as shown in green boxes of Fig. 1. Finally, characteristics of
features in VHR remote sensing images, such as scale, structure,
texture, and distribution, are complex and diverse, as illustrated
in yellow boxes of Fig. 1. This complexity increases the difficulty
of extracting robust features.

Deep learning excels in computer vision, and has an advantage
in extracting fine feature details and complex texture information
from VHR remote sensing images [8], [9]. This is due to its
ability to mine robust deep features, and has attracted increasing
attention in change detection [10]. These models fall into two
broad categories: single-stream approach and double-stream
structure. The former is cascaded or differentially processed on
bi-temporal images as inputs into semantic segmentation model
to achieve end-to-end change detection [11], [12]. However,
images integration operations in the early processing inevitably
sacrifices original semantic information, and it is often unable
to cope with the interference of space–time displacement.

Currently, the double-stream structure has become the main-
stream of bi-temporal change detection, which inputs the bitem-
poral images as independent data into two feature extraction
branches [11], [14], [15]. In this structure, the feature fusion
module is needed to mine change information from two feature
branches [10], [13], [16]. The double-stream network prevents
the mixing of the original images and fuses the bitemporal
features of ground objects after the encoder to capture more
accurate changing information.

Despite the growing popularity of the double-stream network
approaches, there remains a need for effective solutions that ad-
dress the aforementioned challenges in a comprehensive manner.
We contend that its crux lies in the following three aspects.

1) Improving the perception ability for variable scales targets
and establishing a robust feature representation model.

2) Enhancing the guidance of geometric prior on the process
of changing semantic reconstruction.

3) Constraining the bitemporal feature fusion to suppress the
interference of registration error and eliminate the false
and retain the truth.

Different from the previous work, we comprehensively
considered the above three aspects and proposed cross-scale
guided high-order feature interaction change detection network
(CGFINet). First, the high-order feature interaction module
employs a joint action of translation and interactive operation
to generate hierarchical multiscale receptive fields with less
computation, thereby enhancing the perception of variable tar-
gets. This approach differs from redundant convolution stacking
operations or transformer modules with significant computation
in previous work. Second, we consider that the plain skip connec-
tion is prone to introducing redundant and interfering informa-
tion. To address this, we propose cross-scale guided enhanced
decoders, which employ refined geometric priors to constrain
the change semantic reconstruction, thus preventing the loss of

change information in complex remote sensing scenes. Third,
based on the prior knowledge of the symmetry of binary change
detection, we propose a symmetrical interaction strategy of
bi-temporal features fusion. This module can symmetrically
enhance the characteristics of changing areas and suppress the
background features of spatial–temporal dislocation. The main
contributions of our article are summarized as follows.

1) A novel change detection network is proposed. It uses
cross-scale guided enhancement decoder (CGED) to im-
prove the refined reconstruction of changed semantic fea-
tures with prior geometric information, capturing finer
change regions.

2) A high-order feature interaction module (HFIM) is intro-
duced to efficiently obtain hierarchical receptive fields,
which uses a concise group shifting and interaction oper-
ation to capture and fuse multiscale features.

3) A bitemporal feature alignment and fusion module
(BAFM) is adopted, which suppresses spatial–temporal
dislocation based on optical flow. It decouples the back-
ground pseudo change interference and enhances changed
feature adaptively.

The rest of this article is summarized as follows: Section II
provides an overview of current dual stream change detection
methods and feature fusion methods. The problem statement
and our solutions are also provided in this section. The specific
process of our method is introduced in Section III. Section IV
presents experiments and discussions. Section V provides a
summary of our entire work.

II. RELATED WORKS

A. Double-Stream Change Detection Methods

Dual stream networks typically employ a Siamese neural
network architecture to process bitemporal images [17], [18].
Then extract changing information by merging the features of
two branches. Dual stream networks can be mainly divided into
two structures : dual encoder single decoder (DESD) network
and dual encoder–decoder (DED) network.

The DESD network fuses bitemporal features before decoding
operations. Zhang et al. [16] proposed a Siamese architecture
with skip connection for extracting bi-temporal image features.
Fang et al. [19] combined the advantages of dual encoder
structure and UNet++ semantic segmentation model to obtain
change information. Chen et al. [20] and Zhang et al. [21] used
implicit neural representation to design the change decoder after
the twin encoder, and proposed a new idea to alleviate the spatial
resolution difference and alignment deviation of bitemporal
features. Recently, Zhao et al. [22] introduced Mamba based
encoder in the framework of DESD, which has advantages in
capturing context in large-scale remote sensing images. Zhang
et al. [23] proposed to fuse the global and local guidance of
the dual encoder features, to alleviate Mamba’s lack of local
cues when dealing with change detection tasks. Chen et al.
[24] introduced region similarity before the decoder for bitem-
poral feature fusion to reduce the impact of spatial offset on
the decoding process. The DED network often includes two
encoding–decoding branches with shared weights, and feature
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fusion operation occurs during the decoding stage. Chen et al.
[13] constructed a DED structure for binary change detection,
which enhances change information, reduces background in-
terference, and utilizes self-supervised learning strategies to
improve change detection performance. Liang et al. [25] used
graph convolution to perceive global contextual information and
enhance the guidance of low-level features in the decoding and
reconstruction process.

DESD directly fuses the bitemporal encoder features. How-
ever, general encoder feature includes invalid background infor-
mation and noise interference, causing redundancy and devia-
tion in change detection. Dual-decoder is additionally designed
in DED which has potential in reconstructing change charac-
teristics and suppressing background interference. However,
due to the change of imaging conditions such as season and
illumination in different time phases, pseudo change features
are inevitable in bitemporal images. This brings challenges to
the current DED works to accurately reconstruct bitemporal
features.

Varying from the aforementioned works, we consider geo-
metric edge, context, and semantic information simultaneously
to provide enhanced guidance on high-level semantic recon-
struction. Concurrently, we employ high-order feature interac-
tion to generate a hierarchical multiscale receptive field, which
enhances the perception of multiscale features with reduced
computational complexity.

B. Bitemporal Feature Fusion Methods

In double-stream approach, bitemporal fusion module is often
used as a direct means to accurately extract the changing feature.
In order to fully exploit the potential benefits of different fusion
methods, Chen et al. [13] proposed parallel fusion methods
such as summation and difference. On this basis, Chen et al.
[26] integrated channel attention and spatial attention to better
perceive global contextual information. Jiang et al. [27] and
Zhao et al. [28] established attention module to achieve bitem-
poral feature interaction. The current approach focuses more
on change information enhancement and background region
suppression [10], [16], [29], ignoring images registration er-
ror when revisiting the same area. However, the VHR remote
sensing images with extremely fine semantic details are more
sensitive to registration errors, which disturbs the effectiveness
of the fusion method mentioned above. The spatial–temporal
dislocation caused by side-looking problems, which is likely to
be amplified into pseudo changes. Song et al. [30] analyzed the
pixel mismatch problem that still exists under regional coregis-
tration, and reduced the impact of registration bias by downsam-
pling the original high-resolution image and discarding shallow
differential feature layers. But it inevitably leads to the loss of
feature information. Liang et al. [25] used feature interaction
strategy to achieve spatial information exchange between dual
temporal features. However, due to registration bias, feature
interaction during the encoding stage often produces pseudo
changing semantics. Considering the third aspect that affects
the performance of change detection network mentioned above,

we construct the dual temporal feature alignment and fusion
module.

In this article, we creatively integrate the idea of spatial-
temporal registration into the fusion strategy and propose a sym-
metrical interaction strategy of bitemporal features. This module
can symmetrically enhance the characteristics of changing re-
gions and suppress the background features of spatial-temporal
dislocation.

III. PROPOSED METHOD

A. Method Overview

The complete process architecture of our approached
CGFINet is displayed in Fig. 2. A dual encoder–decoder back-
bone is designed for CGFINet, including dual-encoders, mul-
tilevel feature fusion module, dual-decoders, and change de-
coders. Dual-encoders with shared weights extracts geometric
texture information and scene semantics from bitemporal im-
ages. Dual-decoders with a series CGEDs will fuse geomet-
ric features with the deep high-level semantic features, which
is detailed in Section III-B and Fig. 3. The HFIM based on
hierarchical receptive fields mines and fuses multiscale target
features, which is detailed in Section III-C and shown in Fig. 4.
In change information decoders, a series of BAFMs is applied to
realize the alignment and fusion of bitemporal features, which
is described in detail in Section III-D and shown in Fig. 5. The
change decoders output the enhanced change features and the
change head produce the prediction change map.

B. Cross-Scale Guided DED Backbone

Dual-encoders based on Siamese network structure are com-
monly operated to model the original images into the same
feature space. The encoder features contain rich scene semantic
information, and then the feature map is input into decoders
to reconstruct changing area. We analyze the advantages and
disadvantages of DESD structure and DED structure in Sec-
tion II-A. Considering this issue, we choose DED network as
the backbone. It uses dual decoders with shared weights, thus
avoiding the confusion of dual temporal information in the
process of semantic reconstruction. This structural design is not
only conducive to improving the temporal and spatial accuracy
of change features, but also conducive to further integrating
multilevel feature information.

Dual-encoder branches with shared weights are composed of
four encoder blocks, which is shown in Fig. 2. Encoder blocks
down sample the size of the feature map as (H0/2, W0/2), (H0/4,
W0/4), (H0/8, W0/8), and (H0/16, W0/16), and increase the chan-
nel number by 32/64/128/256, where H0 and W0 respectively
indicate the height and width of our input images.

Each encoder block uses SE-ResNet structure [31], and it can
be formulated as follows:

Fei = fMAP
(
BaseConv

(
Fe(i−1)

))
+ fMAP

(
fSE

(
BaseConv

(
Baseconv

(
Fe(i−1)

))))
(1)

where BaseConv(·) refers to the combination of base con-
volution layer, batch normalization and rectified linear unit.
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Fig. 2. Overall framework of the proposed CGFINet.

fMAP(·)represents max pooling, and fSE(·) denotes the SE block,
as shown in Fig. 3(b). Fei ∈ RHi×Wi×Ci(i = 1, 2, 3, 4) refers
to the ith encoder feature, and Hi = H0/2

i, Wi = W0/2
i,

Ci = 2i+4respectively represent its height, width, and channels
number.

The skip connection in UNet structure introduces rich struc-
ture into the decoder features, which is superior in medical
image semantic segmentation field. However, the scenes in VHR
remote sensing images are more complex and diverse, which
leads to the traditional skip connection mode is easy to cause
occlusion and interference between the region of multiscale
targets. In light of the aforementioned characteristics of remote
sensing images, we introduced the CGED to obtain the edge non
aliasing multiscale target spatial domain enhancement feature,
as shown in Fig. 3.

CGED uses spatial features from encoders guiding the change
semantic reconstruction process. The introduction of geometric
feature enhancement mechanism makes skip connections more
efficient and accurate, simultaneously suppress occlusion inter-
ference in the scene. The input of CGED is a low-level encoder
feature map Fei and a deep decoder feature map Fd(i+1) ∈
RHi+1×Wi+1×Ci+1 , and its output is a deep decoding feature
map Fdi ∈ RHi×Wi×Ci , Specifically, in order to fully capture
the geometric features of the changing region, we employ two
parallel branches. First, we utilize the underlying features to
obtain local fine geometric features. Second, we guide the adap-
tive enhancement of the global feature channels in the changing
scene. We introduce angular differences pixel difference convo-
lution (APDC) [32] to mine the geometric edge information of
local regions, and integrate it into decoding features. As shown
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Fig. 3. Structure of cross-scale guided enhancement decoder.

Fig. 4. Structure of hierarchical receptive field module.

Fig. 5. Structure of bi-temporal alignment fusion module. (Green box indi-
cates that directly fusing misaligned dual temporal features can easily generate
false alarms. Red box indicates that the BAFM can filter out the false detection
caused by registration deviation.).

in Fig. 3, the mathematical expression of APDC is as follows:

FAPDC (xi) = w1 · (x1 − x2) + w2 · (x2 − x3) + · · ·
= (w1 − w4) · x1 + (w2 − w1) · x2 + · · ·
= ŵ1 · x1 + ŵ2 · x2 + · · · =

∑
ŵi · xi

(2)

wherexirepresents pixels to be processed, andwiand ŵi refers to
convolution kernel weight and corresponding weight difference,
respectively.

In another branch, we use attention mechanism to obtain
feature channel weights. The low-level feature Fei is global
average pooled and subsequently compressed to a vector of
1× 1× Ci as guide feature. We use its value as weight to
characterize the importance of each feature channel. Then, we
compress the number of channels ofFd(i+1) intoCi by convolu-
tion operation and multiply it with the guide feature vector pixel
by pixel. Then, we use residual connected structure can preserve
the spatial domain details with semantic information. The deep
features Fd(i+1) are compressed in channels and upsampled in
spatial, it is concatenated with the upsampled feature map A and
edge feature F ′ei along the channel dimension. To realize the
adaptive fusion expression, we compress the channel number
of concatenated feature to Ci using a BaseConv with kernel
size of 1 × 1. The aforementioned process is mathematically
represented by the following formula:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A = (fFC (fGAP (Fei)))⊗ BaseConv

(
Fd(i+1)

)
F ′d(i+1) = Up

(
BaseConv

(
Fd(i+1)

))
Fdi = BaseConv

(
Concat

(
F ′ei,Up (A) , F ′d(i+1)

))
i = 1, 2, 3

(3)

where fFC(·) is full connection layer, and fGAP(·) refers to global
average pooling. Up(·) represents upsampling. In addition, the
Concat(·) denotes to the concatenating operation along channel
dimension and ⊗ represents the element-wise multiplication.

C. High-Order Feature Interaction Module

The features in remote sensing images have large scale varia-
tions. Therefore, it is essential to extract multiscale hierarchical
information using large receptive fields effectively and fuse
them efficiently. Rao et al. [34] considered that the superior
performance of ViT [33] compared with CNN was due to the
high-order spatial interaction modeling ability of ViT [33].

Inspired by Rubik’s cube [35], we introduced an HFIM, which
uses high-order channel interactions to construct hierarchical
receptive fields for fusing multiscale features of targets. The
module is added after the encoder. Through the operation of shift
and channel interaction, the high-order channel interaction of
feature layer is realized in a simple and effective way to enhance
the multilevel feature mapping.

The structure of HFIM can be seen in Fig. 4. To be specifically,
we divide the encoder feature Fin into five sections along the
channel axis using a splitting operation, one of which remains
unchanged, and the other four are shifted in the left, right, up,
and down directions, respectively. In order to keep the input
feature spatial structure unchanged, zeros are filled to the vacant
position and out-of-focus pixels are discarded after shifting



HAN et al.: CGFINET: CROSS-SCALE GUIDED HIGH-ORDER FEATURE INTERACTION CHANGE DETECTION NETWORK 14619

operation. The shifted feature map can be expressed as (4)
shown at the bottom of the this page, where Cid denotes the
number of channels that remain unchanged, and Cg refers to
the number of channels that perform shifting operation, and
Cid + 4× Cg = C. We set the number of shifted pixels to 1
by default and analyze its advantages in Section IV-E. Through
zero FLOP and zero parameter shift operations, we efficiently
split the input characteristic graph X into Fori ∈ RH×W×Cid and
{Fc1, Fc2, Fc3, Fc4} ∈ RH×W×Cg .

After the grouping and panning operations, we alternate with
convolution layers and element-wise multiplication to integrate
the information in the four shifting operation groups. Specif-
ically, multilevel channel interaction is realized by element
level multiplication with the following shifting groups in turn.
Equations (5) and (6) represent first-order channel interaction,
and (7) and (8) represent high-order channel interaction

F ′c1 = Conv1×1 (Fc1) (5)

F ′c2 = Conv1×1 (F ′c1 ⊗ Fc2) (6)

F ′c3 = Conv1×1 (F ′c2 ⊗ Fc3) (7)

F ′c4 = Conv1×1 (F ′c3 ⊗ Fc4) (8)

where Conv1×1(·) refers to convolution operation with 1×1
kernel size. The multiorder channel interaction features are
concatenated in the channel axis and subsequently fused by con-
volutional operation. Finally, the input feature is added to obtain
the result of Rubik’s cube convolution, which is as follows:

Fout = Conv1×1 (Concat [Fori, F
′
c1, F

′
c2, F

′
c3, F

′
c4]) + Fin.

(9)
HFIM realizes multilevel channel interaction through simple

convolution layers with small kernel and element-wise multipli-
cation. The coupling effect of splitting and shifting operations
and multilevel channel interaction enables us to obtain hierarchi-
cal multiscale receptive fields. It realizes the fusion of multiscale
features and makes the features input into the decoder more
discriminative against multiscale targets.

D. Bitemporal Alignment Fusion Module

Bitemporal feature fusion is an important step to obtain
change features in the change detection network. Common fea-
ture fusion methods include direct fusion (addition, subtraction,
or splicing), convolution enhancement fusion and fusion based
on attention mechanism. They focus on enhancing the bitempo-
ral characteristics and reducing the interference of background
noise. However, they do not address the impact of spatial regis-
tration errors on abstracting changing regions. The complexity
of remote sensing image scene inevitably leads to dislocation or

side view problems, despite the input bi\temporal images have
been preprocessed by image registration.

In order to avoid the impact of matching errors or side view
problems in the process of bitemporal feature fusion, we intro-
duce a BAFM based on optical flow method, as shown in Fig. 5.
The feature mapsF (t1)

di ∈ RHi×Wi×Ci andF (t2)
di ∈ RHi×Wi×Ci

output by the dual decoders are spliced along the channel
dimension, and then input to a semantic flow field extraction
subnetwork. The convolution unit contains two convolution
layers, and its kernel size is 5 × 5. The subnetwork output
a semantic flow field information Δfi ∈ RHi×Wi×4, which is
expressed by the following formula:

Δfi = Convflow

(
Concat

(
F

(t1)
di , F

(t2)
di

))
(10)

where Convflow(·)represents the semantic flow field extraction
subnetwork. After the flow field information is calculated, Δfi
is divided evenly along the channel dimension to get Δf

(t1)
i ∈

RHi×Wi×2 and Δf
(t2)
i ∈ RHi×Wi×2. Then, the semantic flow

field information is used to correct the spatial position of the
bi-temporal features respectively, and two corrected feature
maps are obtained by bilinear interpolation. Feature alignment
based on flow field is aimed to avoid the influence of matching
error or side view problem, and improve the spatial consistency
representation ability of bitemporal features, which helps to
extract more accurate change information, and eliminate the
pseudo changes caused by spatial offset. Subsequently, we cal-
culate Euclidean distance between each feature map and the
other temporal corrected feature map respectively, and splice
the two distance features along channel dimension. Finally, a
forward propagation convolution layer is designed to extract the
changing feature. Mathematically, the output fusion features can
be expressed as follows:

Fi = Conv1×1
(
Concat

([
wrap

(
F

(t1)
di ,Δf

(t1)
i

)
− F

(t2)
di

]
,

×
[
wrap

(
F

(t2)
di ,Δf

(t2)
i

)
− F

(t1)
di

]))
(11)

where wrap(·) refers to the calculation operation of correction
feature map based on bilinear interpolation. The forward propa-
gation convolution layer halves the feature channel dimension,
and keep it consistent with the input single temporal feature to
achieve effective feature fusion.

E. Loss Function

The loss function we designed includes two parts: binary
change loss Lc and semantic segmentation auxiliary loss Ls.
As shown in Fig. 6. Among them, Lc aims to constrain the de-
viation between our predicted change map and the truth change

Fori = F [0 : H, 0 : W, 0 : Cid]← Fin [0 : H, 0 : W, 0 : Cid]
Fc1 = F [0 : H, 1 :W,Cid : Cid + Cg]← Fin [0 : H, 0 : W−1, Cid : Cid+Cg]
Fc2 = F [0 : H, 0 : W − 1, Cid + Cg : Cid + 2Cg]← Fin

[
0 : H, 1 : W,Cid + Cg : Cid + 2Cg

]
Fc3 = F [0 : H − 1, 0 : W,Cid + 2Cg : Cid + 3Cg]← Fin [1 : H, 0 : W,Cid + 2Cg : Cid + 3Cg]
Fc4 = F [1 : H, 0 : W,Cid + 3Cg : Cid + 4Cg]← Fin [0 : H − 1, 0 : W,Cid + 3Cg : Cid + 4Cg]

(4)
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Fig. 6. Schematic diagram of constraint learning in CGFINet.

label. Inspired by the research of Chen et al. [13], the semantic
segmentation auxiliary loss Ls is used to constrain the prior
difference between the outputs of two semantic segmentation
branches. That is, the semantic information of invariant regions
should be as similar as possible, while the semantic difference
of changing regions should be as large as possible. It can be
expressed by the mathematical formula as follows:{

Ls = Floss
({

S(t1) ∩ Yu

}
,
{
S(t2) ∩ Yu

})
Yu = {(n,m)|yn,m = 0} (12)

where Yu represents the invariant pixel set in the ground change
truth label, and S(t1) and S(t2) refers to the output result graph
of two semantic segmentation branches, respectively., and∩ de-
notes the intersection of logical operations. We use the addition
of binary cross entropy loss lBCE and dice number loss ldice to
calculate the loss function of each part (Lc and Ls), which is
described as follows:{

lBCE =
∑H×W

h=1,w=1
(yh,w logxh,w+(1−yh,w) log(1−xh,w))

H×W
ldice = 1− 2×|CM ∩Itruth|

|CM|+|Itruth|
(13)

where H and W respectively indicate the height and width of
the truth change label, h and w denote to the pixels position
in image, CM and Itruth refer to the prediction change map
and truth change label, xh,w and yh,w represent the value of
pixels in the prediction change image and the truth change image,
respectively, and yh,w = 1 (yh,w = 0) represents the changing
(unchanged) pixels in the ground change map.

Our final loss function is defined as follows:

L = Lc + αLs (14)

where α denotes the weight parameter, which is set as 0.2 in
subsequent experiments.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets and Evaluation Metrics

In this section, four universal datasets are selected for fully
evaluating effectiveness of our proposed method. During our
experiment, we divided images into patches of 256× 256 pixels
without any overlap, and specific details are as follows.

1) LEVIR-CD [36] is produced for building change detec-
tion using Google Earth as the data source, with spatial
resolution of 0.5 m. The images comprise various types of
buildings and include the effects of seasonal change and
solar illumination changes. We divide it into three groups
according to the volume of 7120, 1024, and 2048, which
are respectively used as training set, verification set, and
test set.

2) WHU-CD [37] is a bitemporal change detection dataset,
and records the changes of buildings reconstructed after
the earthquake. The dataset includes aerial images of the
region from 2012 and 2016, containing over 10 000 build-
ings. The dataset is divided into three groups according to
the volume of 6096, 760, and 760, which are respectively
used as training set, verification set and test set.

3) DSIFN-CD [16] is a dual temporal remote sensing image
dataset collected from Google Earth with spatial resolu-
tion of 2 m. It contains diverse ground buildings imaged
by different sensors under different seasonal conditions.
The dataset is divided into three groups according to the
volume of 14 389, 13 590, and 192, which are respectively
used as train set, validation set and test set.

4) S2Looking [38] is a building change detection dataset for
urban and rural scenes, which provides side view remote
sensing image pairs. The presence of rural scenes makes
the phenomenon of farmland or vegetation changes caused
by seasonal changes more common, and improves the
challenge of building change detection. The image has a
spatial resolution of 0.5–0.8 m. We divide it according
to the volume of 56 000, 8000, and 16 000, which are
respectively used as train set, verification set, and test set.

Our evaluation metrics used for experiments are precision
(Pre), recall (Rec), intersection over union (IoU), and overall
accuracy (OA). These four metrics are commonly used for
evaluating the behavior of change detection method. They are
calculated as follows:

Pre =TP/(TP + FP) (15)

Rec =TP/(TP + FN) (16)

IoU =TP/(TP + FP + FN) (17)

OA =(TP + TN)/(TP + TN+ FN+ FP) (18)

where TP, TN, FP, FN are calculated by confusion matrix, and
indicate true positive, true negative, false positive, and false neg-
ative, respectively. We use F1-score (F1) as the main evaluation
index, and it is calculated using the following formula:

F1 = 2× Pre× Rec/(Pre + Rec). (19)

B. Comparison Algorithms and Implementation Details

The selected several state-of-the-art change detection meth-
ods include three single-stream methods: FC-EF [39], DDCNN
[12], and CLNet [40], seven dual-stream methods: DTCDSCN
[41], STANet [36], SNUNet [17], SILICD [20], HANet [44],
CGNet [45], and C2FNet [46]. To demonstrate the efficiency
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TABLE I
DISTINCTIONS BETWEEN CGFINET AND OTHER COMPARISON ALGORITHMS ON LEVIR-CD AND WHU-CD

TABLE II
DISTINCTIONS BETWEEN CGFINET AND OTHER COMPARISON ALGORITHMS ON DSIFN-CD AND S2LOOKING

of our method, we also select three transformer-based methods:
BiT [42], ChangeFormer [43], and VcT [27].

The experiments are trained using a single NVIDIA GeForce
RTX 3090 GPU and implemented using the PyTorch toolkit. We
apply several data augmentation, including flip, rescale, crop,
and Gaussian blur. We use the AdamW optimizer and a linear
rate policy. We train these models in 200 epochs on four datasets
with batch size as 8. We install the initialization learning rate as
0.001, and beta value as (0.9, 0.999) and the weight attenuation
as 0.0001. The model validating on the validation set occurs
after each epoch training, and is tested on the test set using the
best model of all epoch training.

C. Comparison Experiments

The official code and default parameter settings of the
comparison methods are employed in comparison experiments.
The comparison results are presented in Tables I and II. More
specific results and analyses of experiments on LEVIR-CD,
WHU-CD, DSIFN-CD, and S2Looking datasets are given
below, respectively.

1) Comparisons on LEVIR-CD Dataset: As demonstrated
in Table I, our approach significantly behave better than the
comparison method on LEVIR-CD. Specifically, our CGFINet
achieves 92.06%, 89.76%, 90.90%, 83.31%, 99.08% on the Pre,

Rec, F1, IoU, and OA, and yields optimal F1, IoU, and OA.
In these methods, STANet [36] employs a pyramid spatial–
temporal attention mechanism to discover the multiscale in-
formation and to establish intricate global spatial–temporal
associations. It achieves the optimal Rec in our experiments.
ChangeFormer [43] makes full use of the layered transformer
encoders to obtain a larger receptive field and a stronger long-
range semantic mining ability, achieving suboptimal F1, IoU,
and OA. VcT [27] considers the invariance of the background
region, and effectively reduces false alarms by mining the global
dependencies between reliable tokens. It achieves the optimal
Pre in our experiments. However, the above methods do not
optimally balance Pre and Rec, which may be due to the lack of
refinement constraints on the semantic feature decoding process.
Different from these methods, CGFINet improves the refined
representation of change features by mining the guidance and en-
hancement ability of low-level geometric feature in the process
of high-level semantic reconstruction. It uses BAFM to suppress
the pseudo detection caused by spatial-temporal deviation, to
obtain the optimal F1 value.

In order to intuitively and qualitatively understand the be-
havior of our proposed method, we select eight methods with
the best F1 values, and show their visualization results in
Fig. 7. The selected scenes include densely distributed buildings,



14622 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 7. Several inference results of comparison algorithms on the LEVIR-CD test sets. (a) T1 images. (b) T2 images. (c) Ground truth. (d) DDCNN [12].
(e) CLNet [40]. (f) BiT [42]. (g) ChangeFormer [43]. (h) SILICD [20]. (i) HANet [44]. (j) VcT [27]. (k) Ours. Different colors in change maps indicate true
positives (white), false positives (red), true negatives (black), and false negatives (green), and the same annotation method is used in other visualization results of
the article.

multiscale buildings, and the presence of occlusion and shadow
interference. The results of the comparison demonstrate that the
experimental results of the proposed method exhibit minimal
red or green components, offering a distinct advantage over
other comparison methods. Specifically, ChangeFormer [43]
and VcT [27] perform well overall, but when the scenes are
complex and the ground objects are irregular, the error rate
increases significantly, shown as the third row in Fig. 7. How-
ever, CGFINet effectively integrates the spatial information in
the semantic reconstruction process and introduces HFIM to
improve the perceptual ability of multiscale targets, so the results
of CGFINet in intricate scenarios are demonstrably superior to
other methods. As illustrated in the fourth and fifth rows of
Fig. 7, comparison methods have several degrees of false alarm
or missed detection in the detection of the edge of the changed
object. This is because the illumination angle and observation
angle of the before and after temporal are inconsistent, which
makes the shadow around the target change and there is partial
occlusion. However, CGFINet reduces the interference of the
above factors by aligning and fusing of dual temporal features,
to enhance the precision of the detection process.

2) Comparisons on WHU-CD Dataset: As demonstrated in
Table I, the indexes of our CGFINet on WHU-CD are 93.49%,
90.12%, 91.77%, 84.79%, 99.37% on the Pre, Rec, F1, IoU,
and OA, respectively. This result indicates that our method
demonstrates a significant improvement over the comparison
methods. SNUNet [17] adopts the idea of dense connection to
aggregate and refine the multilevel semantic features, achieving
the second-best Pre, F1, IoU, and OA. However, the operation
of dense connection is inevitably prone to generate redundant
information, and the interference of dual temporal feature space
registration error is not fully considered, which affects its detec-
tion performance. Our proposed CGFINet uses CGED to extract
the spatial information of the change target to guide the semantic

reconstruction process, suppressing the interference of irrelevant
background noise, and adopts the alignment operation of dual
temporal features, to achieve the optimal Pre, F1, IoU, and OA.
Compared with suboptimal method, the F1 and IoU of CGFINet
increase by 1.38% and 2.55%, respectively, which means that
CGFINet can more accurately detect changes in dual temporal
images.

To show the intuitive behavior of different approaches on
WHU-CD dataset intuitively, we select eight methods with better
F1 value performance, and display them in Fig. 8. In general,
CGFINet achieves the best change detection performance with
less pseudo changes and less missed detection. Moreover, WHU-
CD dataset reflects the state of ground building reconstruction af-
ter the earthquake, and contains more abundant types of changes.
In particular, the first row of Fig. 8 contains surfaces coated
with cement or asphalt, which can impede the detection process
and lead to the generation of false alarms in the majority of
comparison methods. However, CGFINet extracts more discrim-
inative features through the cross-scale guided DED structure,
outputting more accurate detection results. The scenes in the
second and third rows are more complex, and there are shadows
and occlusions, resulting in different degrees of missed detection
problems in SILICD [20] and HANet [44]. However, CGFINet
effectively reduces the loss of change information by finegrained
decoding process and change feature alignment strategy. The
experimental results presented in the fourth row demonstrate
that the proposed CGFINet performs better compared to other
approaches when there is regional overlap between newly built
(added) buildings and demolished (reduced) buildings in the
scene, which may benefit from its refined extraction of edge
information of changing objects.

3) Comparisons on DSIFN-CD Dataset: As shown in
Table II, our proposed CGFINet outperforms comparison meth-
ods significantly on DSIFN-CD. Specifically, our method
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Fig. 8. Several inference results of comparison algorithms on the WHU-CD test sets. (a) T1 images. (b) T2 images. (c) Ground truth. (d) CLNet [40]. (e) SNUNet
[17]. (f) BiT [42]. (g) ChangeFormer [46]. (h) SILICD [20]. (i) HANet [44]. (j) VcT [27]. (k) Ours.

Fig. 9. Several inference results of comparison algorithms on the DSIFN-CD test sets. (a) T1 images. (b) T2 images. (c) Ground truth. (d) CLNet [40]. (e) STANet
[36]. (f) SNUNet [17]. (g) BiT [42]. (h) ChangeFormer [43]. (i) SILICD [20]. (j) VcT [27]. (k) Ours.

achieves 78.45%, 81.47%, 79.93%, 66.57%, and 93.05% on the
Pre, Rec, F1, IoU, and OA, respectively, achieving the optimal
Rec, F1, IoU, and OA. Compared to the suboptimal VcT [27],
our proposed method improved F1 by 7.76% and IoU by 12.92%,
respectively. The DSIFN dataset contains a more diverse range
of urban building types and fuzzy semantic information, which
increases the challenge of change detection tasks. VcT [27]
combines the global perception advantage of the transformer
module to achieve the optimal Precision and suboptimal F1, but
the balance between Pre and Rec is not optimal. Our proposed
CGFINet enhances the perception of multiscale changes through
HFIM, and utilizes CGED to transmit the edge information
of multiscale changes to the enhanced semantic information,
achieving optimal performance on experiments dataset.

In order to visually and qualitatively understand the perfor-
mance on DSIFN-CD, we show prediction change maps in
Fig. 9. Through visualization results, it can be seen that our
method has almost no red or green parts in predicted change
map, which is more advantageous compared to other methods.
First, our CGFINet can adapt to different urban scenes or the
diversity of ground building types, such as in the first and second
row in Fig. 9. Some comparison methods, due to limitations
in receptive fields or edge extraction, cannot fully detect large
building areas or have missed detections for small building
variations. However, through multiscale object perception and
edge information enhancement, our CGFINet can reduce such
missed detections and false detections. Second, our CGFINet is
able to handle irrelevant changes caused by seasonal changes
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Fig. 10. Several inference results of comparison algorithms on the S2Looking test sets. (a) T1 images. (b) T2 images. (c) Ground truth. (d) DTCDSCN [41].
(e) SNUNet [17]. (f) BiT [42]. (g) ChangeFormer [43]. (h) SILICD [20]. (i) HANet [44]. (j) VcT [27]. (k) Ours.

or semantic ambiguity, such as in the third and fourth rows
of Fig. 9. Due to the similarity in color between the top of
the building and the farmland, most comparison methods miss
building changes in the farmland or mistakenly detect farmland
as changes of interest. However, our CGFINet enhances the
recognizability of semantic information by utilizing cross scale
structural information, which can better avoid the interference
of such pseudo changes.

4) Comparisons on S2Looking Dataset: The experimental
results are displayed in Table II. The evaluation indicators on
this dataset are generally lower than those on other datasets,
which further illustrates the challenge of the S2Looking dataset.
Nevertheless, our methods achieved 73.90%, 53.71%, 62.21%,
45.15%, 99.21% on the Pre, Rec, F1, IoU, and OA, respectively,
achieving the optimal OA and the suboptimal Pre. Compared
to the suboptimal BiT [42], our proposed method improved F1
by 0.64% and Pre by 2.23%, respectively. CGNet and C2FNet
obtained the optimal and suboptimal F1 and IOU, respectively.
CGNet proposes a change prior guided fusion module, which
is conducive to the spatial alignment of bitemporal features.
This also proves the correctness of designing BAFM to suppress
registration errors. It is worth noting that our CGFINet has
significant advantages in parameters and running efficiency. See
Section IV-E for details. This is due to the fact that CGFINet uses
simple but efficient shifting and channel interaction to obtain
multiscale receptive fields.

In order to intuitively and qualitatively understand the per-
formance of our CGFINet on the S2Looking dataset, we show
the visual results of the comparative experiment in Fig. 10.
The visualization results show that there are fewer red and
green parts in the experimental results of our method. First,
our CGFINet is capable of adapting to the interference of more
diverse ground buildings and seasonal changes in rural areas.
For example, the first and second rows in Fig. 10 contain sig-
nificant changes in farmland and vegetation. Some comparison

methods mistakenly classify bare land or cement ground areas
as changes. Our CGFINet can better avoid the interference of
such irrelevant changes. Second, our CGFINet can well deal with
the registration error and shadow problems in side view remote
sensing images. For example, in the third and fourth rows of
Fig. 10, some comparison methods lack robustness to the change
of observation angle, resulting in many pseudo changes due to
the registration error. By highlighting the edge structure of the
changing region and aligning the features in time and space, our
CGFINet can reduce such false detections.

D. Ablation Analysis

In this section, CGFINet ablation experiments are organized
on the LEVIR-CD, WHU-CD, and DSIFN-CD datasets to verify
contribution of the proposed key modules. We designed a base
backbone with DED structure. The encoder in base backbone
is the same as that in CGFINet. The encoded deep features are
directly input into the decoder without HFIM. The decoder in the
base backbone adopts the classic UNet structure. The decoded
features are concatenated and upsampled layer by layer, and
finally the same change detection head is used to get the change
map. We introduce the proposed CGED, HFIM, and BAFM
modules into the base backbone for ablation research. The
performance of different combinations of backbone and the three
modules shows that the corresponding modules can improve
the performance of our proposed CGFINet. The quantitative
analysis results are display in Table III. The formulas of these
evaluation indicators are given in Section IV-A.

1) Ablation Study on CGED: The decoder used in the base
network concatenates features directly in channel dimensions.
We use CGED to replace the decoder in the Base network to
verify the contribution of CGED. Take the LEVIR-CD dataset as
an example for specific analysis, comparison of the results in the
first and second rows of Table III reveals that CGED can improve
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TABLE III
ABLATION EXPERIMENTS OF DIFFERENT MODULES

Fig. 11. Visualization of feature maps from HFIM and CGED. (1)-(3) Three
images of scenes in LEVIR-CD. (a) Input images. (b) Feature maps before
HFIM. (c) Feature maps after HFIM. (d) Feature maps after CGED-3. (e) Feature
maps after CGED-2. (f) Feature maps after CGED-1.

indicators of our method. The F1, IoU, and OA result from Base
+ CGED are 90.55%, 82.73%, and 99.04%, respectively, which
are better than those of base network. Comparing the results in
the eighth row and the seventh row of Table III, the F1, IoU, and
OA of CGFINet removing CGED decrease to 90.70%, 82.99%,
and 99.06%, respectively. These results fully demonstrate the
contribution of CGED to our CGFINet.

As shown in Fig. 11, the effectiveness of CGED is demon-
strated through the presentation of three scenes images in
LEVIR-CD. Fig. 11(d)–(f) illustrate the capacity of CGED
to reconstruct semantic information accurately across diverse
scene types. Furthermore, the spatial information is enhanced
through the application of CGED, with the texture and edge
features in the reconstructed feature map becoming increasingly
discernible as the CGED iteration progresses from CGED-3 to
CGED-1.

2) Ablation Study on HFIM: We verify the contribution of
HFIM by adding HFIM between the encoder and decoder of
base network. Take the LEVIR-CD dataset as an example for
specific analysis, comparison of the results in the first and third
rows of Table III displays the improvement effect of HFIM. The
F1, IoU, and OA result from Base+HFIM are 90.51%, 82.67%,
and 99.04%, respectively, which are better than those of base
network. By comparing the results in the eighth and sixth rows
of Table III, the F1 and IoU of CGFINet without HFIM decrease
to 90.83% and 83.20%, respectively. These results prove the
contribution of HFIM to our CGFINet.

We present the feature maps before and after HFIM pro-
cessing to substantiate the efficacy of HFIM in Fig. 11(a)–
(c). The feature map resulting from HFIM processing ex-
hibits a notable enhancement of the target of interest, accom-
panied by the accurate extraction of buildings in disparate
scenes, thereby rendering them more discernible from the
background.

3) Ablation Study on BAFM: The change decoder in the
base network directly subtracts the dual temporal features. We
verify the contribution of BAFM by using BAFM as the change
decoder of base network. Take the LEVIR-CD dataset as an
example for specific analysis, comparison of data in the first
and fourth rows of Table III indicates the advancement effect
of BAFM. The IoU of Base + BAFM is 81.78%, the F1 value
is 89.98%, and the OA value is 98.98%, which are better than
the corresponding indicators of base network. The comparison
of the results in the eighth and fifth rows of Table III reveals
that the F1 and IoU of CGFINet without BAFM decrease to
90.83% and 83.21%, respectively. These results demonstrate the
contribution of BAFM to our CGFINet.

As illustrated in Fig. 12, three pairs of scenario diagrams are
presented to demonstrate the efficacy of BAFM. Fig. 12(d)–(g)
represent the features output from BAFM-4 to BAFM-1 in
turn. A comparison of the red boxed areas reveals that BAFM
is capable of gradually and effectively suppressing the error
detection caused by registration errors and light shadows. The
BAFM algorithm, as presented in this article, demonstrates the
capacity to accurately and robustly extract change features in a
variety of scenes.

In summary, the above experimental results demonstrate that
proposed modules enhance the efficacy of our method, and
the combination of the three modules can further improve the
accuracy. The combination of Base+CGED+HFIM+BAFM
yields the optimal performance, with IoU of 83.31%, F1 of
90.90%, and OA of 99.08%.

E. Discussion

1) Effects of the Number of Shifted Pixel: The RubikConv
algorithm employs a shift operation within the HFIM frame-
work. In order to ascertain the impact of the number of shifted
pixels on the robustness of HFIM, a series of experiments
were disposed on four datasets. Different numbers of shifted
pixels were designed in RubikConv, and the same optimization
strategy was employed in all comparative experiments. The
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Fig. 12. Features visualization of BAFM. (1)–(3) Three pairs of images in LEVIR-CD. (a) Image1. (b) Image2 (c) Ground Truth. (d)–(g) Features from BAFM.

Fig. 13. F1 scores of CGFINet based on different number of the shifted pixel. (a) LEVIR-CD. (b) WHU-CD. (c) DSIFN-CD. (d) S2Looking.

primary evaluation metrics were the F1 and the performance
of the IoU analysis algorithm. As illustrated in Fig. 13, the F1
and IoU of CGFINet exhibit a notable enhancement following
the implementation of the shift operation. With the augmen-
tation of the number of shifted pixels, the algorithmic perfor-
mance initially improves and subsequently declines. This phe-
nomenon may be attributed to the incremental complexity of the

multichannel interactive reconstruction structure, which is as-
sociated with the increase in the number of shifted pixels.
Therefore, in this article, we set the default value of the number of
shifted pixels to 1. In addition, the impact of shifted pixel number
on the robustness of CGFINet is more obvious on WHU-CD
and S2Looking. For LEVIR-CD, the performance of CGFINet
is more stable, which is mainly due to the spatial distribution
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Fig. 14. F1 scores of CGFINet based on different weight parameter α. (a) LEVIR-CD. (b) WHU-CD. (c) DSIFN-CD. (d) S2Looking.

of changing targets in different datasets is inconsistent, and the
changes in the evaluation results are within a reasonable range.

2) Effects of the Weight Parameter in Loss Function: There
is a weight parameter (α) of semantic segmentation auxiliary
loss Ls in the loss function. The objective of this experiment
is to analyze the impact of α on the performance of CGFINet.
The specific method is to set the parameter value α from 0 to
1 in steps of 0.1, and then count the F1 value of CGFINet on
different datasets. The other configurations in the comparison
experiment are exactly the same. As shown in Fig. 14, we
can find the following conclusions. First, the performance of
CGFINet has the same trend on different datasets, that is, there
is an obvious peak when α = 0.2. This shows that the change
loss function is relatively more important. Second, when α =
0, the indicator of CGFINet decreases, which indicates that the
semantic segmentation auxiliary loss function term is indispens-
able. Third, the performance of CGFINet is relatively stable for
the LEVIR-CD dataset. However, change trend is more obvious
on other datasets, which may be due to the different distribution
of change instances in different datasets.

3) Parameters and Running Efficiency: We analyze the effi-
ciency of all comparison approaches on S2Looking, and dis-
play assessment results in Table IV. The evaluation indexes
included the model parameters (Params), floating point oper-
ations per second (FLOPs), training time, and inference time.
The experimental outcomes indicate that the CGFINet achieves
the excellent F1 score on S2Looking using a limited number
of parameters, and a relatively low computational complexity.
Specifically, the CNN-based methods (FC-EF [39], DDCNN
[12], CLNet [40], SILICD [20]) have less Params, FLOPs and
faster training speed. However, this is often at the expense of
their performance. Although the Transformer-based methods

TABLE IV
COMPARISON OF PARAMETERS AND OPERATION EFFICIENCY

(BiT [42], ChangeFormer [43], and VcT [27]) improve the
performance, they require a lot of training time. It is worth
noting that our CGFINet achieve excellent performance with
much smaller Params, FLOPs and running time than CGNet
[45] and C2FNet [46].

V. CONCLUSION

In this article, we proposed a new VHR remote sensing image
change detection method. Our aim is to enhance the guidance
of cross-scale spatial information on the process of deep se-
mantic information reconstruction, alleviate the interference of
background noise on real change information in images, and
extract accurate changing region by fusing bitemporal features.
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Therefore, we project a DED network with cross-scale guided
enhancement decoders to filter the intervention of background
noise and enhance edge characteristics of targets. At the same
time, we apply a high-order feature interaction module to mine
and fuse multiscale features, and employ a series of bitemporal
feature alignment fusion module to alleviate the pseudo change
problem caused by temporal and spatial deviation. We have
carried out extensive experimental verification on four classical
change detection datasets, and proved the effectiveness and
advantages of our proposed CGFINet.

Although CGFINet shows excellent performance, it still has
some limitations. For example, as an end-to-end supervised
learning network, our CGFINet depends on the complete and
annotated change detection dataset, which is a very time-
consuming work. Therefore, in addition to the construction of
more complete change detection datasets, it is of great signif-
icance to mine self-supervised or semi-supervised methods, or
to seek the pretraining model for optical remote sensing image
to improve the generalization ability of network. Therefore, our
next work will focus on these aspects.
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