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Marine Radar Image Sequence Target Detection
Based on Space–Time Adaptive Filtering

and Hough Transform
Baotian Wen , Zhizhong Lu , Yongfeng Mao, and Bowen Zhou

Abstract—The performance of marine radar target detection is
largely affected by the intricate and dynamic space–time variations
of sea clutter signals, which cause substantial numbers of false and
missed alarms. To improve the target detection performance of
rotating scanning marine radar, this study proposes a marine radar
image sequence target detection algorithm based on space–time
adaptive filtering and the Hough transform algorithm. The algo-
rithm adopts a two-stage approach of coarse detection followed by
precise detection. During the coarse detection stage, the sea clutter
energy in the 3-D frequency–wavenumber spectrum of the marine
radar image sequence is suppressed by a sea clutter suppression
algorithm in the space–time domain, space–time clutter suppres-
sion (STCS). Subsequently, moving targets are extracted from the
image sequence using a target energy extraction method based on
the Hough transform algorithm in the 3-D frequency–wavenumber
domain. The result is a processed image sequence with sea clutter
signal reduction and target signal extraction. The precise detection
stage detects the target point in this processed image sequence
using a constant false alarm rate method based on a real clutter
background distribution model. During verification tests on real
X-band marine radar data, the detection probability of the pro-
posed method reaches 99.89% under low sea state, 95.34% under
medium sea state, and 94.44% under high sea state. Compared with
the WHOS-CFAR and GMOS-CFAR, the average improvement
is 10.1% and 16.6%, respectively. Furthermore, compared to the
STCS, there is a maximum improvement of 3.7%. The enhance-
ment in detection performance is significant.

Index Terms—Constant false alarm rate, marine radar, radar
image sequence, space–time adaptive filtering (STAF), target
detection.

I. INTRODUCTION

MARINE radar, which detects objects by emitting elec-
tromagnetic waves and receiving their echoes, operates

continuously throughout the day and night. Marine radar is
widely applied and plays a crucial role in tasks such as rainfall
detection, wind field inversion, wave inversion, marine ecolog-
ical protection, and maritime security defense [1], [2], [3], [4].

In marine radar signals radiated from the sea surface, the target
information is combined with sea clutter information [5]. Sea
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clutter refers to the backscattering signals created when radar
emitted electromagnetic waves scatter across the sea surface.
Sea clutter is generated through complex physical mechanisms
that depend on various factors, including the condition of the
sea surface and oceanic meteorology. Consequently, sea clut-
ter is characterized by highly intricate space–time variations.
Moreover, the relatively diminutive size and intensity of marine-
target signals in comparison to sea spikes make them easily
overwhelmed by clutter signals [6]. Therefore, marine radar
target detection against the complex background of sea clutter
has always been a challenging and popular research topic.

The current target detection methods for marine radars can
be classified into six main categories: traditional spatial do-
main processing, temporal domain processing, frequency do-
main processing, time–frequency domain processing, deep neu-
ral network learning, and space–time (frequency–wavenumber)
domain processing.

Spatial domain processing analyzes the mechanism and char-
acteristics of sea clutter using statistical methods. Various sea-
clutter distribution models have been established, including the
log-normal distribution, the Weibull distribution based on a
multiparameter non-Gaussian model, the composite-model K
distribution, and the generalized Pareto distribution of texture
and speckle components based on a dual-scale model [7]. Mul-
tiparameter models can produce complex composite distribu-
tions that closely match the actual amplitude distributions of
sea clutter. Under the appropriate radar parameters and sea
surface conditions, each model achieves promising detection
performance. However, sea clutter has non-Gaussian, nonlinear,
and nonstationary properties, leading to notable variations in the
amplitude distribution models of sea clutter across different time
periods and sea areas [8].

Exploiting the self-similarity and scale invariance of sea
clutter, temporal domain processing based on the fractal theory
discriminates between sea clutter signals and target signals.
Nevertheless, fractal techniques cannot detect swiftly moving
targets and are considerably influenced by sea clutter [9].

Frequency domain processing methods include moving target
indicator (MTI), moving target detection (MTD), eigenvalue de-
composition (EVD), and singular value decomposition (SVD).
The MTI and MTD methods employ cancelation filters between
multiple consecutive pulses to separate the Doppler frequency
shift that characterizes moving targets [10], [11]. The EVD
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and SVD methods adopt a subspace decomposition approach
and exploit the first-order Bragg peak characteristic to suppress
sea clutter energy in the frequency domain [12]. When the sea
clutter is heavy, its first-order Bragg spectra broaden and overlap
the Doppler frequency spectra of the targets, compromising the
ability of these methods to suppress clutter and detect the targets.

Time–frequency domain processing methods exploit the dual
benefits of the temporal and frequency domains. Target detection
is based on the difference between the distinct distributions of
sea clutter and target in the time–frequency domain [13]. The
frequency aggregation location of the target signal is ultimately
determined after different time–frequency transformations and
searching for the optimal transform domain to estimate the
target’s motion parameters [14]. These methods adopt the short-
time Fourier transform [15], fractional Fourier transform [16],
or sparse Fourier transform [17]. Although time–frequency do-
main processing exclusively achieves energy accumulation, this
advantage is limited to linear frequency modulation signals [14].
Deep neural network learning such as convolutional neural
networks [18] and generative adversarial networks [19] process
radar images from an image-processing standpoint. These meth-
ods autonomously learn and extract the features of the target
signal in an image and perform tasks such as detection and
segmentation [20]. Despite their promising performance and
enormous potential [5], radar-target detection methods based
on machine learning require a sufficient number of sample data
from different sea conditions and target scenarios for the training
process.

In the presence of heavy sea clutter and a low signal-to-clutter
ratio (SCR), detecting an unknown number of targets in a single
image is notoriously difficult. The performance of target detec-
tion can be improved using multiple radar images [21]. Unlike
traditional target detection based on individual scans, space–
time domain processing can jointly process the information in
multiple consecutive scans to achieve robust detection [22]. De-
tection before tracking (TBD) and space–time adaptive filtering
(STAF) belong to this class of methods. TBD synchronously in-
tegrates tracking and detection, avoiding the need for threshold-
ing using the amplitude information, and accumulates multiple
energies to enhance the target detection [23]. TBD for coherent
radar includs Radon linear standard transform and so on [24],
[25], [26]. TBD for noncoherent radar includs extended Kalman
filter-based TBD, etc. [27], [28], [29]. Methods in the second
category are based on the recursive Bayesian estimation frame-
work. However, TBD methods require separate estimations of
the target kinematics and modal states [30], whereas the shapes
of real marine moving targets are typically irregular and variable.

STAF (frequency–wavenumber) domain processing such as
space–time clutter suppression (STCS) [31], suppresses sea clut-
ter by transforming a series of radar images into the frequency–
wavenumber domain and constructing a filter based on the
dispersion relation of the sea clutter energy. Although the STCS
method effectively suppresses most of the sea spike signals in
the original image sequence, there still exist a small number
of heavy sea spike signals and noise signals in the processed
image sequence. These clutter signals are scattered throughout
the entire image, which cause false alarms in the subsequent

precise detection stage. Therefore, in the coarse detection stage,
this article proposes a novel clutter suppression method. After
the STCS procedure, the 3-D frequency–wavenumber domain is
transformed into the Hough detection domain to obtain specific
information of the target frequency. According to the informa-
tion, a space–time domain target extraction (STTE) procedure
is established. The nontarget energy is further filtered by the
process, including sea clutter and noise, thereby enhancing the
SCR of the image sequence and reducing the presence of heavy
clutter signals. As a result, the false alarm rate in subsequent
precise detection is effectively decreased. In addition, within
the STSC precision detection stage, a traditional sea clutter
background distribution model is employed. The compound
Gaussian distribution is utilized for offline fitting to ascertain
the sea clutter distribution. However, even if the vast majority of
sea clutter is suppressed, some rapidly changing sea spikes and
attenuation effects on large spatial scales cause the distribution
of background clutter to be nonstationary and non Gaussian.
Consequently, a fixed fit distribution model cannot adequately
replace real clutter distribution. This article proposes a novel
real clutter background distribution constant false alarm rate
(RCBD-CFAR) during precision detection stage. The back-
ground distribution model is dynamically updated in real time
through the utilization of image sequences generated during the
coarse detection stage, where the image sequence processed
through sea clutter suppression, target removal, and attenuation
suppression.

The rest of this article is organized as follows. Section II
describes the modeling of sea clutter spectra and moving tar-
get spectra in the frequency–wavenumber domain. Section III
presents the proposed space–time adaptive target detection al-
gorithm. Section IV presents the experimental results. Section V
discusses the proposed method, and finally, Section VI con-
cludes this article.

II. MODELS FOR SEA-CLUTTER AND MOVING-TARGET
SPECTRA IN THE 3-D FREQUENCY–WAVENUMBER

DOMAIN

This section describes the spectral components of a marine
radar image sequence in the 3-D frequency–wavenumber do-
main and overviews a validated sea clutter model. In addition,
the distinctive features of moving targets in the 3-D frequency–
wavenumber domain is elucidated, supports the subsequent
processes of clutter suppression and moving target extraction.

A. Frequency Spectrum of Sea Clutter in the
Frequency–Wavenumber Domain

The 3-D fast Fourier transform (3D-FFT) transforms a ma-
rine radar image sequence into an image spectrum in the 3-D
frequency–wavenumber domain. An integration image along
the θ-direction in the spectral domain obtained from a set of
radar image sequence is shown in Fig. 1. It should be noted that
Fig. 1 is derived directly from the actual measured radar image
sequence without target. The image spectrum comprises static
and quasistatic energy spectra [32], the frequency spectrum of a
stationary or slowly moving target, the characteristic frequency
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Fig. 1. Integrated image along the θ-direction in the 3-D frequency–
wavenumber spectral domain Vω,k corresponding to the radar image sequence.

spectrum of nonlinear waves, the high-order harmonic frequency
spectrum, the aliased energy spectrum based on the fundamental
dispersion relation curve, and the frequency spectrum of the
background noise [33].

Marine radar image sequences cover an enormous spatial
scale over a short temporal scale. Therefore, the wave field and
flow field within these sequences can be assumed as spatially
homogeneous and temporally stationary. In such cases, sea
clutter in the frequency–wavenumber domain exhibits first-order
gravity wave characteristics, and the spectrum is concentrated
near the basic dispersion relationship curve [34].

ω =
√

g · k · tanh(k · h) + �k · �u (1)

where ω is the frequency of sea gravity wave, g is the gravita-
tional acceleration, h is the water depth, k is the modulus of the
wave number, �u = (ux, uy) is the sea current direction relative
to the ship, and �k = (kx, ky) is the wavenumber vector.

The basic dispersion relation satisfied by first-order gravity
waves is accompanied by higher order dispersion relations sat-
isfied by higher order gravity waves. The higher order dispersion
relations are defined as

ω = (p+ 1)

√
g · k · 1

p+ 1
· tanh

(
k · h
p+ 1

)
+ �k · �u (2)

where p = 0, 1, 2 . . ., is an order variable primarily reflecting
the differences among different order dispersion relations. When
p = 0, the basic linear dispersion relation is obtained, whereas
for p �= 0, a pth-order nonlinear dispersion relation is obtained.

B. Frequency Spectrum of the Moving Target in the
Frequency–Wavenumber Domain

Irregular waves composed of waves with different frequen-
cies separate into their component waves during propagation.
Frequency dispersion is driven by the different periods and
corresponding velocities of the component waves. In deep water,
the wave velocity and period are related as follows:

vi =
λi

Ti
=

gTi

2π
tanh kih (3)

Fig. 2. Integration image along the θ-direction in the 3-D frequency–
wavenumber spectral domain Vω,k of (a) pure sea clutter with no target,
(b) one target moving at 10 m/s, (c) one target moving at 15 m/s, and (d) two
targets, one moving at 10 m/s and the other moving at 15 m/s.

where vi, λi, Ti, and ki represent the wave velocity, wave length,
wave period, and wave number, respectively, of the individual
wave i in the spectrum of the moving target.

The higher velocity waves are trailed by the lower velocity
waves. Whereas sea clutter comprises waves of different fre-
quencies and follows the dispersion relationship, the constituent
points of targets within marine radar images can be regarded as
moving uniformly and linearly at the same velocity. Therefore,
the target points disobey the dispersion relationship and can be
treated as a single large point. Scanning marine radars cannot
rapidly accumulate pulses over a short period. However, the
targets motions of targets within scanning radar images can be
considered as slow linear movements that are displaced by lim-
ited amounts in multiple images, enabling the accumulation of
multiple pulses. The velocity of the target can then be computed
considering the Doppler-frequency shift properties between the
spectra. In the frequency–wavenumber domain, the large point
described previously consists of composite frequencies with
very similar wave velocities and periods. Consequently, in the
radar image sequence, the frequency spectrum of the uniformly
moving target comprises a group of similar frequencies with
nearly constant wave velocities. The wave velocity and ω are
related as

ωi = |ki| · vi (4)

where ωi is the frequency of the sea gravity wave and |ki| is
the modulus of the wave number of individual wave i in the
moving-target spectrum.

Fig. 2 presents integrated images along the θ-direction in the
3-D frequency–wavenumber spectrum domain, depicting both
moving targets with constant velocities and pure sea clutter.
Furthermore, Fig. 2 is generated by combining the radar image
sequence without target and the target sequence extracted from
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the radar image sequence with target, both of which are based
on actual measurement data. The slopes of the target frequency
spectra depicted in Fig. 2(b)–(d) correlate with the velocities
of the corresponding targets. Prominent spectral features of the
target frequency spectrum appear in the |K| − w domain, but
the angle and phase information of the wavenumber domain
is absent. Consequently, crucial directional information on the
target motion is lost and the targets in multitarget scenarios
are not easily differentiated and extracted. To overcome these
limitations, a 2-D cross section can be obtained from the 3-D
frequency–wavenumber image spectrum along the ω-direction,
where kx (vx) and ky (vy) represent the wavenumber (velocity)
components of the target along the X- and Y -directions in the
wavenumber domain, respectively. The following equation is
derived:

kiy = −vix
viy

· kix +
ωi

viy
. (5)

An image captured via a scanning radar requires a complete
circle scan, which considerably extends the time interval. Con-
sequently, the corresponding values in the image sequence are
inherently discrete. In this scenario, the moving target frequency
spectrum appears as a series of straight lines corresponding to the
discrete frequencies in the wavenumber domain corresponding
to each discrete frequencyω. The slope of each line is determined
by vix and viy . The X and Y intercepts in the wavenumber
domain are determined by the wave velocities of the target
spectra and the discreteω values corresponding to the wavenum-
ber domain. Meanwhile, the target frequency spectrum on the
zero-frequency plane (ω = 0) invariably intersects the origin. In
the case of staring radar, the time interval of image acquisition
is small and ω is approximately continuous. The target spectrum
in the 3-D frequency–wavenumber domain then manifests as a
plane passing through the central point. The normal vector of
this plane is determined by the orientation and magnitude of the
wave velocity associated with the target frequency.

The 1st and the 32nd original images in a set of image
sequences are depicted in Fig. 3(a) and (b), respectively, with an
interval time of 80 s. These images contain four targets moving
approximately in a straight line at uniform speed. Specifically,
the first target moves at an angle of 57◦ with respect to due
north, the second target moves at an angle of 45◦ with respect
to due north. The third target moves at an angle of 90◦ with
respect to due north, while the fourth target moves at an angle
of 0◦ with respect to due north. Due to the decrease in target
frequency as ω deviates from 0, the energy in the images before
the 9th and after the 25th diminishes to an undetectable level.
Consequently, any two images between the 9th and 25th are se-
lected to calculate variations in moving target frequency within
the 3-D frequency–wavenumber domain. Fig. 3(c)–(e) displays
the 10th (ω = 0.54978), 16th (ω = 0.07854), and 17th (ω = 0)
2-D cross sections along theω-direction in a 3-D spectral domain
Vω,k with four moving targets. The four targets move uniformly
and linearly in different directions (57◦, 45◦, 90◦, and 180◦ with
respect to due north) within 80s. The zero-frequency plane [17th
spectrum; Fig. 3(c)] contains numerous frequencies that grad-
ually attenuate over distance and stationary object frequency.

Fig. 3. First and the 32nd images in a set of image sequences. (a) First original
image, and (b) 32th original image. 2-D cross sections along the direction in a
3-D spectral domain Vω,k with four targets. (c) Tenth spectrum (ω = 0.54978),
(d) 16th spectrum (ω = 0.07854), and (e) 17th spectrum (ω = 0) in the
frequency–wavenumber domain.

Owing to the colossal spatial-temporal scale of electromagnetic
wave attenuation across the entire radar image, the distribution is
concentrated around the zero-frequency domain. A pronounced
proportion in this plane is acquired by the dc component of the
sea clutter. Combining the 10th and 16th spectra, the spectra of
the four target frequencies clearly change with target velocity
and direction. As ω increases, the target frequency moves in the
same direction as the target movement in space–time domain,
manifested as the translation of a straight line. In addition to
the predominant frequency spectra conforming to (5), a limited
number of frequency spectra satisfy only the slope requirement,
violating the intercept condition. These spectra actually origi-
nate from aliasing effects, some of these are marked in the yellow
box. The conditions for aliasing effects are as follows:

dkm =
2π

Lm
=

2π

vm
· dt · num (6)

vm · dt · num = n · dm (7)

where dkm, Lm, and Vm represent the wavenumber resolution
spatial displacement scale, and movement velocity, respectively,
of the target, dt is the temporal resolution of radar sampling,
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num is the number of images in the radar image sequence, n
is the total number of points of the target moving through the
spatial domain, and dm is the spatial resolution of the target. The
wavenumber of the target is then derived as

km =
2π

dm
. (8)

The target frequency ωm can be obtained from the velocity
of (4) and the aliasing conditions are determined using the
Nyquist sampling theorem ω ≥ 2ωm, which is represented as
n ≥ 2 · num. According to (8), aliasing is avoided when the
distance moved by the target between two consecutive radar
images is less than twice the unit distance. In addition, if the
target between two successive radar images is displaced by
less than the resolution of the unit distance, its motion will be
undetected, and subsequently, classified as stationary. Owing
to the limited temporal resolution and high spatial resolution
of marine radar, spectral aliasing in the frequency domain is
inevitable for real moving targets.

C. Distribution Model of the Real Clutter Background

CFAR detection under sea clutter background is a traditional
method for sea surveillance radar target detection. Surrounding
environmental factors such as wind speed, temperature, atten-
uation effects, and target signals introduce large space–time
variations in distribution models of sea clutter [35]. The origi-
nal image sequence undergoes the sea clutter suppression (see
Section III-A) and target removal (see Section III-B), the image
sequence with sea clutter suppression, target removal and atten-
uation suppression is obtained. By counting all signals in the
processed image sequence, a stable and real clutter background
distribution (RCBD) model can be obtained. The process of
obtaining this distribution is explained in detail in Section III-C.

The RCBD model differs from the traditional compound
Gaussian (CG) distributions such as the Weibull and log-normal
distributions (which are special forms of the CG distribution),
and the K, Pareto, and CG inverse Gaussian distributions, in
terms of different statistical objects and different methods of
acquisition. In the traditional distribution model, the statistical
object is the sea clutter background data. A significant vol-
ume of authentic sea clutter background data is counted in an
offline manner. Subsequently, various GC distribution models
are employed to accurately fit the distribution model of the sea
clutter background data. The resultant fitting outcomes are then
utilized to ascertain the most suitable distribution model that can
effectively replace the actual sea clutter background distribution
model. The resulting statistics in RCBD model are no longer
based on the original sea clutter background, but rather on the
processed clutter background. By virtue of the two filtering
steps, the RCBD model can seamlessly substitute the distribution
model of the real clutter background. This substitution not only
facilitates online acquisition but also obviates the necessity for
fitting composite Gaussian distribution models.

Fig. 4 illustrates the distribution curves of various types of
background clutter under different conditions. As the intensity
of the sea state increases, the overall distribution of the original
sea clutter background tends to concentrate toward elevated

Fig. 4. Original sea clutter distribution, RCBD (the clutter background dis-
tributions obtained by sea clutter suppression and target removal), logarithmic
normal, Weibull, and K distribution fittings to the original radar image sequence
under (a) low sea conditions, (b) medium sea conditions, and (c) high sea
conditions.

grayscale values. These fixed distribution models are best suited
to particular sea surface environmental conditions. Alterations
to these conditions can rapidly deteriorate the fittings of these
distribution functions to the actual circumstances. The RCBD
model (black dashed curves in Fig. 4) resolves the problems
caused by intense space–time variations. It remains unaffected
by environmental variables such as temporal lapse and sea con-
ditions, enabling real-time acquisition of varying background
clutter models, and it exhibits exceptional stability.

III. TARGET DETECTION BASED ON STAF

This section introduces the proposed target detection algo-
rithm. Fig. 5 shows the architecture of the method. First, the
disruptive effects of sea clutter are suppressed through an STCS
filter on the interpolated image sequence. Subsequently, the
energy of target is extracted by the STTE filter on the sea clutter
suppressed image sequence. In this coarse detection process,
target extracted image sequence and sea clutter suppression,
target removal, and attenuation suppression image sequence
is obtained. Thereafter, RCBD model is applied to precise
detection.

A. Sea Clutter Frequency Suppression Segment

The STCS filter is employed for mitigating sea clutter in
coarse detection. The marine radar image sequence η(x, y, t) is
3D-FFT-transformed to a 3-D frequency–wavenumber spectrum
F (kx, ky, ω). The discrete form of this spectrum is expressed as
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Fig. 5. Architecture of target detection in a marine radar image sequence based on STAF and the Hough transform.

follows:

F (kx, ky, ω) =

Ly∑
0

Lx∑
0

T∑
0

η(x, y, t) exp

[−2πi (kxx/Lx + kyy/Ly + ωt/T )] (9)

I (kx, ky, ω) =
1

LxLyT
|F (kx, ky, ω)|2 (10)

where Lx and Ly are the spatial scales of the image se-
quence, and T denotes the temporal scale. kx and ky denote
the wavenumber components of the spectrum, ω is the temporal
frequency, and I(kx, ky, ω) is the 3-D frequency–wavenumber
image spectrum. The resolutions of the wavenumber compo-
nents and frequency are dkx = 2π

Lx
, dky = 2π

Ly
, and dω = 2π

T .
The 2-D wavenumber modulation frequency spectrum

I(|K|, ω) is obtained by integrating I(kX , ky, ω) over the
wavenumber angles. The module of all points with values ex-
ceeding 0.95∗C in the spectrum (where C is the calculated
maximum spectral value) are averaged to obtain the leading
wavelength |Km| of the waves. The upper and lower boundaries
of the filter are then determined from |Km| and the maximum
relative velocity |Umax| as follows:

|Kp| =
(
ω + dω

2 + |Km| · |Umax|
)2

g
+

dK√
2

(11)

|Kn| =
(
ω − dω

2 − |Km| · |Umax|
)2

g
− dK√

2
(12)

where |Kp| and |Kn| refer to the upper and lower boundaries of
frequency band of the filter, respectively.

The STCS model obtained by (13) and (14) as follows:

E (kx, ky, w) =

{
0 w ∈ [Kn,Kp]

I (kx, ky, w) else
(13)

where E(kx, ky, ω) represents the sea clutter suppression image
spectrum.

The energy of the targets is distributed across the entire
I(kx, ky, ω) domain and is largely concentrated below 0.4712
rad/s, meanwhile, the energy rapidly increases with decreasing
ω. Specifically, 87.26% of the target energy is concentrated in
the 0 to 0.3142 rad/s range of ω. Consequently, the filtering out
of high value ω intervals does not adversely affect the target
energy. The [Kn,Kp] bandwidth is positively correlated with ω,
indicating that the bandwidth interval decreases with decreasing
ω. Within the 0 to 0.3142 rad/s range of ω, the bandwidth
ranges from 0.059 to 0.078 rad/s. In this scenario, the target
energy is completely removed only when the wave-velocity
range of the target falls entirely within the interval boundaries,
i.e., Vm ∈ [Kn/K,Kp/K]. However, the interval bandwidth of
the target energy (0–0.157 rad/s) is not entirely encompassed by
the filtering interval. Therefore, when the STCS filtering method
removes energy within the range ω ∈ [Kn,Kp], it preserves
most of the energy associated with the real targets but inevitably
removes a small portion of that energy.

B. Target Frequency Extraction Segment

The number of moving target points in radar images is much
lower than the number of sea clutter points. Consequently, most
of the signals collected from an image belong to sea clutter.
The small volume of target signals causes a considerable energy
disparity between the sea clutter spectrum and the moving target
spectrum in the 3-D frequency–wavenumber domain, obscuring
the frequency spectrum of the moving target. After sea clutter
suppression segment, the sea clutter frequency in the spectrum
is substantially reduced and the frequency of moving target
becomes easily identified and detected. The frequency shift
of the moving target remains stable over multiple scanning
periods. The frequency spectrum of the target on all wavenum-
ber planes is then calculated by measuring the frequency shift
generated between the two wavenumber planes corresponding
toω. This calculation uses the wavenumber planes near the zero-
frequency–wavenumber plane, because the frequency spectrum
of the moving target always passes through the origin in the
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3-D frequency–wavenumber domain. In this article, the target
frequency spectrum is extracted from the 16th and 18th images
(ω = 0.07854 and −0.07854) rather than the zero-frequency–
wavenumber plane, as the latter contains a considerable amount
of static, quasistatic spectrum, and background noise. To reduce
the computational time and eliminate the aliasing effect in the
entire image spectrum, the central region E(k1:ix , k1:iy , ω) of the
aforementioned two wavenumber planes is extracted.

The target spectrum was detected using the Hough detection
method based on the duality between points and lines [36]. A
line in Cartesian coordinates is represented by its slope K and
intercept b, which correspond to the length of its perpendicular
ρ from the origin and the angle θ between the perpendicular
line and x-axis, respectively, in Hough space. A line passing
through a point A(xa, ya) in the plane is represented by a curve
α in the Hough space, while a line passing through two points
A(xa, ya) andB(xb, yb) is represented as the intersection of two
curves α and β in the Hough space, where curve β corresponds
to a line passing through point B(xb, yb), in the plane. Thus,
the problem of line existence is transformed into the problem
of curve intersection. The intersection points of curves α and β
are, respectively, determined as

ρ = xa · cos θ + ya · sin θ (14)

ρ = xb · cos θ + yb · sin θ. (15)

A binary transformation is performed on E(k1:ix , k1:iy , ω) and
an accumulation array H[ρ, θ] is established in the ρ and θ
parameter spaces. For each point (x, y) represented by 1 in the
binary image, each possible value on the θ-axis sampled and its
corresponding valueρ is calculated and accumulated in the array.
The local peak in the accumulated array of ρ and θ values is then
detected to determine the Hough parameters of the detected line.

The two line with the same angle θ in the Hough parameters
of the two selected wavenumber planes are assigned to the
same class, and the ρ difference between each pair of lines
within the same class is calculated to obtain the frequency shift
information. Leveraging this information, a model of the line
spectrum on all wavenumber planes for each ω can be derived.
The width of the line spectrum in the frequency–wavenumber
domain is dictated by the scale of the target; specifically, a wider
line spectrum corresponds to a larger spatial scale. However,
the actual target spectrum on each wavenumber plane is not a
singular line spectrum but consists of multiple line spectra. The
width of the line spectra must be expanded when extracting the
spectrum. This approach extracts most of the target spectrum
while accepting a small part of the clutter spectrum, achieving
robust processing performance even in scenarios involving mul-
tiple similar moving targets. The STTE model is finally derived
as follows:

M (kx,w, ky,w, w)

=

{
E (kx, ky, w) ky,w = Kr · kx,w + bw,r

0 else
(16)

bω,r =

(
bωa

− bωb

a− b

)
· (a− n) + bωa

± Ci (17)

Fig. 6. 2-D cross section in the 3-D image spectral domain Vω,k along the
ω-direction. (a) Tenth cross-sectional spectrum and (b) 16th cross-sectional
spectrum. The spectrum filtered by the Hough transform. (c) Tenth cross-
sectional spectrum, and (d) 16th cross-sectional spectrum. The image sequence
corresponds to the spectrum after Hough transform filtering. (e) 18th image.

where Kr and bω,r represent all line slopes and intercepts
separately detected by the Hough transform. n represents the
index of a wavenumber spectrum in the frequency–wavenumber
domain, a and b represent the sequence numbers of the two
selected images, and Ci is the width expansion coefficient.

In order to clearly show the influence of the Hough transform
on target spectrum extraction, a set of original target image
sequences (consisting of only four targets with the same char-
acteristics as those in Fig. 3) are utilized to present the target
spectrum and the spectrum filtered by Hough transform, as
depicted in Fig. 6(a)∼(e). From the result, Hough transform can
accurately capture the variation pattern (moving direction and
speed) of target frequency in the 3-D frequency–wavenumber
domain. During the process, a portion of the target spectrum
energy generated by the aliasing effect was discarded, and only
the target spectrum energy without aliasing was retained. Simul-
taneously, Cmax is selected as the maximum width of Ci, and its
selection affected the filtering results. A larger Cmax resulted in
less loss of energy from the target spectrum, while a smaller
value has an opposite effect. During the process of Cmax from 0
to 5, there was a significant improvement in the average extracted
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Fig. 7. STTE filter model in the 18th 2-D cross-sectional spectrum of 3-D im-
age spectral domain under different Cmax values. (a) Cmax=5 and (b) Cmax=15.

energy of the target frequency increasing from 0% to 68.95%,
due to main frequency width being approximately 0.0148 rad/m
(about five resolution units wide). AsCmax ranges between 5 and
23, it had steady enhancement in average extraction energy of the
target frequency reaching up to 84.22%. Although the extraction
rate was higher in the range of 15–23, it also leaded to substantial
enhancement in extraction energy of clutter. Thus, Cmax in
this range was not being selected. After Cmax reaches 23, the
enhancement rate decreased significantly and reached 100% at
around 210. This phenomenon arises from the remaining target
energy dispersed across entire frequency–wavenumber domain
as aliasing energy form. In this article, Cmax was selected as 15
to ensure that the final extraction result contained less clutter
spectrum energy while maximizing the target spectrum energy
extraction. Fig. 6(e) depicts the 18th image of filtered radar
image sequence (enlarged target size), with an average extraction
energy of 78.57% for four targets. In addition, certain clutter
points around the targets appeared after Hough transform that
require further elimination in the subsequent precision detection
segment. The Hough transform extraction results with Cmax=5
and Cmax=15 are shown in Fig. 7(a) and 7(b).

After suppressing the sea clutter and extracting the target
from the frequency–wavenumber spectrum, Mc(kx, ky, ω) is
processed through a 3-D inverse fast Fourier transform (3D-
IFFT) to obtain an image sequence

ηm(x, y, t) =
1

Ly

1

Lx

1

T

Ly∑
0

Lx∑
0

T∑
0

Mc (kx, ky, ω) exp

[2πi (kxx/Lx + kyy/Ly + ωt/T )] . (18)

C. Precise Detection Stage

The sea clutter suppression and target extraction segments
retain a substantial portion of the target signals in the radar image
sequence, along with a minor portion of background clutter
signals. The clutter signals are preserved because the width
expansion applied during target extraction inevitably includes
nontarget spectra. Consequently, the detection of the ηm(x, y, t)
image sequence must be refined for ultimate target detection.
The real clutter background spectrumP is obtained by removing
the sea clutter and target spectra from spectrum I . The RCBD

model is then obtained via IFFT as follows:

P (kx, ky, ω) = Mc (kx, ky, ω)−Mt (kx, ky, ω) (19)

ηc(x, y, t) =
1

Ly

1

Lx

1

T

Lx∑
0

Ly∑
0

T∑
0

P (kx, ky, ω) exp

[2π (kxx/Lx + kyy/Ly + ωt/T )] (20)

where P (kx, ky, ω) and ηc(x, y, t) denote the spectrum and
distribution of the background clutter, respectively.
Mt and Mc were obtained by selecting different Cmax values

from (16) and (17), respectively. The Ct corresponding to Mt is
smaller than the Cc corresponding to Mc, with Ct and Cc deter-
mined by experiments as 5 and 15, respectively. Consequently,
the spectrum extracted from Mc exhibits more target frequency
and background clutter frequency compared to that of Mt. In
(18), Mc is utilized in order to obtain the processed image ηm
with sea clutter suppression, target extraction, and attenuation
suppression. On the other hand, Mt is utilized in (19), which
effectively eliminates a significant portion of target frequencies
present in Mc. Through (20), the RCBD model ηc is derived.
The ηc can serve as a real time background clutter image of ηm.
ηc is an amplitude distribution rather than a complex number

distribution. In addition, it is obtained by statistically processing
the real-time background clutter through sea clutter suppression
and target removal. In the sea clutter background distribution
model CFAR method, to maintain the CFAR capability of the
detector, the relationship between false alarm rate Pfa and the
normalization factor τ must be established using the distribution
model and decision rule. Once the desired Pfa is defined, the
normalization factor τ is typically obtained through offline cal-
culations conducted in advance, a set of reference units in close
proximity to the target unit is obtained online and the detection
threshold is determined. The entire image is then scanned point-
by-point using a sliding window. The aforementioned method
can be improved by using (21) and (22). Because the distribution
model accurately characterizes the clutter background (with the
target removed), once the desired Pfa is specified, the detection
threshold T of the entire image sequence can be determined
without normalizing τ . The relationship between Pfa and T is
provided in (21), where f(x) is the PDF curve of ηc. Further-
more, the point-by-point sliding window approach transitions
to a more efficient whole image sequence detection scheme
that simplifies the implementation of the detection process. The
specific detection way is illustrated in (22), whereD is the image
sequence to be detected, i is the ith image in the image sequence,
n is the nth point in the image, and T is the detection threshold

1− Pfa = 1−
∫ ∞

T

f(x)dx =

∫ T

0

f(x)dx (21)

Di(n)
H1
>
<
H0

T. (22)

If the grayscale value of detection point Di(n) exceeds the de-
tection threshold, it is designated as a target point and denoted as
H1. Conversely, if the grayscale value falls below the detection
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Fig. 8. Detailed stepwise structure of the STCS, STTE, and RCBD–CFAR segments.

TABLE I
X-BAND MARINE RADAR PARAMETERS

threshold, it is classified as background clutter point and denoted
as H0.

Fig. 8 is a block diagram of the STCS, STTE, and RCBD-
CFAR stages. The content proposed in this article is STTE and
RCBD-CFAR. During the STTE process, a target extraction
model and a background clutter extraction model are established
by using Hough detection. The sea clutter suppression, target
removal and attenuation suppression clutter background distri-
bution is employed to determine the CFAR detection threshold
for precise detection in the RCBD-CFAR process.

IV. EXPERIMENTAL RESULTS

This section evaluates the performance of the proposed ma-
rine radar target detection algorithm on authentic radar image
sequences and moving targets. After presenting the radar param-
eters and employed data, it provides the experimental results on
band marine radar data. Finally, it compares the performance
of the proposed target detection method with those of excellent
algorithms.

A. Marine Radar Parameters and Experimental Data

The data were collected from the China East Sea in October
of 2017 using an X-band marine radar and included both target
and sea clutter signals. Table I presents the radar parameters of
the experiment. Each image captured by the radar contains 2048
lines, and each line comprises 600 range bins.

Nearest neighbor interpolation is employed for converting the
square region from polar coordinates to Cartesian coordinates.
Interpolation converts Point A(r, θ, z) in polar coordinates to its
corresponding coordinates Ad(x, y, z) in Cartesian coordinates.

Fig. 9. Interpolation area (delineated by the red-edged square) in the original
radar image.

The proposed method is applied to a scale of 848×848×32 pix-
els image sequence, as shown in Fig. 9.

One set of image sequences comprises 32 consecutive im-
ages collected over a period of approximately 80 s, encom-
passing moving targets with their speed and direction infor-
mation embedded within the sequence. The position and in-
tensity of the target constantly change with each captured
image.

The dataset in the experiment exhibits a significant wave
height (height of highest one-third wave) ranging from 1.5 to
3.5 m. This range was categorized into three distinct sea condi-
tions: low sea condition (1.5 m∼2.2 m), medium sea condition
(2.2 m∼2.9 m), and high sea condition (2.9 m∼3.5 m).

Ten real moving target continuous signal datasets with dif-
ferent sizes (25∼200 pixels), velocities (10∼20 m/s), directions
(0◦∼ 360◦), trajectories, and initial grayscale value variations
(0∼3560) were extracted from the actual radar image sequence
data. Fig. 10(a)–(c) shows three types of moving target contin-
uous signals extracted from the real images sequence. Fig. 11
depicts multiple motion trajectories of selected moving targets
in the real image sequences. The trajectories are nearly uniform
and linear within a set of sequences.

To further evaluate the performance of the proposed algo-
rithm, the grayscale values of the extracted real target space–
time signals were adjusted using the α coefficient to simulate
different radar cross-section (RCS) scenarios. Fig. 10(d)–(f)
illustrates the processing results of the aforementioned three
targets with α = 1.2. The grayscale values of the real target
space–time signals were globally reduced without affecting the
size or other conditions. In addition to the target information,
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Fig. 10. Three real moving target continuous signals and their corresponding
target continuous signals adjusted with α. (a) First target. (b) Second target.
(c) Third target. (d) First target (α = 1.2). (e) Second target (α = 1.2).
(f) Third target (α = 1.2).

Fig. 11. Movement trajectories of real targets extracted from experimental
data.

the single-image sequences of sea clutter from different marine
environment data were extracted. To obtain image-sequence
data under various RCS scenarios, target space–time sequences
with different RCS values were combined with pure sea clutter
sequences. During the addition process, the grayscale values of
the target edge points were adjusted based on the sea clutter
grayscale values near the target. Fig. 12(a)–(c) shows images
of the different RCS targets under low, medium, and high sea
conditions, respectively, with multiple targets enclosed within
red bounding boxes. To mitigate the echo saturation caused by
strong radar echoes in the central region, a portion of the central
data was removed through data reduction.

Fig. 12. Radar images of different RCSs under different sea conditions.

B. Performance of Target Detection Under Real Radar Data

Fig. 13 shows the algorithm processing results under the
low, medium, and high sea conditions. Shown are the original
images, frequency spectra of the original images in the Vω,k

domain, frequency spectra of sea-clutter suppression in the Vω,k

domain, target extraction spectra in the wavenumber domain,
and the final processed images. The original images contain the
same three targets under all three conditions. The first target,
located in the lower left corner of the image, comprises 36 pixels
with an average grayscale value of 2492 and moves northeast
at 20 m/s. The second target, located in the upper right of the
image, consists of 28 pixels with an average grayscale value of
2350 and moves northward at 15 m/s. The third target, located
in the right part of the image, is composed of 44 pixels with
an average grayscale value of 2332 and progresses westward at
10 m/s. The sea conditions depicted in Fig. 13(a) and (f), and
correspond to sea heights of 1.98, 2.55, and 3.11 m, respectively,
with corresponding average sea-clutter intensities of 1789, 2298,
and 2673, respectively. The energies of the sea spikes within the
whole image increased with increasing sea state. The target is
easily submerged by sea clutter in moderate to high sea states.
The spectral energy of the sea clutter [see Fig. 13(b), (g), and (i)]
also gradually increased with increasing sea state. Furthermore,
as the sea states intensified, the scattering of electromagnetic
waves by the sea surface became increasingly complicated,
producing stronger background noise in the images. The Vω,k

domain spectra [see Fig. 13(c), (h), and (m)] were obtained by
selectively filtering out the sea clutter frequencies during the sea
clutter suppression stage. Although the dominant frequencies of
sea clutter were eliminated from the spectrum, the energy of
the moving targets in the frequency domain was drowned by
the substantial quantity and high intensity of residual energy
from other noises in the entire image, and remained difficult to
detect. However, the target energy was readily detected in the
wavenumber domain. The target frequencies in the wavenumber
domain, are depicted in Fig. 13(d), (i), and (n). The dominant
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Fig. 13. Results of the treatment process of the proposed method under different SCR conditions (first line: low sea state, second line: medium sea state, and
third line: high sea state). (a), (f), and (k) 16th original images in the sequences. (b), (g), and (l) Frequency spectra of the original images in the Vω,k domain. (c),
(h), and (m) 16th 2-D cross-sectional frequency spectra of sea clutter suppression in the Vω,k domain. (d), (i), and (n) Target-extraction spectra in the wavenumber
domain. (e), (j), and (o) 16th final processed images in the sequences.

target frequencies in the low, moderate, and high sea states were
effectively identified and extracted from the 16th, 18th, and 20th
wavenumber spectra, respectively. As shown in Fig. 13(e), (j),
and (o), the sea clutter was efficiently suppressed and the targets
were successfully extracted under varying sea conditions. A
minimal portion of an intense signal persisted in the central
region of the image, resulting from incomplete removal of the
central saturation region in the space–time domain. Although
some clutter was retained, its average energy was too low to be
treated as sea spikes, thus avoiding potential interference with
the subsequent precise detection process.

Because of the lack of Doppler information and the abil-
ity to accumulate signals for an extended period, noncoher-
ent scanning marine radar exhibits suboptimal performance in
processing echo data across the temporal domain, frequency
domain, and time—frequency domain. The effectiveness of sea
clutter suppression in the 3-D frequency–wavenumber domain
substantiates the stability of sea clutter background charac-
teristics in the space–time domain. Moreover, this approach
obviates reliance on phase information while achieving effective
sea clutter suppression and target detection solely based on
amplitude information, rendering it suitable for fast scanning
noncoherent marine radar [31]. The method in this manuscript
is based on an improvement of this method. The SVD-FRFT is
widely employed for sea clutter suppression in marine radars
and has been validated in [37] and [38]. Despite its diminished
efficacy when applied to our radar, it still exhibits a favorable
effect. Therefore, to assess the performance of the proposed

method in sea-clutter suppression, the performance measures
for the comparative experiment were the individual STCS and
SVD-FRFT.

SCR improvement was calculated as follows:

SCRr = 20 log

( 〈sp(n)〉
〈xp(n)〉

)
− 20 log

( 〈s0(n)〉
〈x0(n)〉

)
(23)

where sp and s0 represent the sums of the grayscale values of
all target points in the output and original images, respectively,
xp and xo represent the sums of the grayscale values of all back-
ground clutter in the output and original images, respectively,
and <> denotes the averaging of these sums.

Fig. 14 shows the processing results using the aforementioned
three algorithms under the low, moderate, and high sea condi-
tions. Table II presents the SCRr realized by the three methods
on four different original SCRs covering low, moderate, and high
sea states. With the proposed method, the SCR was consistently
improved by approximately 17 dB under low sea conditions
and at least 14 dB under moderate sea conditions. In high
sea states, the SCRr are 10.7 and 12.8 dB on original SCRs
with 0.8 and 3.9 dB, respectively. As the sea condition intensi-
fied, the intensity of the generated background noise increased
and more noise spectral energy was extracted throughout the
wavenumber domain during the target-frequency extraction. The
SCR enhancement decreased accordingly. Furthermore, when
the target grayscale value was weakened to a level comparable
to that of sea clutter, the frequency spectra of the sea clutter
points were convoluted with those of the target edge points,
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Fig. 14. Results of three methods under different sea states (first column: low sea state, second column: medium sea state, and third column: high sea state).
(a)–(c) 16th final processed images in the sequence by using the proposed method. (d)–(f) 16th final processed images in the sequence by using individual STCS.
(g)–(i) 16th final processed images in the sequence by using SVD-FRFT.

TABLE II
SCR IMPROVEMENT RESULTS USING INDIVIDUAL STCS, SCD-FRFT, AND PROPOSED METHOD

causing leakage of target-point information when filtering out
the sea clutter for target extraction. When the SCR reaches a
certain threshold, the energy of the extracted targets reduces
because target points are lost, slightly degrading the efficacy of
SCR enhancement. The threshold increases as the sea clutter
intensifies under different sea conditions. In individual STCS,
the SCR was improved by at least 9.12 dB under low sea
conditions and by 7.84 dB under moderate sea conditions. In
high sea states, the SCR enhancement was improved at least

by 8.52 dB from the original SCR of 0.8 dB. Under the same
states, individual STCS exhibited some reduction compared to
the proposed method. This reduction can be attributed to the
fact that the spectrum obtained through the individual STCS
method includes not only energy from targets but also static
and quasistatic energy, the characteristic frequency of nonlinear
waves, the high-order harmonic frequency, the aliased spectrum,
and background noise. The SCR improvement range of the SVD-
FRFT method was between 1.39 and 8.33 dB. The performance
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Fig. 15. Comparison of SCR improvement effects under (a) low sea condition,
(b) mid sea condition, and (c) high sea condition.

of SVD-FRFT was affected by the low sampling frequency
of incoherent scanning marine radar, which lowered its ability
to retain rapidly moving targets. The ability of SVD-FRFT to
suppress sea clutter was better than that of individual STCS,
which was similar to that of the proposed method, as shown in
Fig. 14(g), (h), and (i), however it excessively suppressed target
energy, mistakenly treating a portion of the target point as sea
clutter, which accounted for the limited SCRr achieved.

Next, combining real radar-image data of low, moderate,
and high sea states with multiple targets and setting distinct
α coefficients, 300 experimental samples were generated for
further evaluation of three methods. To ensure coverage across
the 0–10 dB range of SCRs, 100 sets of samples were collected
for each sea state. As shown in Fig. 15, the proposed method
performed optimally under low sea conditions, registering a
superior improvement of 18.5 dB at maximum. Under moderate
and high sea conditions, the peak improvements were 15.8 and
14.4 dB, respectively. The proposed method demonstrated a sub-
stantial improvement in SCRr compared to the individual STCS
method, with a maximum difference value of up to 9.01 dB and
an average difference value of approximately 6.76 dB under low
sea states. In comparison to the SCRr of the SVD-FRFT method,
the maximum difference value reached 11.06 dB, with an aver-
age difference value of 9.99 dB. Under medium sea conditions,
the proposed exhibited a maximum difference value of 7.62 dB
and an average difference value of around 4.74 dB compared
to the individual STCS method, and it exhibited a maximum
difference value of 11.80 dB and an average difference value
of around 9.41 dB compared to the SVD-FRFT method. Under
high sea conditions, the proposed method achieved a maximum
difference value of 3.39 dB and an average difference value
of approximately 2.05 dB in SCRr compared to the individual
STCS method. Meanwhile, it exhibited a maximum difference
value of 10.03 dB and an average difference value of approxi-
mately 7.89 dB in SCRr compared to the SVD-FRFT method.

Fig. 16. ROC curves under typical SCR conditions.

As the sea clutter intensified under different sea conditions,
the performance of the proposed method and the SVD-FRFT
method worsened. Conversely, the performance of the individual
STCS method improved. The experimental results demonstrate
that the proposed approach effectively suppresses sea clutter
and extracts targets under varying sea conditions, considerably
enhancing the SCR of the output image for subsequent target
detection processes. The performance is superior to the other
two methods.

C. Comparison of Detection Performance

Next, binary detection was performed on ACCS-CFAR-
processed images. The detection performance was evaluated in
terms of two indices: the probability of detection and the false
alarm rate, respectively, calculated as

PD =
Nmdt

Nt
(24)

Pfa =
Nfa

Nt
(25)

whereNt andNdt represent the total numbers of all target points
and detected target points, respectively, and Nfa represents the
total number of detected nontarget points.

The receiver operating characteristic (ROC) curves under typ-
ical SCR conditions are displayed in Fig. 16. Under equivalent
Pfa conditions, an increasing trend in PD is manifested with
respect to the increase in SCR. However, a significant decline
in detection performance is experienced when the SCR is about
1 dB. This deterioration can be attributed to suppression of the
target edges when filtering out the sea clutter. When Pfa exceeds
0.0001 and the SCR exceeds 2 dB, the PD can exceed 90%. At
this time, the PD approached with a Pfa of 0.001.

The performance measures for the comparative experiment
were the classical CA-CFAR and the weighted likelihood CFAR
(WL-CFAR, Weibull condition) [39], which estimates the scale
parameters of the Weibull distribution using the maximum-
weighted logarithmic likelihood function. Given a presetPfa, the
WLCFAR adaptively determines the threshold, enabling target
detection. The shape parameter C, sliding-window scale N ,
robustness measurement parameterβ, and of τ of the WL-CFAR
detector were set to 1.2, 16, 0.1, and 0.0001, respectively. The
sliding windowN andPfa of the classic CA-CFAR detector were
set to 16 and 0.0001, respectively. The Pfa of the ACCS–CFAR
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Fig. 17. Comparison of detection performances of different methods on a test
set of radar images processed using the proposed methods.

detector was set to 0.0001. Fig. 17 compares the detection
performances of different methods on a test set of radar images
after processing with the proposed methods. The conventional
CA-CFAR detector obtained good detection results at high SCR
but its performance notably declined as the SCR decreased. In
contrast, the WL-CFAR and ACCS–CFAR detectors achieved
outstanding detection performance on all processed images.
Although the ACCS–CFAR detector was slightly inferior to
the other two detectors near, it outperformed its competitors
in other SCR ranges because it incorporates the real background
distribution. The classic CA-CFAR detector lacked robustness,
as evidenced by a noteworthy number of false alarms in the pres-
ence of intricate and fluctuating background clutter. In contrast,
the WL-CAR detector effectively detected the target points but
produced more false alarms than the proposed ACCS-CFAR.

To assess the efficacy of marine radar target detection based on
spatiotemporal domain joint filtering in complex sea clutter en-
vironments, several methods applicable to marine radar, namely,
WHOS-CFAR, GMOS-CFAR, SVD-FRFT-CFAR, and STCS-
CFAR, were compared. WHOS-CFAR and GMOS-CFAR have
been validated to provide superior detection performance un-
der Pareto distribution and Weibull distribution in [35], [40],
and [41], respectively. By establishing detectors that follow
WHOS or GMOS decision rules, the methods achieve full
CFAR characteristics while avoiding parameter estimation of
the distribution model. The WHOS-CFAR and GMOS-CFAR
are the spatial domain methods and are suitable for noncoherent
fast scanning marine surveillance radar. In addition, SVD-FRFT
and STCS, as advanced sea clutter suppression and target de-
tection methods in the frequency and spatiotemporal domains,
respectively, were used for comparison.

Fig. 18 displays the truth images, STFTD (the proposed
method) detection images, individual STCS-CFAR detection
images, SVD-FRFT-CFAR detection images, GMOS-CFAR de-
tection images, and WHOS-CFAR detection images under the
low, moderate, and high sea conditions. The target of 36 pix-
els is selected and integrated into three different positions to
obtain different SCR data. The targets are enclosed within red
rectangular boxes and amplified by an amplifier for a clearer
display. The grayscale values within the image are segregated
into three distinct categories. The points with a grayscale value
of 3 (marked in red) are designated as the correctly detected
target points. The points with a grayscale value of 2 (depicted
in orange) indicate the erroneously detected target points. The

TABLE III
DETECTION PROBABILITIES OF DIFFERENT METHODS UNDER DIFFERENT SEA

CONDITIONS

points with a grayscale value of 1 (depicted in green) indicate
target points that were not detected.
Pfa was set to 0.0001, and the detection results of all methods

are shown in Table III. The PD of the proposed method in three
sea conditions reaching 94.44%, 95.34%, and 99.89%, respec-
tively, which were the highest among all methods. Because of the
high-intensity points retained after suppression and extraction
processing mainly surrounding the target points, the false alarm
points were mainly concentrated at the edge of the targets. The
PD of individual STCS-CFAR was the second highest, reaching
90.74%, 94.44%, and 97.22%, respectively. The small portion
high-intensity noise points presented in the suppressed image
formed most of the false alarm points in this detection result.
The detection performance of the GMOS-CFAR method de-
creased compared to the individual STCS-CFAR method, reach-
ing 83.33%, 85.19%, and 90.74% in the three sea conditions,
respectively. The false alarm points were concentrated around
the targets. ThePD of the WHOS-CFAR method under the three
sea conditions were 75.93%, 79.63%, and 84.33%, respectively,
slightly lower than the GMOS-CFAR method. The reason is
that the sea clutter distribution model of marine surveillance
radar with high resolution and low grazing angle is closer to the
Weibull distribution compared to the Pareto distribution. ThePD

of the SVD-FRFT-CFAR method were 17.59%, 51.85%, and
82.41%, respectively. Due to the loss of target energy during the
sea clutter suppression, the PD sharply decreased in medium to
high sea conditions.

The SCR-PD curves of the five methods, with Pfa set at
0.0001, are compared in Fig. 19. The PD of the proposed
method exceed 90% at around 2 dB and reached 100% at around
6.5 dB. STCS-CFAR, GMOS-CFAR, WHOS-CFAR, and SVD-
FRFT-CFAR achieved 100% detection probability around 7, 8,
10.5, and 11.5 dB, respectively. The detection probability of the
proposed method increased by an average of 11.2% compared to
the STCS method, 17.95% compared to GMOS-CFAR, 23.79%
compared to WHOS-CFAR, and 55.94% compared to SVD.

V. DISCUSSION

Previous studies focused on suppressing sea clutter energy,
resulting in a spectrum that not only contains target energy but
also includes other noise energy [31]. Building upon this foun-
dation, in this study, a model for target energy in the frequency–
wavenumber domain was established, and an effective strategy
for extracting target energy was proposed. As a result of this step,
the aforementioned nontarget energy could be significantly sup-
pressed in the obtained spectrum. Compared to individual STSC
and SVD-FRFT methods, the proposed approach improves the
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Fig. 18. Results of target detection by different methods under different sea conditions [(b)–(f) Low sea state, (h)–(l) medium sea state, and (n)–(r) high sea
state]. (a), (g), and (m) 16th truth images in the sequence. (b), (h), and (n) 16th proposed method detection images in the sequence. (c), (i), and (o) 16th individual
STCS-CFAR detection images in the sequence. (d), (j), and (p) 16th SVD-FRFT-CFAR detection images in the sequence. (e), (k), and (q) 16th GMOS-CFAR
detection images in the sequence. (f), (l), and (r) 16th WHOS-CFAR detection images in the sequence.

Fig. 19. Comparison of detection performances of different methods.

SNR by an average of 6.76 and 9.99 dB, respectively, thereby
enhancing image quality under complex sea conditions and low
SCR conditions. Furthermore, previous articles have explored
various spatial domain incoherent CFAR detection methods [7],
[8], [35], [39], [40], [41]. However, traditional CFAR detec-
tion performance has been found to be unstable when dealing
with complex variations in real sea clutter backgrounds. Our
study demonstrates that by excluding sea clutter and targets
from real-time background clutter analysis while avoiding fitting
operations and the normalization factor τ . The proposed method
can maintain CFAR ability and stability even under complex and
changing real sea clutter backgrounds while improving detection

probability. The proposed method outperforms the traditional
CFAR techniques such as GMOS-CFAR and WHOS-CFAR by
at least 11.2%.

Although the proposed method showed effective results, there
are still some avenues for future research and improvement.
First, in the filtering method set ω ∈ [Kn,Kp] to enhance
the clarity of the energy spectrum for the subsequent target-
extraction procedures. However, this approach caused a slight
loss of target energy during the extraction process. Conse-
quently, the grayscale value of the target in the spatiotemporal
domain image decreased, indirectly suppressing the enhance-
ment of the SCR in the processed image. Second, unlike other
methods that solely utilize time domain (frequency domain)
or space domain, this approach integrates both space and time
domains (image sequence) to capture more comprehensive in-
formation. However, a drawback is that it requires substantial
time to accumulate images, with a set of image sequences taking
approximately 80 s. This makes it slower compared to other tar-
get detection methods and unable to provide immediate results.
Third, although the target data used in this article is extracted
from real radar images and the gray value is adjusted accordingly
to achieve weak target (low SCR) detection performance, the
size of the target remains unaltered. The targets are generally
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150-m long, with the smallest length being more than 50 m,
falling into the medium to large category rather than miniature.
For microtargets, the performance of the proposed algorithm
will be significantly reduced. Fourth, in scenarios where the
target exhibits uniform linear motion, its spectral lines maintain
consistent slopes at the wavenumber domain corresponding to
each discrete frequency ω while exhibiting identical spacing
between the wavenumber plane of adjacent ω. For a target
moving in a variable direction, the velocity direction continues
to change, leading to corresponding changes in the values of
vix/viy and resulting in a constant change in the slope of the
spectral lines at the wavenumber domain corresponding to each
discrete frequency ω. Consequently, the target spectrum will
manifest as a series of lines with varying slopes but consistent
spacing. The changing trend of the slope is consistent with
the trend of the target direction changing. In cases of targets
exhibiting variable velocity motion, ωi/viy undergo continuous
changes, leading to different spacing between spectral lines in
wavenumber domains corresponding to adjacent discrete fre-
quencies ω. As a result, the final target spectrum appears as
a series of lines with uniform slope but varying spacing, this
spacing changing trend aligns with variations in target velocity.
In the detection of variable speed and small variable direction
targets, increasing the value of the spread width coefficient Ci

can ensure the extraction ability of target frequency and well
applicability. However, for targets with high moving directional
change, a large Ci is required, which may reduce sea clutter
suppression effect and impact the detection performance of the
proposed method. Future research will focus on exploring more
sophisticated filtering processes, including adjustments to the
boundaries in both the θ dimension and ω dimension, to ensure
the maximum retention of target energy. Second, the selection
of the width expansion coefficient of the target model will affect
the extraction effect of target energy. The relationship between
it and the real target needs to be further studied in order to obtain
the target energy more accurately and completely.

VI. CONCLUSION

This study proposed and evaluated a STAF algorithm based
on the Hough transform algorithm, which detects targets in
sequences of marine radar images. The method adopts a two-
stage approach: coarse detection followed by precise detection.
The coarse detection phase filters out the complex and variable
spatiotemporal sea clutter, effectively suppressing the sea spikes
and other clutter energies that interfere with target detection. The
precise detection phase utilizes the real-time background clutter
through sea-clutter suppression and target removal, enabling
rapid and accurate detection on the images processed in the
previous phase. Experimental results obtained from massive real
marine radar images demonstrated that the proposed method
outperforms other detection methods, especially under com-
plex, variable, and heavy sea clutter conditions. Moreover, the
proposed approach simultaneously achieves excellent detection
rates and produces few false alarms.

REFERENCES

[1] L. Sun, Z. Lu, Y. Wei, and H. Wang, “A new method to retrieve rainfall
intensity level from rain-contaminated X-band marine radar image,” Int.
J. Remote Sens., vol. 44, no. 2, pp. 585–608, 2023.

[2] X. Chen, W. Huang, and M. C. Haller, “A novel scheme for extracting sea
surface wind information from rain-contaminated X-band marine radar
images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14,
pp. 5220–5234, May 2021.

[3] B. Lund, H. C. Graber, and R. Romeiser, “Wind retrieval from shipborne
nautical X-band radar data,” IEEE Trans. Geosci. Remote Sens., vol. 50,
no. 10, pp. 3800–3811, Oct. 2012.

[4] Y. Wei, Y. Liu, Y. Lei, R. Lian, Z. Lu, and L. Sun, “A new method of rainfall
detection from the collected X-band marine radar images,” Remote Sens.,
vol. 14, no. 15, 2022, Art. no. 3600.

[5] J. Pei et al., “A sea clutter suppression method based on machine learning
approach for marine surveillance radar,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 15, pp. 3120–3130, Apr. 2022.

[6] S. Chen, C. Feng, Y. Huang, X. Chen, and F. Li, “Small target detection in
X-band sea clutter using the visibility graph,” IEEE Trans. Geosci. Remote
Sens., vol. 60, Jun. 2022, Art. no. 5115011.

[7] P. Huang, Z. Zou, X.-G. Xia, X. Liu, and G. Liao, “A statistical model
based on modified generalized-k distribution for sea clutter,” IEEE Geosci.
Remote Sens. Lett., vol. 19, Jul. 2022, Art. no. 8015805.

[8] J. Xue, J. Liu, S. Xu, and M. Pan, “Adaptive detection of radar targets
in heavy-tailed sea clutter with lognormal texture,” IEEE Trans. Geosci.
Remote Sens., vol. 60, Dec. 2022, Art. no. 5108411.

[9] Y. Fan, M. Tao, and J. Su, “Multifractal correlation analysis of au-
toregressive spectrum-based feature learning for target detection within
sea clutter,” IEEE Trans. Geosci. Remote Sens., vol. 60, Dec. 2022,
Art. no. 5108811.

[10] M.-J. Lee, S.-J. Lee, B.-H. Ryu, B.-G. Lim, and K.-T. Kim, “Reduction
of false alarm rate in SAR-MTI based on weighted kurtosis,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 4, pp. 3122–3135, Apr. 2021.

[11] H. Wang and L. Cai, “A localized adaptive MTD processor,” IEEE Trans.
Aerosp. Electron. Syst., vol. 27, no. 3, pp. 532–539, May 1991.

[12] Y. Yang, S.-P. Xiao, and X.-S. Wang, “Radar detection of small target in
sea clutter using orthogonal projection,” IEEE Geosci. Remote Sens. Lett.,
vol. 16, no. 3, pp. 382–386, Mar. 2019.

[13] J. Cai, H. Zhou, W. Huang, and B. Wen, “Ship detection and direction
finding based on time-frequency analysis for compact HF radar,” IEEE
Geosci. Remote Sens. Lett., vol. 18, no. 1, pp. 72–76, Jan. 2021.

[14] J. Xiang, X. Lv, X. Fu, and Y. Yun, “Detection and estimation algorithm
for marine target with micromotion based on adaptive sparse modified-
LV’s transform,” IEEE Trans. Geosci. Remote Sens., vol. 60, Dec. 2022,
Art. no. 5108617.

[15] X. Chen, X. Yu, J. Guan, and J. Zhang, “Detection and extraction of
marine target with micromotion via short-time fractional Fourier transform
in sparse domain,” in Proc. IEEE Int. Conf. Signal Process. Commun.
Comput., 2016, pp. 1–5.

[16] X. Yu, X. Chen, Y. Huang, and J. Guan, “Fast detection method for
low-observable maneuvering target via robust sparse fractional Fourier
transform,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 6, pp. 978–982,
Jun. 2020.

[17] H. Zhang, T. Shan, S. Liu, and R. Tao, “Performance evaluation and
parameter optimization of sparse Fourier transform,” Signal Process.,
vol. 179, 2021, Art. no. 107823.

[18] X. Chen, X. Mu, J. Guan, N. Liu, and W. Zhou, “Marine target detection
based on marine-faster r-CNN for navigation radar plane position indicator
images,” Front. Inf. Technol. Electron. Eng., vol. 23, no. 4, pp. 630–643,
2022.

[19] X. Mou, X. Chen, J. Guan, Y. Dong, and N. Liu, “Sea clutter suppression
for radar PPI images based on SCS-GAN,” IEEE Geosci. Remote Sens.
Lett., vol. 18, no. 11, pp. 1886–1890, Nov. 2021.

[20] X. Chen, J. Guan, X. Mu, Z. Wang, N. Liu, and G. Wang, “Multi-
dimensional automatic detection of scanning radar images of marine
targets based on radar PPINet,” Remote Sens., vol. 13, no. 19, 2021,
Art. no. 3856.

[21] L. Wen, J. Ding, and Z. Xu, “Multiframe detection of sea-surface small
target using deep convolutional neural network,” IEEE Trans. Geosci.
Remote Sens., vol. 60, Oct. 2022, Art. no. 5107116.

[22] Y. Xia, N. Zhang, H. Kuang, and Y. Zhang, “Detection & tracking method
for radar target based on plot-track quality evaluation,” J. Eng., vol. 2019,
no. 19, pp. 6239–6243, 2019.



13522 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

[23] Y. Zhou, H. Su, S. Tian, X. Liu, and J. Suo, “Multiple-kernelized-
correlation-filter-based track-before-detect algorithm for tracking weak
and extended target in marine radar systems,” IEEE Trans. Aerosp. Elec-
tron. Syst., vol. 58, no. 4, pp. 3411–3426, Aug. 2022.

[24] X. Chen, J. Guan, Y. Huang, N. Liu, and Y. He, “Radon-linear canonical
ambiguity function-based detection and estimation method for marine
target with micromotion,” IEEE Trans. Geosci. Remote Sens., vol. 53,
no. 4, pp. 2225–2240, Apr. 2015.

[25] X. Chen, J. Guan, N. Liu, and Y. He, “Maneuvering target detection via
radon-fractional Fourier transform-based long-time coherent integration,”
IEEE Trans. Signal Process., vol. 62, no. 4, pp. 939–953, Feb. 2014.

[26] G. Zhou, L. Wang, and T. Kirubarajan, “A pseudo-spectrum approach for
weak target detection and tracking,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 55, no. 6, pp. 3394–3412, Dec. 2019.

[27] S. Chen and W. Huang, “Maneuvering target tracking from nautical
radar images using particle-Kalman filters,” J. Electromagn. Waves Appl.,
vol. 27, no. 18, pp. 2366–2378, 2013.

[28] H. Zhang, Y. Liu, Y. Ji, and L. Wang, “Vessel fusion tracking with a
dual-frequency high-frequency surface wave radar and calibrated by an
automatic identification system,” Acta Oceanologica Sinica, vol. 37, no. 7,
pp. 131–140, 2018.

[29] B. Yan, L. Xu, M. Li, and J. Z. Yan, “Track-before-detect algorithm
based on dynamic programming for multi-extended-targets detection,” IET
Signal Process., vol. 11, no. 6, pp. 674–686, 2017.

[30] B. Errasti-Alcala, W. Fuscaldo, P. Braca, and G. Vivone, “Realistic ex-
tended target model for track before detect in maritime surveillance,” in
Proc. OCEANS, 2015, pp. 1–9.

[31] B. Wen, Y. Wei, and Z. Lu, “Sea clutter suppression and target detection al-
gorithm of marine radar image sequence based on spatio-temporal domain
joint filtering,” Entropy, vol. 24, no. 2, 2022, Art. no. 250.

[32] K. Reichert, K. Hessner, J. Dannenberg, and I. Trankmann, “X-band radar
as a tool to determine spectral and single wave properties,” in Proc. Int.
Conf. Offshore Mechanics Arctic Eng., 2006, vol. 47489, pp. 683–688.

[33] J. C. Nieto-Borge, P. Jarabo-Amores, D. de la Mata-Moya, and K. Hessner,
“Signal-to-noise ratio analysis to estimate ocean wave heights from x-band
marine radar image time series,” IET Radar, Sonar Navig., vol. 2, no. 1,
pp. 35–41, 2008.

[34] X. Liu, W. Huang, and E. W. Gill, “Comparison of wave height measure-
ment algorithms for ship-borne x-band nautical radar,” Can. J. Remote
Sens., vol. 42, no. 4, pp. 343–353, 2016.

[35] G. V. Weinberg, L. Bateman, and P. Hayden, “Development of non-
coherent CFAR detection processes in Weibull background,” Digit. Signal
Process., vol. 75, pp. 96–106, 2018.

[36] P. Mukhopadhyay and B. B. Chaudhuri, “A survey of Hough transform,”
Pattern Recognit., vol. 48, no. 3, pp. 993–1010, 2015.

[37] Q. Cheng, X. Wu, X. Zhang, and Q. Yang, “A novel sea clutter suppression
method based on SVD-FRFT at low signal-to-clutter ratio,” Electron. Lett.,
vol. 59, no. 14, 2023, Art. no. 12874.

[38] Z. Chen, C. He, C. Zhao, and F. Xie, “Using SVD-FRFT filtering to
suppress first-order sea clutter in HFSWR,” IEEE Geosci. Remote Sens.
Lett., vol. 14, no. 7, pp. 1076–1080, 2017.

[39] B. Zhang, J. Zhou, J. Xie, and W. Zhou, “Weighted likelihood CFAR
detection for W background,” Digit. Signal Process., vol. 115, 2021,
Art. no. 103079.

[40] K. Zebiri and A. Mezache, “Triple-order statistics-based CFAR detection
for heterogeneous Pareto type I background,” Signal Image Video Process.,
vol. 17, no. 4, pp. 1863–1703, 2023.

[41] K. Zebiri and A. Mezache, “Radar CFAR detection for multiple-targets
situations for Weibull and log-normal distributed clutter,” Signal Image
Video Process., vol. 15, pp. 1671–1678, 2021.

Zhizhong Lu received the B.Sc. degree in radio
electronics from Fudan University, Shanghai, China,
in 1989, and the M.Sc. and Ph.D. degrees in naviga-
tion guidance from Harbin Engineering University,
Harbin, China, in 2001 and 2008, respectively.

He is currently a Professor with the College of Au-
tomation, Harbin Engineering University. His main
research interests include marine integrated hydro-
logical remote sensing and information forecasting
technology.

Baotian Wen received the B.Sc. degree in automation
in 2017 from Harbin Engineering University, Harbin,
China, where he is currently working toward the Ph.D.
degree in instrument science and technology.

His research interests include marine radar image
processing, signal processing and target detection.

Yongfeng Mao received the M.A.Sc. degree in in-
strument science and technology from Harbin Engi-
neering University, Harbin, China, in 2024.

His research interests include marine radar image
processing and target detection.

Bowen Zhou received the B.Sc. degree in mecha-
tronics engineering from Beijing Jiaotong University,
Beijing, China, in 2019. He is currently working to-
ward the Ph.D. degree in instrument science and tech-
nology with Harbin Engineering University, Harbin,
China.

His research interests include marine radar image
processing and target detection.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


