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A Geospatial Approach to Wildfire Risk Modeling
Using Machine Learning and Remote Sensing Data

Riya Gupta and Hudson Kim

Abstract—In recent years, the likelihood of wildfire occurrence
has increased in many North American communities as changes
in climate have led to longer, more deadly fire seasons. Many
Americans, especially those living in Western states, have reported
frequent drought and wildfire conditions, leading to an increased
need for a modeling program to assess wildfire risk at a low
computational cost. The research objective of this article was
to develop a machine-learning model capable of producing the
accurate wildfire risk assessments using five geospatial datasets:
Land fire mean return, annual precipitation, Sentinel-2 imagery,
land cover, and moisture deficit and surplus. To create the model,
three separate machine-learning architectures were implemented
(U-Net, DeepLabV3, and the pyramid scene parsing network) and
then applied to the study area of San Bernardino County, CA, for
the year of 2020. This study demonstrated a proof of concept for
further inquiry into combining artificial intelligence and geospatial
datasets to create useful insights.

Index Terms—Deep learning, geophysical data, natural disasters
and hazard, optical data.

I. INTRODUCTION

S INCE California’s first recorded wildfire in 1889, there has
been a significant increase in the frequency of wildfires

throughout the state. The increasing risk of wildfires has con-
tributed to higher levels of inhalable particulate matter, placing
an economic and health strain on local communities [1]. As
wildfires continue to threaten California residents, the accurate
wildfire prediction models are crucial for managing fire response
assets and addressing wildfire trends. Moreover, these wildfire
modeling systems must be cost-efficient in order to be accessible
to the general public regardless of economic status [2]. Yet, there
is limited application of machine-learning models for wildfire
risk prediction and few have been developed to produce an output
that is economically feasible, accurate, and easily available to
communities with frequent fire occurrence [3].

II. LITERATURE REVIEW

In recent years, the development of high-resolution satellite
imagery from sources, such as the Aqua and Terra satellites, has
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opened the possibility of developing an efficient and accurate
wildfire risk modeling framework [4], [5]. Such frameworks
support wildfire preparedness, one of the four components of
wildfire management, through greater satellite data accessibility
to support the development of a predictive model [6]. When
taking data from a satellite source and applying it to a geospatial
machine-learning model, the accuracy of the results depends on
the quality of the datasets used to train the model. Scott et al. [7]
presented an open-source wildfire hazard potential (WHP) map,
which provides further research into wildfire risk forecasting
based on population density, building coverage, housing unit
density, building exposure type, housing unit exposure, housing
unit impact, and housing unit risk updated yearly. With its
results, this dataset provided promise in being used as a ground
truth data layer to help train a model with similar input factors.

Several studies have been conducted using various physics-
based parameters and environmental factors to model the growth
and spread of fire during a wildfire event. In June 2022, a
study conducted in London used inverse modeling based on
latent assimilation techniques to estimate the parameters of a
wildfire, finding that machine-learning-driven prediction models
created a precise reconstruction of test datasets [8]. Addition-
ally, a number of studies have applied deep learning to create
datasets that combine environmental factors, such as topography,
weather, and vegetation [9]. These maps can be implemented
into algorithms that predict various wildfire risk aspects, such
as fire spread and ignition.

The reliability of such models relies on the accuracy and
precision of data points used in the datasets fueling the algo-
rithm. While wildfire spread and evolution have been critically
monitored for decades, limited access to large datasets hinders
the prediction of wildfire behavior [10]. The inherent lack of
substantial geospatial imagery layers poses a challenge when
creating a predictive wildfire model as a substantial number
of inputs are required to develop intelligent algorithms that
can handle unseen data [11]. This issue is compounded by the
variations in classes that each dataset has, as geospatial imagery
layers inherently cover diverse geographies, creating variations
in the number of classes each dataset has during model training.
Class imbalances decrease the performance quality of a model,
fueling misguided research with inaccurate results [12].

Within wildfire prediction, class imbalances exist within a ge-
ographic region as areas do not have equal coverage of fire risk.
To create a model that can be adapted to wide geographic areas,
a model must be trained on large datasets that are balanced for
each risk class to prevent biases where a model prefers one class
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result over another. Given the lack of available data for wildfire
prediction modeling, it becomes necessary to implement data
augmentation techniques to enhance the variety and quantity of
data available to train a model and resolve class imbalances [13].

With the wide variety of data augmentation techniques
available, certain methods are better suited to solving certain
machine-learning problems. Currently, wildfire modeling often
relies on either random oversampling or random undersampling
as the primary data augmentation technique [14], [15]. Over-
sampling and undersampling are both implemented when one
class within a dataset has a much larger number of samples
compared with other classes. For oversampling, the dataset is
balanced by magnifying the minority classes by creating arti-
ficial examples or duplicating existing data points. Similarly,
for undersampling, the over-represented class has data points
removed until it has an equal number of examples compared
with all classes. However, by removing or creating replications
of existing data, training samples lose significant patterns that
can allow models to accurately handle unseen data, increasing
the risk of model overfitting [16], [17].

Based on the disadvantages of oversampling and undersam-
pling, an over-reliance on such processes creates a gap in the field
of wildfire predictive modeling to apply better suited data aug-
mentations that do not rely on oversampling or undersampling to
rebalance classes. For such modeling, ongoing research suggests
that transforms, such as dihedral affines, are better suited as they
can expand a dataset without losing key visual features [18]. As
such, a crucial target of this research was to apply such data
augmentation techniques to improve the accuracy of current
state-of-the-art wildfire prediction modeling.

In addition to proper data augmentation, the accurate results
also require datasets that reflect a study area’s changing climate
conditions and local ecology. With the rapid acceleration of
climate change in recent years, past wildfire prediction models
have become inadequate in predicting risk due to the reliance on
datasets that no longer mirror modern trends in weather patterns,
wind intensity, soil composition, etc. [19]. When creating a tool
to predict wildfires with current climate conditions considered,
factors, such as fire regimes, need to be taken into consideration
in order to more accurately depict the environment in which a
wildfire prediction model is being trained for and run.

The objective of this study is to compare three machine-
learning models to propose an effective machine-learning
methodology for wildfire risk prediction that is uniquely adapt-
able to a changing ecology and environment through the novel
application of relatively new data augmentations. This model is
aimed to be applicable over a large geographical area in future
applications, such as over the entire United States.

III. STUDY AREA

A. Study Area

San Bernardino County was selected because the county’s
land area includes a variety of high and low wildfire risk ex-
tremes according to the United States Department of Agriculture
(USDA) hazard potential map. This will allow us to test the
model in several scenarios. Along with this, San Bernardino

County encompasses the San Bernardino National Forest, allow-
ing for forest fire risk assessment, inspired by Cheng et al. [20].

IV. METHODOLOGY

A. Data Selection

The training process involved five different input sets: Land
fire mean return, historic annual precipitation, Sentinel-2 im-
agery, land cover, and moisture deficit and surplus imagery (see
Fig. 1), all of which were stacked together into a single com-
posite layer to enable faster training times. Additionally, before
training, several augmentation steps were run to expand the
training dataset and expose the model to more varied conditions,
including rotations, brightness changes, contrast modifications,
zooms, and crops. Uniquely the dihedral affine augmentation
that rotates an image in the eight possible directions of a dihedron
while retaining points and straight lines was also implemented.
This data augmentation is especially well-suited for wildfire
prediction due to its varied adjustments to geospatial data that
reflect common environmental factors, such as haze or clouds,
while still retaining important visual features. An image of the
stacked data layers is provided in image 6 of Fig. 1. This image
shows the stacked layers prior to the augmentation steps taken
to expand the dataset.

The first base layer is the land fire mean return layer. Provided
by the USDA, the land fire mean return input layer quantifies
the average number of years between fire occurrences in a
geographic area [21]. This is useful for risk assessment as fire
intervals provide insight into the ecological conditions and fire
regimes of a specific area [22].

The second dataset used was the historical annual precipi-
tation dataset. Developed by the USDAs Rocky Mountain Re-
search Station, this dataset includes precipitation, air temper-
ature, snow, and stream flow data throughout San Bernardino
County. The data were used to discern unburnable land areas
(rivers, streams, lakes, etc.) throughout San Bernardino County
and understand the moisture content throughout the area, which
is correlated to wildfire potential [23].

The European Space Agency’s Sentinel-2 imagery layer was
also used to provide a visual perspective of the study area [24].
This was done in order to provide the model with a better
understanding of the geographic and topographical environment
of San Bernardino County with data that is frequently updated
with new information.

The moisture deficit and surplus layer uses moisture dif-
ference z-score datasets to analyze the distance of moisture
content values from the calculated mean [25]. This dataset was
implemented to gain insight into the implications of moisture
conditions, such as drought, which can impact wildfire risk.

Finally, the land cover layer, which includes various clas-
sifications of land objects, such as water bodies, tree clusters,
flooded vegetation, crops, human-developed areas, bare ground,
snow/ice, and cloud-covered areas, was included to provide
more context to the underlying geography [26].

Once the input layers were established, the USDA WHP
map was selected to be the ground truth output layer [7]. This
dataset is an index that identifies geographical areas in which a
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Fig. 1. Input layers and combined composite layer used to train the machine-learning model. (a) Land fire mean return imagery layer. (b) Precipitation imagery
layer. (c) Sentinel-2 imagery layer. (d) Moisture deficit and surplus imagery layer. (e) Land cover imagery layer. (f) Composite layer of all input layer.

Fig. 2. Graph of U-Net, DeepLabV3, and PSPNet’s accuracy over the number
of epochs.

Fig. 3. Graph of U-Net, DeepLabV3, and PSPNet’s validation loss over the
number of epochs.

wildfire will be difficult to contain with standard fire suppression
techniques. The wildfire modeling data used for the WHP are
based upon data collected from the USDAs 2020 assessment of
wildfire risk factors and components.

B. Annotation Process and Class Names

To classify wildfire risk, the USDAs forest service WHP
map’s seven distinct class names were used: Very low risk, low
risk, moderate risk, high risk, very high risk, nonburnable, and
water. Using these labels, a total of 56 440 samples were created
for model training.

C. Model Architecture

For the model architecture, three separate models were se-
lected for their efficiency and relatively high accuracy. They
are U-Net, DeepLabV3, and pyramid scene parsing network
(PSPNet).

1) U-Net: Unlike traditional convolutional neural networks
(CNNs), the U-Net is a symmetric model composed of two major
segments [27]. The leftmost segment is known as the contracting
path, and the rightmost part is known as the expansive path. In
the contracting path, the high-level features are captured using
a series of convolution and pooling layers. Convolutional layers
are responsible for extracting features, while pooling layers
lower the spatial dimensions of the features. On the other side,
the decoding path takes the encoded features and upsamples
them to the original image size. This is done through a series
of upsampling layers and convolutional layers. Importantly, the
U-Net utilizes several skip connections that bridge the encoding
and decoding paths at several levels. By doing so, the network is
able to retain crucial information, such as the location of specific
features from the previous layers. Based on these features, the
U-Net is a powerful pixel classification model well-suited for
classifying and determining wildfire risk.

2) DeepLabV3: The second model architecture tested was
the DeepLabV3 model architecture. At its core, DeepLabV3
has three main parts: a base-level encoder (this study
used Resnet-34), an atrous spatial pyramid pooling (ASPP)
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TABLE I
U-NET, DEEPLABV3, AND PSPNET’S F1-SCORES

TABLE II
U-NET, DEEPLABV3, AND PSPNET’S PRECISION AND RECALL SCORES FOR

“VERY LOW” WILDFIRE RISK CATEGORY

module, and a decoder. The encoder portion of the model ex-
tracts high-level features and general contextualization from the
input image through a multitude of convolution and pooling
layers. From there, the ASPP module is applied to capture
multiscaled information. Using parallel atrous convulsions with
varying dilation rates, the ASPP module is able to capture
fine-grained details and the broader context of the image. Finally,
a decoder is applied that refines the output of the ASPP module
and generates a pixelwise segmentation map. This is achieved
through bilinear upsampling and skip connections that recover
spatial resolution lost in the encoding process. Compared with
other existing models, DeepLabV3 has a mean intersection of
union score of 86.90%, signifying a low pixel-by-pixel error
rate between a model’s predicted output and the ground truth
data. Other models, such as the TuSimple and ResNet-38, score
slightly less with 83.10% and 80.60%, respectively, making
DeepLabV3 a good choice for wildfire risk prediction for the
model [28].

3) Pyramid Scene Parsing Network: The final model archi-
tecture implemented was the PSPNet. Similar to the DeepLabV3
and U-Net models, the PSPNet is composed of an encoder
and decoder. The encoder utilizes a CNN backbone model and
several dilated convolutions in later layers to understand the
global context within the input layers. Uniquely, the PSPNet
incorporates a pyramid pooling module, which pools various
features at multiple scales, applies convolutions, and upsamples
the features to aggregate contextual information and improve
segmentation accuracy [29]. Once the encoder has finished, the
decoder takes the features extracted and predicts the class(es)
of every pixel. Within the PSPNet, two main options exist for
the decoder: an 8× upsampling decoder with bilinear upsam-
pling, or a U-Net-like decoder, which uses skip connections
to bring lower level features from the encoder to the decoder.
On the rendering side, the PSPNet utilizes a technique known
as PointRend, which enables crisp segmentation boundaries
[30]. This is accomplished by using a point-based rendering

TABLE III
INDIVIDUAL CLASSIFICATION MODEL METRICS FOR U-NET MODEL

neural network module to predict labels for selected points, as
compared with upsampling on a regular grid.

D. Model Training

Each model was run for 30 epochs using ArcGIS Pro’s train
deep learning model tool. A total of 30 epochs were experi-
mentally determined to be optimal, as for the past 30 epochs,
the model’s performance did not improve. For each epoch,
model statistics were computed, in particular, training_loss,
validation_loss, accuracy, and dice.

V. RESULTS

Across all models, several metrics were recorded, including
model accuracy, as shown in Fig. 2. Notably, the PSPNet in all
model metrics stopped training around 12 epochs as it stopped
improving and plateaued.

Additionally, each model’s F1-score was calculated detailed
in Table I. Within the realm of machine learning, an F1-score
measures a model’s accuracy as a harmonic mean of precision
and recall. A precision score indicates the false positive predic-
tions for a model, while a recall score indicates the frequency
with which the model correctly identifies true positives from the
layers

F1 =

True Positive

True Positive + 1
2 (False Positive + False Negative)

.

(1)

Along with each model’s F1-score, precision and recall scores
were calculated using the equations as follows. The precision
and recall scores are a useful tool for providing a basis for
comparison with other existing models

Precision =
True Positives

True Positives + False Positives
(2)

Recall =
True Positives

True Positives + False Negatives
. (3)

Table II reflects the precision and recall scores for each
respective model architecture for the “Very Low” wildfire risk
category. From this table, the U-Net model architecture had
the greatest precision score with a score of 0.99063, while the
PSPNet had the lowest score of 0.97848.

Table III outlines precision, recall, and F1 results for each of
the five class levels implemented within the U-Net architecture,
which was the best out of the three models trained. Based
on these results, the U-Net model had the highest results in
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Fig. 4. Example classification results from U-Net versus the ground truth data from the USDA wildfire hazard output.

the “Very Low” wildfire classification category with precision,
recall, and F1-scores of 0.9906, 0.9969, and 0.9937, respec-
tively. Conversely, the U-Net model had the lowest results in
the “Moderate” category with precision, recall, and F1-scores
of 0.3359, 0.4375, and 0.3800, respectively.

Finally, throughout the entire training process, each model’s
validation loss was also calculated, as shown in Fig. 3 and
compared to the ground truth data in Fig. 4.

VI. DISCUSSION

When compared with previous studies, the U-Net model
outperformed the ResNet-50 model from the Wang et al.’s
[31] study, which predicted wildfire progressions and road
extractions. This suggests a progression in wildfire predictive
technology, allowing it to be applicable in a practical setting.
Additionally, the U-Net model had a greater precision and
recall performance when compared with the Farasin et al.’s [32]
study, which used a U-Net architecture to identify burned and
unburned areas in Portugal, Spain, France, Italy, and Sweden.
However, this work on wildfire prediction analyzed an area once
it had been burned, setting the model in this article apart in
applying a similarly large array of datasets for a truly predictive
model.

Furthermore, the model developed through this research was
compared with various existing products to understand the
implications of applying novel data augmentations, such as
dihedral affine, which have not been standardized throughout
wildfire predictive modeling. In particular, the dihedral affine
data augmentation is useful for wildfire modeling as it exposes
a model to more varied edge cases while still retaining important
visual features. This is in contrast to other data augmentations
present in previous studies where augmentations, such as pure
rotations lose or distort important visual markers needed for
wildfire prediction.

In comparison with a similar research, the predictive model
from this article was found to have higher performance metrics.
For example, Pérez-Porras et al. [33] utilized oversampling and
undersampling to create six predictive classifiers that identified

wildfire risk in southern Spain. When comparing the results of
Pérez-Porras et al. to the models developed in this research, the
F1-scores of Pérez-Porras et al. are substantially lower between
0.42 and 0.57 than that of the U-Net, DeepLabV3, and PSPNet
individually, all of which had higher than 0.9 F1-scores in the
“Very Low” class.

Similarly, another example of an existing comparable product
is Kondylatos et al.’s study [34], which implemented several dif-
ferent model architectures to predict wildfire risk. Their highest
performing model for precision was the ConvLSTM, which had
a 0.923 precision score. Their highest performing recall model
was LSTM, which had a score of 0.755. Finally, their greatest
F1-score model was ConvLSTM, which had a score of 0.806.
When compared with the results from this article, the results of
Kondylatos et al.’s study had lower metric scores despite having
fewer training samples, 40 554 samples versus 56 440 samples
in this study.

Additionally, Seddouki et al. [35] applied a similar methodol-
ogy by considering ecological factors when applying datasets for
a machine-learning model that predicts forest fire susceptibility.
Following their study, Seddouki et al. established the precision
of their random forest model to be 0.891, which is significantly
lower than the precision scores for all three models developed
throughout this article. A crucial difference in Seddouki et al.’s
article when compared with the methodology of this article is
the data processing and augmentation process because Seddouki
et al. used a smaller training sample size (428) while also not
applying significant data augmentations to offset natural biases
within their dataset.

Despite these promising statistics, it is important to acknowl-
edge the limitations of this study. While the datasets had many
individual data points within the target study area, there are
still gaps within data as a result of incomplete input datasets.
Such missing data can generate minor inaccuracies within the
precision of each model [36]. While it is difficult to select a
dataset that contains no missing values, the quality of a dataset
can be improved through enhanced satellite imagery collection.

Moreover, when discussing the area analyzed, the study area
was limited to San Bernardino County, which may lack the
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ecosystem diversity to account for edge cases in other parts
of the United States. For training purposes, it was challenging
to incorporate a larger area while accounting for the limited
computing power of an NVIDIA 1060 GPU. In the future, an
expansion of the research area to include the rest of California
or the entire United States may be sought after.

VII. CONCLUSION

This is one of the first studies of its kind to create a wild-
fire prediction model using dihedral affine among other data
augmentations on five separate large geospatial datasets in San
Bernardino County, CA [37]. Notably, the incorporation of the
USDA’s land fire mean return input layer enables the model to in-
clude environmental fire regimes into risk calculations, allowing
for a multidimensional analysis that takes into consideration the
changing ecology of a landscape throughout time. This allows
for more applicable forecasting that is relevant to prediction
needs in the age of climate change.

When applied, this modeling technology can support conser-
vation efforts by decreasing uncertainties in aerosol emissions,
vegetation succession, nutrient cycling, and species diversity in
various ecosystems [38], [39], [40], [41].

Overall, this study offers robust geospatial insights, under-
lining the potential for developing cost-effective wildfire risk
prediction models. By harnessing the data generated by this
model, policymakers and local fire departments cannot only
foster heightened public awareness about wildfire preparedness
but also strategically allocate wildfire resources to where they
are most urgently needed.
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